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ABBREVIATIONS 
 
AKI, Acute Kidney Injury 
CKD, Chronic Kidney Disease 
DAO, Donor Age-Only 
DBD, Donation after Brain Death 
DCD, Donation after Circulatory Death 
eGFR, Estimated Glomerular Filtration Rate 
eGFR12, Estimated Glomerular Filtration Rate of recipient at 12 months posttransplant 
ESKD, End-Stage Kidney Disease 
LASSO, Least Absolute Shrinkage and Selection Operator; a regularized regression 
technique 
PRE, Prediction Rule Ensemble 
RMSE, Root Mean Squared Error 
QUOD, Quality in Organ Donation (biobank) 
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ABSTRACT  

Background. Organ availability limits kidney transplantation, the best treatment 

for end-stage kidney disease (ESKD). Deceased donor acceptance criteria have been 

relaxed to include older donors with higher risk of inferior posttransplant outcomes. 

Donor age, although significantly correlated with transplant outcomes, lacks granularity 

in predicting graft dysfunction. Better characterization of biological mechanisms 

associated with deceased donor organ damage and transplant outcome is key to 

improving donor kidney assessment and developing function-preserving interventions. 

Methods. 185 deceased donor pretransplant biopsies were obtained from the 

Quality in Organ Donation biobank (QUOD) and proteomic profiles were acquired by 

mass spectrometry. A clinical variable feature selection step guided protein-wise LASSO 

regression modeling of protein, donor age and protein:age interactions, with 

performance assessed on held-out data. The modeling approach was further validated 

by result contextualization against published healthy and disease kidney transcriptomes. 

Results. Feature selection revealed that outcomes were informatively modeled 

by a combination of donor age and protein abundance signatures. Proteins were 

modeled individually against outcome, revealing 539 proteins with additional donor age-

modulated outcome association beyond the independent donor age effect. Observed 

associations with metabolic and innate immune system pathways suggest biological 

targets for possible interventions pretransplant. Contextualization of our results against 

external spatial transcriptomic data suggests overlap with known mechanisms of kidney 

injury. 
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Conclusions. The highlighted biological mechanisms and age modulation of 

protein effects open research directions to developing outcome-predictive models and 

function-preserving interventions during donor management.  
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INTRODUCTION 

Kidney transplantation is the optimal treatment for ESKD. Compared to dialysis, 

transplantation increases life-expectancy, improves quality of life and is cost-effective. 

Limited availability of suitable donor kidneys impedes treatment, and often prolongs 

dialysis, increasing morbidity and mortality. Deceased donor organ shortages, living 

donation decline in some countries and emerging ageing populations drive increased 

utilization of older deceased donor kidneys, now comprising more than half of offered 

organs1,2 . 

Ageing associates with time-dependent decline of organ function, evidenced in 

kidneys by nephron loss and histological lesions, such as tubular atrophy, interstitial 

fibrosis, glomerulosclerosis, and arteriosclerosis. Older kidneys have fewer functioning 

glomeruli, reduced renal mass, podocyte dysfunction, and impaired cellular repair 3. 

Glomerular diseases are more common and associated with worse outcomes in older 

patients 4. 

Age associates with increased prevalence of Chronic Kidney Disease (CKD) and 

accelerated transition to chronic disease from Acute Kidney Injury (AKI) 5.. In organ 

donation and transplantation, older donors are more likely to have suffered from 

additional comorbidities such as diabetes, hypertension or cardiovascular disease, and 

organs from these ‘higher risk’ donors are more likely to develop graft dysfunction or 

loss. Consequently, donor age is incorporated in clinical scoring algorithms to guide 

kidney allocation decisions 6,7. Current front-line indices that further include clinical 

factors such as terminal serum creatinine, history of hypertension and diabetes 7,8 show 

consistent performance across demographics but lack granular accuracy for donor 
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kidney quality assessment 9, resulting in increased organ decline posttransplant and 

unnecessary discard of viable organs 10. 

Molecular analyses of biopsies plausibly offer higher resolution assessment of 

organ state; but require ‘big picture’ understanding of mechanisms associated 

specifically with poor outcome. Deceased donors are frequently assessed as having 

sustained kidney injury (i.e. AKI) based on serum creatinine levels 11, however this 

metric alone associates poorly with longer term outcomes 11–14. Transcriptomic and 

proteomic studies provide molecular granularity, but until recently low availability of well 

curated clinical samples and metadata has limited scope for large scale investigations 

15. Integration of deep omic kidney profiles with heterogeneous clinical and demographic 

factors are now enabling the next steps towards precision medicine 16. 

Age-related alterations of the kidney transcriptome and proteome modify the 

organ capacity to recover from ischemia-reperfusion injury and may determine 

susceptibility to suboptimal outcomes 17. However, we have limited data on how donor 

age may modulate proteomic associations with outcome. Our study seeks to 

disentangle the effects of ageing on kidney proteome associations with transplant 

outcome, explore the implications on biological processes driving outcome-relevant 

damage and identify future organ assessment and intervention targets for organ 

reconditioning. 
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METHODS 

Study Design 

Deceased donor pretransplant biopsies (n=186; 1 sample excluded during data 

processing) were obtained from the Quality in Organ Donation (QUOD) biobank, a 

national multi-center UK wide bioresource of deceased donor clinical samples acquired 

during donor management and organ procurement. Pretransplant biopsies were 

obtained from Donation after Brain Death (DBD) donors and Donation after Circulatory 

Death (DCD) donors post retrieval during back table preparation. 

Kidneys were selected to cover the outcome continuum i.e. the range of 

estimated Glomerular Filtration Rate (eGFR) in the recipient at 12 months 

posttransplant (henceforth, ‘eGFR12’), from primary non-function to eGFR12>80 

ml/min/1.73 m2 from donors aged 18 to 78. To minimize the impact of recipient factors, 

we only included kidneys for which the contralateral kidney was transplanted with 

similar outcome, both kidneys having eGFR12< 30 ml/min/1.73 m2, between 30 and 60 

ml/min/1.73 m2, or > 60 ml/min/1.73 m2). Samples were linked to corresponding donor 

and recipient demographic and clinical metadata, provided by NHS Blood and 

Transplant National Registry. 

Study Approval and Ethics statement 

Informed consent from donor families was obtained prior to sample procurement 

consistent with the Declaration of Helsinki. Collection of QUOD samples and research 

ethics approval was provided by QUOD (NW/18/0187). The clinical and research 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2024. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


activities being reported are consistent with the Principles of the Declaration of Istanbul 

as outlined in the 'Declaration of Istanbul on Organ Trafficking and Transplant Tourism’. 

Sample Analysis and Statistical Analyses 

Please see Supplementary Methods. 
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RESULTS  

Clinical Variable Associations with Outcome are Dominated by Donor/Recipient 

Age 

The selected cohorts were representative of the deceased donor population 

when demographic and clinical characteristics were considered (Table 1). All 51 donor 

variables used in our data modeling are listed in Supplementary Table ST1. As 

expected, eGFR12 correlated strongly with donor age (R2=0.2107; p=5.0×10-11). UK 

Kidney Donor Risk Index (R2 =0.2042; p=2.5×10-9) interestingly explained less variance 

in eGFR12 than donor age alone. 

Integration of Kidney Proteomes with Clinical Metadata by Rule Ensemble and 

Regression Modeling Identifies Outcome-Associated Proteins 

Proteomic analysis quantified 2984 protein groups with 50% or less missing 

values (out of 7790 identified protein groups in total; Supplementary Figures SF1A and 

SF2) over 185 samples and 20 interspersed sample pools as internal controls. Analysis 

of sample pools showed minimal mass spectrometry-related variance (squared mean 

pairwise Z-corrected Pearson’s r=0.94). 

To assess individual protein relationships with outcome, we adopted a 

descriptive modeling approach, using a subset of our data (‘discovery set’; 2/3 of data) 

to find protein models with improved association with eGFR12 over donor age alone, 

then assessing individual model performance against unseen (i.e. held out) data 

(‘evaluation set’, 1/3 of data). To create our discovery/evaluation split, we randomly 

selected equal numbers of samples for the training set within each eGFR12 tertile. 
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Six of the kidneys analyzed were paired (3 pairs from 3 donors); these were 

analyzed separately from discovery and evaluation set to assess intra-donor 

reproducibility. All three pairs showed high correlation of protein intensity values 

between donor pairs (Pearson’s r=0.71, 0.92 and 0.91; Supplementary Figure SF1B).  

For an unbiased assessment of key relationships between clinical variables, 

protein measurements, and outcome, we used iterative Prediction Rule Ensemble 18 

(PRE) learning on our training set to select features among the set of quantified proteins 

and donor type-independent clinical variables available pretransplant (Figure 1, inset). 

PRE modeling uses LASSO regularization to generate a minimal model (preventing 

overfitting). To investigate the multitude of ways in which clinical factors might interact 

with protein associations with outcome we expanded the space of proteins considered 

for interaction with clinical variables by repeating this modeling 2000 times, excluding 

proteins identified in the rule ensemble at each iteration from future iterations while 

retaining all clinical variables. 

Over 2000 iterations, PRE modeling generated 3282 individual prediction rules 

(Fig 2A). Despite all clinical variables remaining in the dataset throughout iteration, rules 

were dominated by prediction functions based on donor age alone (3075/3282; 93.7%). 

Of the remaining rules, 194 (5.9%) referenced proteins and just over a third of this total 

(73) also involved donor age. These rules were predominantly decision tree and spline-

based (out of 194 rules, 106 were decision trees, 20 were linear fits and 68 were spline 

fits), indicating that protein effects on outcome are not well-modeled by simple linear 

associations with protein abundance alone. There were only 13 rules not referencing 

donor age or any protein; of these, just four referenced donor type. 
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Comparative model formulations tested associations with outcome for any 

protein alone, donor age alone, and age:protein interaction terms using LASSO 

regression 19. To ensure models would generalize beyond our data, we used a 

linearized version of eGFR12 as the outcome variable (see Supplementary Methods). 

We excluded all cases where inclusion of the protein and age:protein terms did not 

explain additional variance in outcome compared to a donor age-only (DAO) model. 

This approach yielded a set of 539 proteins (Supplementary Table ST2), with 

mean root mean square error (RMSE) on our discovery dataset of 25.78 ml/min/1.73m2, 

where the upper limit (the DAO model RMSE) was 25.88 ml/min/1.73m2. Protein 

associations identified in the discovery cohort replicated well in our evaluation cohort. 

RMSE on this evaluation data was consistently lower (mean RMSE 22.25 

ml/min/1.73m2; Figure 2B). 

Reactome pathway analysis of the 539 outcome-associated proteins (Figure 2C) 

indicated that a key mechanistic theme related to metabolism (Fig 2D), including key 

enzymes in gluconeogenesis (Enolase 1; ENO1 and Fructose-1,6-bisphosphatase 1; 

FBP1) and the pentose phosphate pathway (Transketolase; TKT), members of the citric 

acid cycle (Glutamic-oxaloacetic transaminase 2; GOT2, Malate dehydrogenase 2; 

MDH2) and components of electron transport chain Complexes I (NADH:ubiquinone 

oxidoreductase subunits A3 and B2; NDUFA3, NDUFB2), III (Cytochrome b-c1 complex 

subunit 5; UQCRFS1) and IV (Cytochrome c oxidase subunits 5A, 5B and 7C; COX5A, 

COX5B, COX7C). A second key mechanistic theme was innate immune response 

(Figure 2E), particularly regulation of complement, via both the classical pathway 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2024. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


(Complement factor 4 and B; CF4A, CF4B) and alternative pathway (Complement 

factors B, H, I, 3, 5 8A, 8B and 8G; CFB, CFH, CFI, CF3, CF5, CF8A, CF8B, CF8G).  

Association of Proteins with Posttransplant Outcome is Modulated by Donor Age 

For all 539 proteins, their association with outcome was modulated by donor age 

(Supplementary Table ST2). To explore the implications of each model further, we 

considered how the models compared to the expected outcome using a donor age only 

model (Figure 3A,B). For each protein, considering the cases of low abundance (10th 

percentile) and high abundance (90th percentile) we compared modeled outcomes 

across donor age against the DAO model, and ranked proteins by log2 fold change 

Euclidean distance across ages (Figure 3C,D).  Over all 539 proteins that outperformed 

the DAO model, we found that low protein abundance was associated with better 

outcome than DAO model (Figure 3C) while high protein abundance was associated 

with worse outcome than DAO model (Figure 3D). Furthermore, the amount by which 

high protein abundance associated with worse outcomes generally increased from age 

50 onwards. 

Comparing the top five proteins which diverged the most from the DAO model at 

low protein abundance (in order of decreasing divergence: Immunoglobulin heavy 

constant mu; IGHM, Cadherin 13; CDH13, Cofilin 2; CFL2, Hemoglobin subunit delta; 

HBD and COMM domain-containing protein 9; COMMD9) (Figure 3C) and the top five 

which diverged the most at high protein abundance (in order of decreasing divergence: 

COMMD9, Lectin galactoside-binding-like protein; LGALSL, HBD, CFL2 and Glyoxalase 

domain-containing protein 4; GLOD4) (Figure 3D), there was considerable overlap 

(CFL2, HBD and COMMD9). These three proteins behaved similarly at both low and 
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high abundance, associated with better outcomes than the DAO model at low age but 

trending towards worse outcomes as age increased (Figure 4A,B,C). At high abundance 

the gradient with respect to age was so steep that high abundance of these proteins 

associated with slightly better than otherwise expected outcome (better than DAO 

model) in young donors but considerably worse than otherwise expected outcome 

(worse than DAO model) in old donors. 

In contrast, the other four most divergent proteins across low and high 

abundance (IGHM, CDH13, GLOD4, LGALSL) behaved differently in their association 

with outcome over age at low abundance, with protein abundance associating with 

better outcomes regardless of age (IGHM, CDH13; Figure 4D,E) or even slightly 

improving with age (GLOD4, LGALSL; Figure 4F,G). 

While proteins with the most exaggerated difference from the DAO model have 

the strongest mechanistic implications, our list of 539 candidates also includes proteins 

classically associated with kidney function. Of particular note was Cystatin-C (CST3), 

which showed a similar relationship with age as IGHM and CDH13, i.e. relatively 

consistent over age at low abundance but associating with increasingly worse outcomes 

as age increased at high abundance (Figure 4H). Another protein associated with 

outcomes was Apolipoprotein E (APOE) and with a strong genetic age association in 

other pathologies (particularly Alzheimer’s Disease). We observed modest improvement 

in outcomes with age at low APOE abundance, similar to GLOD4 and LGALSL (Figure 

4I). 

Comparison to Spatial Expression Data Suggests Spatial Localization of 

Outcome-Associated Signal 
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To further characterize our set of 539 eGFR12-associated proteins, we sought to 

contextualize them in the wider context of kidney damage. AKI and CKD both impact 

kidney function and post-transplant potential 20, with a substantial portion of 

transplanted organs thought to suffer AKI before retrieval 21. 

We evaluated our protein set against a spatial scRNA-seq dataset comparing 

AKI and CKD 22. Comparison between proteomic and transcriptomic quantitative 

measurements is complicated by highly variable degrees of association between 

transcript and corresponding protein product abundance 23. To address this issue, we 

compared within the transcriptomic data, comparing genes matching our protein set 

against a background of all other genes. Since our analysis so far had sought to identify 

proteins that were associated with outcome after accounting for effects well modeled by 

donor age alone, and since chronic disease associates strongly with age, we reasoned 

that our candidate set would be likely to be enriched for markers for acute injury, and 

therefore should show greater differences between AKI and CKD. 

We compared the correlation of AKI to CKD expression across samples within 

our set of proteins versus the background of all other transcripts in the dataset, across 

nephron cell types, and observed that our candidate protein set showed more 

differences (lower correlation than background) in almost all nephron structures 

distinguished in the scRNA-seq data (Figure 5). Differences in statistical significance 

between regions also suggested the possibility of spatially relevant gene expression 

differences.  
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DISCUSSION  

We examined the relationship between posttransplant kidney function with 

pretransplant kidney proteomes by analyzing 185 deceased donor kidneys with 

complete donor and recipient associated metadata. Initial minimal-assumption modeling 

of associations recapitulated previous findings of a strong effect of donor age on 

outcome. However, our analysis indicated 539 proteins associated with outcome in an 

age-dependent manner even after the independent effect of donor age was accounted 

for. As life expectancy rises, increased demand of donor kidneys to treat end stage 

chronic diseases will be met predominantly by older donor organ offers. Donor age 

modulation effects on omic associations with outcome therefore have high clinical 

relevance in the search for robust and accurate biomarkers that add useful information, 

and to identify pathway changes affecting organ resilience and posttransplant recovery 

capacity. 

Minimal-assumption exploration of our data using iterative PRE feature selection 

indicated a substantial number of proteins associating with outcome, but despite all 

clinical variables being available for rule selection at every iteration, only donor age was 

consistently selected, leading us to include only age, protein and donor age:protein 

interaction as terms in our regularized regression modeling. Donor age is a key 

contributor in clinical decisions and is a strongly weighted term in extant kidney 

allocation scoring systems 7,24, but a clinical variable notable by its omission from our 

association findings was donor type 25, which appeared in just 4 (0.1%) of the initial 

feature selection rules. It is possible that outcome-predictive information ‘carried’ by 

donor type is also derivable from the proteome directly, which precluded selection of the 
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clinical variable as a PRE feature. Previous transcriptomic comparisons of DBD and 

DCD biopsies to living donors found very similar results across donor type except in 

samples taken after reperfusion 26, suggesting that donor type subclinical differences in 

tissue may only detectably manifest after reperfusion stress. 

Kidney metabolism is altered as a result of biological stress occurring during 

donor management, in both DBDs and DCDs 26. Within our final list of 539 proteins 

associated with outcome there are common themes of metabolic disruption and innate 

immune responses (Figure 2C,D,E); we identify core energy storage and release 

components, and multiple components of the complement pathway. This finding is 

consistent with previous studies of omic associations with outcome 17,27, as well as 

transcriptomic comparisons of AKI, CKD and diabetic kidney disease 22,28. In particular, 

complement activation in donors is associated with both acute rejection 26,29,30 and 12-

month outcome 31; existing evidence, including our own findings, particularly indicates 

inflammation mediated by regulation of the anaphylatoxins C3A, C4B, C5A 32 as a 

transplant-relevant consequence of complement activation. Preventing inflammation 

and associated damage by anti-complement interventions in the donor, or during organ 

preservation (as demonstrated successfully in mouse models 33) is likely to improve 

outcomes 34,35. 

In our individual regression modeling of proteins, all models retained a 

protein:donor age interaction term; that is to say, we show that even after accounting for 

the independent effect of donor age on outcome, the metabolic disruption and innate 

immune response changes with donor age. This second-order effect has not (to our 

knowledge) been explored in transplantation, and we suggest is highly relevant to 
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understanding molecular mechanisms of damage. Some caution should be considered 

given the relative strength of the donor age effect relative to individual protein 

contribution; a larger study would have increased power to deconvolute age and protein 

effects, especially if paired with variant sequencing to understand genetic diversity. 

Our confidence in our modeling was strengthened by detection of known kidney 

markers. Both Cystatin-C (CST3) and Apolipoprotein E (APOE) are known to associate 

with transplant outcomes in recipients 36–41. Serum CST3 is recognized as a marker of 

kidney function 42,43, including in transplantation for both recipients 36,37,44 and donors 45 

since levels are linked to both glomerular filtration rate and its role as an inflammatory 

mediator 46–48. Our identification of an association between outcome and tissue CST3 

further emphasizes the relevance of the inflammatory role. APOE genetic variants are 

not only associated with kidney dysfunction risk 49–51 (possibly manifested by lipidomic 

differences between alleles 52 and/or a role in senescence mediation 53) but have widely 

characterized age-dependent genetic association with other pathologies such as 

cardiovascular disease and Alzheimer’s Disease 54. Both proteins were also identified in 

the transcriptomic dataset as indicators of cellular damage 22. 

The proteins highlighted as showing the most difference from the donor age-only 

model were also consistent with the broader mechanistic theme of inflammation across 

the full list of proteins. Cofilin-2 (CFL2) is a regulator of actin transport, function and 

organization. CFL2 is thought to be part of the ischemic stress response in the brain 55 

and may be under redox regulation 56. Cofilins have been shown to be significantly 

upregulated in an AKI cell model, and are implicated in damage induction via 

endoplasmic reticulum stress-mediated ferroptosis 57, which is also a key major 
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mechanism in diabetic nephropathy 58. Both COMMD9 and HBD showed similar 

modeled effects of eGFR12 as CFL2. COMMD9 is a member of the 16-protein 

Commander Complex that is also associated with inflammatory response via the NF-kB 

pathway 59 and regulates sodium uptake via the epithelial sodium channel in the distal 

kidney 60. Hemoglobin subunit delta (HBD) is a relatively small component of adult 

hemoglobin which is known to show increased expression in inflammatory conditions 

61,62. Previous proteomic studies of kidneys have identified HBD as a marker for early 

diabetic kidney disease 63. Since HBD is a blood component, further investigation is 

required to determine whether the signal is due to variance in flushing of the kidneys 

pre-biopsy, and if so whether this is purely an artefact of variation in flushing protocol or 

a true signal related to effects on kidney microvasculature that impair flushing. 

 Immunoglobulin heavy constant mu (IGHM), and Cadherin-13 (CDH13) 

demonstrated a different relationship with age, where high protein abundance 

associated with poorer outcomes while low protein abundance was relatively 

unchanged over age (albeit predicting a higher baseline eGFR12 then the donor age-

only model).  Difference in IGHM expression may reflect general changes in immune 

cell distribution (naïve B-cell population) as part of the inflammatory response. 

Interestingly, increases in IGHM have previously been reported during AKI-CDK 

transition in a mouse model of sepsis-induced kidney injury 64. CDH13 has been 

implicated in podocyte differentiation 65, and CDH13 knockout increases renal tubule 

susceptibility to ischemia-reperfusion injury 66 in mice, suggesting a protective or 

recovery role, where increased expression may be in response to nephron damage. 
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Glyoxalase domain-containing protein 4 (GLOD4) is a key component of 

detoxification of methylglyoxal, accumulation of which drives renal injury in diabetic-

drive hyperglycemia 67. Lectin galactoside-binding-like protein (LGALSL) is a poorly 

characterized carbohydrate binding gene. Its paralog LGALS9 (encoding Galectin 9) 

implicated in kidney-damaging autoimmune disorders such as Lupus 68, and regulates 

plasma membrane redox state and T-cell migration 69. Both proteins showed the notable 

pattern of low amounts of protein associating with improved outcomes as donor age 

increased, while high amounts of protein associated with worse outcomes (Figure 3J,K). 

As above for CHD13, this effect may reflect these two proteins rising in response to cell 

stress by metabolic toxin accumulation/inflammatory challenge rather than driving a 

biological mechanism of damage themselves. 

A potential hurdle in contextualizing our findings in existing orthogonal 

transcriptomic data was that proteomes and transcriptomes are generally poorly 

correlated in terms of abundance changes 23. In order to avoid this problem, we 

considered how the pattern of injury scenario-related expression compared between 

genes matching our outcome-associated protein set and all other genes, within the 

same transcriptomic dataset 22. Since our set of proteins is likely associated with 

specific patterns of kidney injury, we expected corresponding gene transcripts to be 

more different than baseline when comparing two different injury scenarios. Indeed, we 

found that the correlation across samples between AKI and CKD within the matched 

genes was significantly lower than the correlation for genes not matching our outcome-

associated protein set, supporting our hypothesis. Since the expression data was 

spatially localized, we were able to observe that the degree of difference was stronger 

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2024. ; https://doi.org/10.1101/2023.03.31.23288011doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23288011
http://creativecommons.org/licenses/by-nc/4.0/


in certain nephron substructures (specifically the ascending loop of Henle), which 

suggests the intriguing possibility that outcome associated protein or gene expression 

signals, and their underlying biological mechanisms, may be spatially localized. In 

particular, nephron substructure-specific information would be consistent with the known 

kidney injury associations for CFL2, HBD and CDH13 discussed above. 

We note that our list of outcome-associated candidates cannot be exhaustive. 

Practicalities of sample acquisition limited sampling of a wide range of outcomes 

outside the 30-60 donor age range, especially limited high eGFR12 outcome events in 

older donors. Furthermore, organ allocation algorithms impose a close link between 

donor and recipient age in the sample cohort, so while we might interpret these age-

moderated effects as an increase in organ susceptibility with donor age, it could also 

represent a greater ability to repair a given level of damage in younger recipients. In 

addition, we have considered only chronological donor age, rather than a more nuanced 

representation of the epigenomic biological clock 70, or organ-specific ageing 71,72, both 

of which may account for some variation observed with respect to both donors and 

recipients. 

However, given the limitations of our dataset, our protein models generalized well 

to samples unseen during model training (Figure 2B), reproduced known markers of 

kidney damage among many new leads and were consistent with independent kidney 

damage transcriptome data. With a larger training cohort to address the caveats 

acknowledged above, a substantial component of early posttransplant outcome may be 

predictable solely using subclinical measurements moderated by donor age. The 
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importance of donor age interaction terms in our results suggests that such terms 

should be considered as a matter of course in future work. 
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SUPPLEMENTARY MATERIALS 

Supplementary Methods: Technical protocols for sample extraction, mass spectrometry 

deep proteome analysis of samples and statistical analysis. 

Supplementary Table ST1: Clinical variable p-values for association with donor type and 

outcome, and summary of clinical value imputation. 

Supplementary Table ST2: Summary of results for all proteins identified as associating 

with eGFR12. 

Note that coefficient values provided are for linearized eGFR12, i.e. they relate to 

eGFR12 quantiles ranging from 0 to 1. 

Supplementary Figure SF1: Summary of protein quantitation quality. A: Percentage of 

missing values across all proteins, showing the cut-off (red line) for poorly quantified 

proteins excluded from analysis. B: Correlation between quantitation values for each of 

the 3 sets of paired kidneys.  

Supplementary Figure SF2: Summary of protein quantitation imputation, showing the 

fraction of imputed values across distribution of all values. 

 

DATA AND MATERIALS AVAILABILITY 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE 73 partner repository with the dataset identifier PXD033428. 
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FIGURES AND TABLES 

 
 

 
Figure 1: Experimental design to discover donor kidney proteome associations with transplant 
outcome 
We selected biopsies from QUOD biobank taken from one kidney from each donor pair. Donor kidney 
samples were selected randomly from pairs where both recipients had similar outcomes. The biopsy 
samples were subjected to proteomic analysis to yield a snapshot of the organ proteome at kidney 
retrieval. We analyzed donor characteristics and clinical variables and protein abundances in a combined 
model against recipient eGFR at 12 months posttransplant (eGFR12; units given in ml/min/1.73 m2). 
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 DBD DCD Total 
Proportion of 

Variance 
Explained 

Association 
p-value 

n 100 85 185   
Recipient kidney function (mean 
eGFR, mL/min per 1.73 m2)  
at 12 Months Posttransplant 
(eGFR12) 

53.47  
± 28.29 

47.38  
± 25.17 

50.67  
± 27.00 - - 

Recipient kidney function (mean 
eGFR, mL/min per 1.73 m2)  
at 3 Months Posttransplant  

54.26  
± 28.94 

48.14  
± 21.20 

51.47  
± 25.81 

0.6589 6.7079×10-44 (***) 

Donor Age, y 
48.37  

± 14.98 
49.60  

± 12.81 
48.94  

± 14.00 
0.2107 5.0067×10-11 (***) 

Donor Sex 
   

0.0051 3.3568e×10-1 
   Female 50 (50.0%) 31 (36.5%) 81 (43.8%)   
   Male 50 (50.0%) 54 (63.5%) 104 (56.2%)   
Donor Ethnicity    0.008 9.1804×10-1 
   White 96 (96.0%) 83 (97.6%) 179 (96.8%)   
   Other 4 (4.0%) 2 (2.4%) 6 (3.2%)   
Donor Weight, kg 80.26  

± 17.97 
80.60  

± 15.34 
80.42  

± 16.77 
0.0017 5.7320×10-1 

Donor Height, cm 171.19  
± 9.96 

171.95  
± 8.99 

171.54  
± 9.51 

0.0229 3.9808×10-2 (*) 

Donor S-Cr terminal, umol/l 86.76  
± 54.60 

68.14  
± 28.14 

78.04  
± 45.08 

0.0055 3.3332×10-1 

Donor Cold Ischemia Time, h 14.70  
± 4.35 

13.92  
± 5.58 

14.34  
± 4.95 

0.0002 8.3482×10-1 

Donor Cause of death    0.0396 6.5924×10-3 (*) 
   Trauma 7 (7.0%) 11 (12.9%) 18 (9.7%)   
   Other 93 (93.0%) 74 (87.1%) 167 (90.3%)   
Donor UKKDRI 1.11  

± 0.47 
1.08  

± 0.45 
1.10  

± 0.46 
0.2042 2.5337e-09 (***) 

Donor Delayed Graft Function    0.025 1.3182e-01 
   Immediate 73 (73.0%) 54 (63.5%) 127 (68.6%)   
   Delayed 17 (17.0%) 18 (21.2%) 35 (18.9%)   
   Primary Non-Function 0 (0.0%) 1 (1.2%) 1 (0.5%) 

     Not Reported 10 (10.0%) 12 (14.1%) 22 (11.9%)   

Recipient Age, y 
49.25  

± 14.36 
51.80  

± 12.68 
50.42  

± 13.64 0.1117 3.3146e-06 (***) 

Recipient Sex  
  

0.0005 7.5185e-01 
   Female 46 (46.0%) 21 (24.7%) 67 (36.2%) 

     Male 54 (54.0%) 64 (75.3%) 118 (63.8%) 
  

Recipient Ethnicity  
  

0.0191 7.4663e-01 
   White 72 (72.0%) 65 (76.5%) 137 (74.1%) 

     Other 28 (28.0%) 20 (23.5%) 48 (25.9%) 
  

HLA Mismatch Groups  
  

0.03 1.3682e-01 
    0 Mismatches 16 (16.0%) 2 (2.4%) 18 (9.7%) 

      0 DR and 0/1 B 30 (30.0%) 24 (28.2%) 54 (29.2%) 
  

    0 DR and 2 B 44 (44.0%) 49 (57.6%) 93 (50.3%)   
    or 1 DR and 0/1 B 10 (10.0%) 10 (11.8%) 20 (10.8%)   
Donor/Recipient Sex Mismatch    0.0017 5.7505e-01 
    No 58 (58.0%) 26 (30.6%) 84 (45.4%)   
    Yes 42 (42.0%) 59 (69.4%) 101 (54.6%)   
 
Table 1: Donor and recipient clinical and demographic variables 
Donor kidney associated metadata. Samples are subdivided by donor type for information purposes. 
Numerical variables are given as mean ± standard deviation. Categorial variables are given as frequency 
alongside percentage of total cohort. Correlation values and associated p values given are for the 
correlation between each variable and Recipient eGFR at 12 months posttransplant (i.e. not a 
comparison between DBD and DCD)  
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Figure 2: Protein association with transplant outcome is dominated by donor age effects. 
A: Breakdown of prediction function (‘rule’) terms identified in any ensemble across 2000 PRE iterations. 
B: Evaluation of individual protein model performance (Root-Mean-Squared Error, lower is better) on the 
discovery dataset used for fitting each model (circles) and corresponding performance on a ‘held out’ 
evaluation dataset (diamonds). The dashed line indicates the performance of the donor-age only model 
on the discovery dataset, applied as a maximum threshold for protein selection. C: Top 10 Reactome 
terms identified by pathway analysis of all 539 proteins. D & E: STRINGdb functional association 
networks of identified proteins associated with Metabolism (D) and Innate Immune System (E), the most 
and second most significant Reactome terms respectively. Only connected vertices are shown. Edges 
represent ‘highest confidence’ functional interactions (confidence score >0.9).  
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Figure 3: Modeled associations between proteins and kidney transplant outcome change with 
donor age 
Our modeling found that the effect of candidate protein levels on outcome changed with age. 
A: Distribution of donor age over out dataset. B: Donor-age-only model; fitted effect of donor age on 
eGFR12. 
C & D: Effect of low protein abundance (10th percentile) (C) and high protein abundance (90th percentile) 
(D) on modeled eGFR12, relative to donor age-only (DAO) model eGFR12, across donor age. The 5 most
different (highest Euclidean distance to donor age-only model) proteins are shown in each case. 
  

st 
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Figure 4: Effect of difference in protein abundances change with age 
Comparisons of the effect of low and high protein abundance on modeled eGFR12, across donor age. 
Panels A-G (yellow, purple and pink backgrounds; qualitative grouping by relationship with age – see 
Results): proteins highlighted in Figure 3C,D. Panels H & I (green background): known kidney function 
markers. Fold changes shown (y axes) are the modeled eGFR12 relative to donor age-only (DAO) model 
eGFR12, across donor age.  Qualitative summaries of low and high abundance effects are given below 
the panels.  
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Figure 5: Independent scRNA-seq Data Suggest Identified Proteins Associate with Acute Injury 
Evaluation of our protein set against independent transcriptomic data comparing AKI and CKD 22. The 
correlation of transcripts corresponding to identified proteins between AKI and CKD was compared to 
background correlation (all other transcripts). We observed significantly lower correlation between AKI 
and CKD in transcripts matching our protein set (indicating increased variability in expression versus 
background), across almost all nephron cell types. 
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