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Abstract 

Background: There are no methods for classifying patients with ischemic heart disease 

(IHD) based on the entire spectrum of pre-existing diseases. Such methods might be 

clinically useful due to the marked differences in presentation and course of disease.  

Methods: A population-based cohort study from a Danish secondary care setting of patients 

with IHD (2004-2016) and subjected to a coronary angiography (CAG) or coronary 

computed tomography angiography (CCTA). Data sources were The Danish National Patient 

Registry, in-hospital laboratory data, and genetic data from Copenhagen Hospital Biobank. 

Comorbidities included diagnoses assigned prior to presentation of IHD. Patients were 

clustered by means of the Markov Clustering Algorithm using the entire spectrum of 

registered multimorbidity. The two prespecified outcomes were: New ischemic events 

(including death from IHD causes) and death from non-IHD causes. Patients were followed 

from date of CAG/CCTA until one of the two outcomes occurred or end of follow-up, 

whichever came first. Biological and clinical appropriateness of clusters was assessed by 

comparing risks (estimated from Cox proportional hazard models) in clusters and by 

phenotypic and genetic enrichment analyses, respectively. 

Findings: In a cohort of 72,249 patients with IHD (mean age 63.9 years, 63.1% males), 31 

distinct clusters (C1-31, 67,136 patients) were identified. Comparing each cluster to the 30 

others, seven clusters (9,590 patients) had statistically significantly higher or lower risk of 

new ischemic events (five and two clusters, respectively). 18 clusters (35,982 patients) had a 

higher or lower risk of death from non-IHD causes (12 and six clusters, respectively). All 

clusters at increased risk of new ischemic events, associated with risk of death from non-IHD 

causes as well. Cardiovascular or inflammatory diseases were commonly enriched in clusters 

(13), and distributions for 24 laboratory test results differed significantly across clusters. 
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Clusters enriched for cerebrovascular diseases were generally not at increased risk of the two 

outcomes. Polygenic risk scores were increased in a total of 15 clusters (48.4%).  

Conclusions: Clustering of patients with IHD based on pre-existing comorbidities identified 

subgroups of patients with significantly different clinical outcomes and presented a tool to 

rank pre-existing comorbidities based on their association with clinical outcomes. This novel 

method may support better classification of patients and thereby differentiation of treatment 

intensity depending on expected outcomes in subgroups.   
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Non-standard abbreviations 

CAG: Coronary arteriography  

CCTA: Coronary computed tomography angiography 

ICD-10: International Statistical Classification of Diseases and Related Health Problems 10th 

Revision 

IHD: Ischemic heart disease 

MCL: Markov clustering 

NPR: Danish National Patient Registry   

O/E-ratio: Observed-expected-ratio 

PRS: Polygenic risk score  
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Introduction 

Ischemic heart disease (IHD) is a common, chronic, and complex disease and mode of onset, 

disease burden and disease progression vary considerably between patients(1–3). This 

heterogeneity relates to several factors, but a major contribution is multimorbidity as more 

than 85% of IHD patients have been diagnosed with other chronic diseases; a phenomenon 

coined cardiometabolic multimorbidity(4,5). The increased mortality in patients with 

cardiometabolic multimorbidity is generally only related to single disease states, such as 

obstructive lung disease, diabetes, or stroke, although it is known that the risk of 

cardiovascular diseases is increased in many chronic, inflammatory disorders(6,7). As more 

patients at older age and with more and more co-morbidities are seen, new methods for 

characterizing and studying cardiometabolic multimorbidity are needed(8–12).  

 

Unsupervised clustering algorithms can systematically reveal structures in large, feature-rich 

datasets and may be used to identify distinct patient subgroups within a heterogenous 

population(13). Proof-of-concept analyses of cardiovascular phenotypes, including IHD, 

heart failure, diabetes, and atrial fibrillation have already been performed(14–20). While 

these studies successfully identify subgroups resembling those from traditional analyses, they 

often fail to demonstrate that clustering analysis leads to novel understanding of a given 

dataset. Rather, they are typically restricted to characterize high-, medium-, and low-risk 

subgroups which by and large resemble more conservative approaches from an earlier, less 

data-rich, epoch(21). 

 

For decades, Danish healthcare registries have had a strong position within epidemiological 

research(21–23). Given the opportunities for using clinical data more extensively, we carried 

out an unsupervised clustering analysis of 72,249 patients with IHD based on their entire 
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disease history until IHD onset. Explicitly, we wanted to classify IHD based on the entire 

spectrum of multimorbidity. We identified distinct patient subgroups derived from a pool of 

3,046 different diagnoses assigned prior to IHD onset. The biological and clinical factors 

characteristic to distinct patient subgroups identified by unsupervised clustering analysis were 

asserted by assessments of their associations with clinical outcomes and clinical 

characteristics, laboratory data, and genetics (Figure 1).  

Methods 

Data sources, study population, and outcomes 

Data from the Danish National Patient Registry (NPR) and the Danish Registry for Causes of 

Death were linked to in-hospital electronic health data covering the two Danish healthcare 

regions in Eastern Denmark (~2.9 mil inhabitants), and the Copenhagen Hospital Biobank 

Cardiovascular Disease Cohort(22,24,25). Linkage of different healthcare data sources was 

obtained via the personal identification number and only patients admitted to a hospital in 

Eastern Denmark in years 2004 to 2016 were considered(26). We identified all patients in 

NPR who were assigned an ICD-10 code for IHD(27). To increase the positive predictive 

value of IHD diagnoses and align included patients in time, we further required that patients 

had been subjected to coronary arteriography (CAG) or coronary computed tomography 

angiography (CCTA). To qualify that CAG/CCTAs were conclusive for IHD, patients were 

only included if the CAG/CCTA was performed during a contact where patients were 

assigned an ICD-10 code for IHD. We set the earliest CAG/CCTA fulfilling this criterium as 

the index date and excluded patients with an index date before year 2004 or after 2016 (Fig 

2).  

 

There were two predefined outcomes: 1) New ischemic events and 2) Death from other 

causes than IHD (non-IHD causes). The outcome “new ischemic event” was a composite 
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outcome of a) hospitalization minimum 30 days after index for myocardial infarction or 

unstable angina pectoris (i.e., hospitalization with myocardial infarction or unstable angina 

pectoris as the primary diagnosis), b) revascularization not related to the index date, and c) 

any death where IHD was listed as the primary or secondary cause. Outcomes were obtained 

from NPR and Danish Registry for Causes of Death. Eligible codes for inclusion, outcomes 

and specific cutoffs are available in S1 Fig and S1 Table.  

 

Data preprocessing and application of the Markov cluster algorithm 

We performed a clustering analysis of included patients based on their multimorbidity prior 

to their IHD diagnosis (index) using the Markov cluster (MCL) algorithm(28). 

Multimorbidity was represented as patient-specific vectors using diagnoses assigned prior to 

or at index. ICD-10 codes assigned to less than five patients (n=1,673) were excluded from 

the analysis. As we focused the studies on multimorbidity in IHD, ICD-10 codes for IHD 

(I20-I25) were excluded from patients-specific vectors. Thus, a total of 3,046 ICD-10 codes 

were the basis for constructing a patient similarity network that was used as MCL algorithm 

input. Patient-specific vectors of length 3,046 with integers indicating the number of times a 

patient had been assigned a particular ICD-10 code. The length of the vectors corresponded 

to the number of input features (ICD-10 codes). By combining the patient-specific vectors 

from all included patients, a matrix of size n x m was constructed, where n indicates the 

number of included patients and m indicates the number of input features (ICD-10 codes). 

Following a series of preprocessing steps described in S1 Appendix, a patient similarity 

network was created based on the n x m matrix and used as input for the MCL algorithm(29). 

Resulting clusters were denoted C followed by an integer indicating the rank of the clusters 

with respect to cluster size (number of patients in that cluster). Thus, C1 denotes the largest 

cluster and cluster-membership was used to denote a cluster as a covariate in subsequent 
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analyses. Robustness of clustering was assessed by generating a series of diluted and shuffled 

versions of the resulting clusters (reference clustering), and their similarity was quantified 

using the variance of the information measure as previously described(30). Explicitly, a series 

of diluted and shuffled versions of the input graph were generated(31). In total, 20 variations 

of the input graph were constructed by shuffling and deleting edges, respectively. The 

variation in the graphs was then quantified by means of variation of the information 

meassure. Details regarding the MCL settings and a description of cluster robustness 

assessment are available in the S1 Appendix. 

 

Preprocessing of laboratory and genetic data 

Clusters were characterized by laboratory and genetic data based on the subset of patients 

where these data types were available. A panel of 25 different lab parameters was included in 

the analyses. Only tests taken up to 90 days before index or at the day of index were included. 

Included lab tests were plasma levels of potassium, sodium, hemoglobin, estimated 

glomerular filtration rate (eGFR), creatinine, carbamide, glucose, troponin (I/T), HDL 

cholesterol, LDL cholesterol, total cholesterol, leukocytes, C-reactive protein, lymphocytes, 

monocytes, neutrophils, basophiles, platelets, INR, alanine transaminase, albumin, alkaline 

phosphatase, bilirubin, and triglyceride. For every cluster, a score was computed based on the 

number of patients with a lab test below, within, or above the standard reference value, 

indicated by -1, 0 and 1, respectively. The score was defined as the mean of the summarized 

values per cluster. 

 

Autosomal genotype data were obtained by identifying included patients who were also 

among the study participants in the Copenhagen Hospital Biobank – Cardiovascular Disease 

Cohort(25). For included patients with genetic data available, we calculated polygenic risk 
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scores (PRSs) for 14 traits, obtained from nine GWAS meta-analyses (atrial fibrillation, BMI-

adjusted non-insulin diabetes, chronic kidney disease, HDL cholesterol levels, heart failure, 

LDL cholesterol levels, stroke, total cholesterol levels, triglyceride levels)  and five GWAS 

(acute myocardial infarction, coronary artery disease, diastolic blood pressure, non-alcoholic 

fatty liver disease, systolic blood pressure)(38–41). PRSs were calculated using the 

“LDpred2-auto” algorithm, implemented in the R package “bigsnpr” (version 1.11.6) with R 

version 4.0.0 and the workflow management system Snakemake(42–44). Each trait’s PRS 

distribution was scaled to a mean of zero and a standard deviation of one. 

 

Statistical analyses of clusters identified by the MCL algorithm  

As the study was designed to identify patient subgroups and not individual variation, clusters 

of size < 500 were excluded from the remaining analyses. Mean age at IHD onset in each 

cluster was compared to the mean age at onset in all the other clusters using Tukey’s Honest 

Significant Difference (HSD) method. Significance level was set to 0.05 and P-values were 

adjusted using the Holm method assuming 465 tests (adj. P-val.).  

 

To investigate the association between cluster-membership and the competing risks of new 

ischemic events and death from non-IHD causes, we used Cox proportional-hazards models 

(Cox models). Patients were followed from index until occurrence of either of the two 

outcomes, or end of follow-up (year 2018), whichever came first. The dependent variable was 

either risk of new ischemic events or death from non-IHD causes, and the independent 

variables were cluster, sex, and age at index. To age-adjust the models, analyses were 

performed using restricted cubic spline with three knots for age at index. Follow-up time was 

truncated to a maximum of five years. For each cluster, hazard ratios (HRs) and 95% 
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confidence intervals (CIs) were estimated by comparing HRs for the members of the cluster 

with the HRs with that of non-members.  

 

Further characterization of clusters consisted of: (1) phenotypic enrichment analysis, (2) 

characterization of clusters with respect to their laboratory profiles and (3) a test for genetic 

enrichment. The phenotypic enrichment analysis was carried out based on ratios between 

observed (O) and expected (E) frequencies of diagnoses in the clusters (O/E-ratios). That is, 

ratios between the frequencies of ICD-10 codes in each cluster (observed frequencies) and 

the frequencies of ICD-10 codes in the entire population (expected frequencies) were 

calculated and expressed as O/E-ratios(45). In subsequent characterization of clusters, 

enrichment denoted O/E-ratios > 2, and clusters were characterized as having little 

enrichment if the sum of the ten largest O/E-ratios < 50. Inverse changes were used to denote 

O/E-ratios between 0 and 1.  

 

Hierarchical clustering was applied to estimate the cluster similarity with respect to the 

laboratory tests using the Euclidean distance between the score of each cluster for each test.  

 

For each of the fourteen traits we calculated PRSs for, we used Wilcoxon rank-sum tests to 

compare the PRS distribution of each cluster to the combined PRS distribution of PRSs in all 

other clusters. Resulting P-values were converted to the false discovery rate (FDR) to account 

for multiple testing, with a total of 434 tests. We report effect sizes as calculated by the 

“wilcox.test” function built into R version 4.0.0. Level of significance was set to FDR < 0.05, 

assuming 434 tests. 
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Further details regarding preprocessing and analyses of laboratory and genetic data are 

available in the S2 Appendix. 

Results 

Cohort demographics and co-morbidities 

A total of 72,249 patients (63.1% males, mean age 63.9 years) were included (Table 1). 

Angina pectoris (I20) was the most common IHD diagnosis (38,239 patients, 52.9%), 

followed by acute myocardial infarction (I21) (33,229 patients, 46.0 %) and chronic IHD 

(I25) (22,750 patients, 31.5%). The most common co-morbidity prior to the IHD index was 

hypertension (I10.9) (24,818 patients, 34.4%) followed by dyslipidemia (E78.0) (12,780 

patients, 17.7%) and non-insulin dependent diabetes (E11.9) (7,551 patients, 10.5%). Prior to 

index, the mean number of diagnoses per patient was 8.1. A total of 68,103 patients (94.3%) 

had co-morbidities registered prior to index. The overall incidence (new ischemic events and 

death from non-IHD causes) was 94 events per 1000 person-years (Table 1). 

 

Unsupervised clustering of multimorbid patients with IHD 

In the cohort, the MCL algorithm identified 36 distinct clusters based on the set of 3,046 

ICD-10 codes assigned to the patients prior to or at index. The 36 clusters contained a total of 

68,084 patients. Expectedly, the remaining 4,365 patients (6.0% of included patients) that did 

not cluster were primarily patients with no diagnoses prior to index (>99%). Further, cluster 

robustness was assessed as described in Methods, where the variation of information measure 

less than 2 if 25% of the edges in the input graph were deleted or shuffled (S4 Figure). Next, 

the 31 of the 36 clusters with >500 patients (67,136 patients) were characterized (Table 2). 

Using Tukey’s HSD to compare the age at index between all 31 clusters (a total of 466 

combinations), we found significant differences in 391 comparisons (84.1%, S3 Table). For 

demographics of patients that did not cluster or were in clusters of size < 500, see S4 Table.  
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Clusters, clinical outcomes, and phenotypic enrichment 

To assess if the unsupervised clustering identified patient subgroups at different risks of 

disease progression, we used cluster-membership (C1-C31) as a covariate in a series of Cox 

models. A total of 14,679 patients experienced a new ischemic event during follow-up and 

10,684 patients died from other causes than IHD. Mean follow-up time was 3.72 years (Table 

1). Risks for new ischemic events and death from non-IHD causes in each cluster were 

compared to the pooled risk for patients in the remaining 30 clusters. The survival analysis 

demonstrated that the MCL algorithm stratified patients according to risk of new ischemic 

events and death from non-IHD causes (Fig 3). Comparing each cluster (n=1) to all the others 

(n=30), a total of seven clusters (20,221 patients) had a statistically significantly higher or 

lower risk of new ischemic events (Adj. P-val. < 0.05). Five clusters (9,590 patients) and two 

clusters (10,631 patients) were at increased and decreased risk of new ischemic events, 

respectively. Similarly, a total of 18 clusters (43,173 patients) had a statistically significantly 

higher or lower risk of death from non-IHD causes (Adj. P-val. < 0.05); where 14 clusters 

(21,282 patients) and four clusters (21,891 patients) were at increased or decreased risk of 

death from non-IHD causes. All clusters at increased risk of new ischemic events, associated 

with risk of death from non-IHD causes as well. The same was true for the two clusters at 

decreased risk of new ischemic events, i.e., these clusters were at decreased risk of death 

from non-IHD causes as well. A total of 13 clusters, (23,963 patients) were not have altered 

risk of the two outcomes, when compared to the other clusters (Table 2).  

 

The distribution of O/E-ratios was heavily left-skewed as less than 99% (n=101) of all O/E-

ratios were >10 and roughly 7% (n=887) of all O/E-ratios were >2. About 60% of all O/E-

ratios (n=8,056) were in the range of 0 and 1 corresponding to inverse changes. Generally, 

clusters that had high risk of new ischemic events or death from non-IHD causes were also 
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characterized by large, summarized O/E-values corresponding to a high degree of 

multimorbidity (S5 Table 5). The results of the enrichment analysis were summarized 

according to nine different disease categories: (1) diabetes mellitus, (2) cardiac diseases, (3) 

diseases affecting the upper airways, (4) cerebrovascular diseases, (5) infections and other 

acquired diseases, (6) gynecologic diseases, (7) Inflammatory and degenerative of the 

musculoskeletal system, (8) diseases of the urinary system, and (9) hypertension (Fig. 4). 

 

An in-depth characterization of clusters enriched for cardiometabolic or -vascular diseases, 

degenerative or inflammatory diseases and clusters characterized by little enrichment and 

inverse changes is provided in the following paragraphs.  

 

Clusters enriched for cardiometabolic and -vascular diseases 

Four of the five clusters at increased risk of new ischemic events (and death from non-IHD 

causes) were enriched for diabetes (C5, C18, C23, and C30). In these four clusters, HRs 

ranged from 1.40 (C5, 95%CI: 1.30;1.50, adj. P-val. < 0.001) to 1.88 (C30, 95%CI: 

1.60;2.00, adj. P-val. < 0.001) with a significant difference in age at index (C5: 63.9 years, 

C30: 61.2 years, Adj. P-val. < 0.001, TukeyHSD). C18 and C23 were only enriched for 

insulin-dependent diabetes, but differed in that C18 was also enriched for insulin-dependent 

diabetes with vascular complications and periphery atherosclerosis. In contrast, C5 was only 

enriched for non-insulin dependent diabetes and included diabetes with as well as without 

complications. Lastly, C30 was only enriched for diabetes with complications (insulin and 

non-insulin dependent) and was the diabetes cluster enriched for chronic kidney disease and 

bacterial infections, as well (S5 Table 5).  
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Other cardiac diseases that displayed enrichment were supraventricular arrythmias (C4), 

cardiomyopathies (C9), and valve diseases (C20). Of the three clusters, only C9 had 

increased risk of new ischemic events (HR: 1.31 (C9, 95%CI: 1.20;1.44, Adj. P-val: < 0.001). 

Risk of death from non-IHD causes was 1.79 (95%CI: 1.60;2.00, adj. P-val. < 0.001). In 

contrast, C4 and C20 only had increased risk of death from non-IHD causes with HRs of 1.49 

(C4, 95%CI: 1.34;1.59, adj. P-val. < 0.001) and 1.78 (C20, 95%CI: 1.54;2.04, adj. P-val. < 

0.001). Interestingly, the cluster enriched for cerebrovascular diseases (C27) did not have 

altered risk of any of the two outcomes. In sum, all clusters that had increased risk of new 

ischemic events were enriched for cardiometabolic diseases, albeit not all clusters enriched 

for cardiometabolic and -vascular diseases had increased risk of new ischemic events (Table 

2 and S5 Table 5).  

 

Clusters enriched for degenerative or inflammatory diseases 

Six clusters (C7, C13, C14, C22, C26, and C31) were enriched for diagnoses describing 

degenerative or inflammatory diseases, i.e., osteoarthritis (C7), degenerative spine disease 

(C13 and C22), chronic obstructive pulmonary disease (C14), asthma (C26), and rheumatoid 

arthritis (C31). Remarkably, none of the four clusters had increased risk of new ischemic 

events and only one cluster (C14) had increased risk of death from non-IHD causes (HR: 

3.39, 95%CI: 3.09;3.71, adj. P-val. < 0.001). Conversely, C7 and C13 had reduced risk of 

death from non-IHD causes (C7, HR: 0.61, 95%CI: 0.52;0.72, adj. P-val. < 0.001 and C13, 

HR: 0.58, 95%CI: 0.45;0.74, adj. P-val. < 0.001). Age at index for the clusters enriched for 

degenerative or inflammatory diseases range between 58.6 years (C13) and 69.2 years (C22) 

(Table 2). Taken together, these findings hint to the dual nature of inflammation as a potential 

disease modifier as well as a risk factor.  
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Clusters characterized by little enrichment and inverse changes 

Six clusters (C1, C2, C3, C6, C15, and C17) were characterized by little enrichment, which 

included the two clusters with reduced risk of new ischemic events (C2, HR: 0.82, 95%CI: 

0.76;0.89, adj. P-val. < 0.001 and C3, HR: 0.76, 95%CI: 0.52;0.69, adj. P-val. < 0.001). Not 

surprisingly, none of these six clusters had increased risk of either of the two outcomes, but 

three clusters (C2, C3, and C6) had reduced risk of death from non-IHD causes (C2, HR: 

0.60, 95%CI: 0.52;0.69, adj. P-val. < 0.001, C3, HR: 0.59, 95%CI: 0.59;0.69, adj. P-val. < 

0.001 and C6, HR: 0.68, 95%CI: 0.57;0.79, adj. P-val. < 0.001) (Table 2). It was a common 

attribute of the clusters without altered risk of any of the two outcomes that O/E-ratios for 

hypertension and dyslipidemia were among the largest. In contrast, diabetes, heart failure, 

and chronic obstructive pulmonary disease frequently displayed inverse changes (O/E-ratios 

< 1) in these clusters (S5 Table). Taken together, these observations indicate that risk of 

disease progression in this populations necessitates a more sophisticated analysis of 

multimorbidity. 

 

For a list with results of the enrichment analysis for all clusters, including the 13 clusters not 

described above, S5 Table 5. 

 

Clusters and their association with laboratory measurements and genetic data 

Clusters were also characterized by means of datatypes not included among the MCL 

algorithm input features. For patients in the 31 clusters, we had laboratory measurements on 

30,755 (49.5%) and genetic data on 19,422 (31.3%). To assess if the phenotypic differences 

captured by the MCL algorithm were also reflected in laboratory measurements, we tested if 

the distributions of test results within and out of reference ranges differed significantly. There 

were significantly different distributions of tests within and out of reference ranges in clusters 
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for the 24 most frequent tests. Overall, this indicates that the phenotypic patterns within the 

entire spectrum of cardiovascular multimorbidity registered before index correlate with 

results of clinical laboratory tests (S6 Table). Thus, these findings are a strong indicator that 

the patterns captured by the MCL algorithm are biologically relevant. For a graphical 

summary of the laboratory scores in each cluster, see S5 Figure.  

 

Finally, we identified 41 cases (out of 434 tests) where the PRS distribution for a specific 

trait in a cluster was significantly different from that trait’s combined PRS distribution of the 

other 30 clusters. Among these cases, we found the largest effects size to be a higher genetic 

risk for atrial fibrillation in cluster C4 (0.57, FDR < 0.001) as well as a higher genetic risk for 

non-insulin dependent diabetes in cluster C5 (0.55, FDR < 0.001). These findings are 

congruent with the results of the enrichment analysis for C4 and C5, respectively. In contrast, 

C1 (phenotypically characterized by inverse changes) had relatively large, positive effect 

sizes for systolic as well as diastolic blood pressure (0.20 and 0.16, FDR < 0.001). Similarly, 

there were positive effect sizes for total cholesterol and triglycerides in C6, which was also 

characterized by little phenotypic enrichment as well as a high degree of inverse changes. A 

list of significant effect sizes for the 41 significant cases, see S7 Table.  

Discussion 

In this study, we developed a novel, data-driven method for structuring the entire spectrum of 

multimorbidity by means of an unsupervised clustering analysis. In a cohort of 72,249 

patients with IHD patients, we identified 31 distinct clusters (67,136 patients) based on 3,046 

diagnoses assigned prior to or at index. By comparing risk of new ischemic events and death 

from non-IHD causes across clusters and then performing an enrichment analysis, we found 

that clusters at increased risk of new ischemic events were enriched for diabetes (four 

clusters) or cardiomyopathies (one cluster). Neither the cluster enriched for supraventricular 
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arrythmias, nor valve diseases had increased risk of new ischemic events. Degenerative and 

inflammatory diseases were enriched in a total of six clusters and displayed no clear trend in 

their relation to the outcomes. The results of the enrichment analysis were supported by 

trends in laboratory test results and clusters enriched for supraventricular arrythmias and non-

insulin diabetes also had congruently, higher genetic risks. 

 

The results of the study agree with common knowledge on risk of IHD, while also adding 

insights to the disease-diseases associations, which are currently underappreciated in the 

literature. The fact that clusters enriched for diabetes were generally the most high-risk 

clusters serves as a methodological reality check(6). Added value of the study lies in the fact 

that the method allows for a more sophisticated description of such associations, as the 

method allows to study the entire spectrum of multimorbidity. For example, four clusters 

were enriched for diabetes, which is in line with the current paradigm that a single term is 

insufficient to describe a multifactorial disease, such as diabetes(17,30). By integrating 

different data types, the findings indicate how phenotypic and genetic data complement each 

other, by exemplifying (1) that clustering analysis facilitates stronger genetic signals in 

patient subgroups and (2) that genetic data may unveil patterns not captured by phenotypic 

data alone. 

 

In addition, the method developed in this study and subsequent findings add perspective to 

the relatively limited body of literature regarding associations between chronic inflammatory 

and cardiovascular diseases(7). While previous studies have concluded that the risk of 

cardiovascular diseases is increased in most chronic inflammatory disorders, the results of 

our study indicate that pre-existing degenerative or inflammatory disorders in patients with 

IHD do not increase the risk of new ischemic events.   
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The pre-selected outcomes in the present study are also a unique aspect of the study, as 

previous clustering analyses within the cardiovascular domain studies have mainly analyzed 

all-cause mortality(18,19). This aspect of the study allows to distinguish between risk of 

progression related to IHD and risk of progression that is related to comorbidity drawing 

attention to important aspects of multimorbidity in this domain. For example, clusters 

enriched for supraventricular arrythmias and chronic obstructive pulmonary disease, 

respectively, only had increased risk of death from non-IHD causes. The study design, 

including the enrichment analysis, also revealed that classical risk factors for IHD (e.g., 

hypertension and dyslipidemia) did not drive the clustering. This finding agrees with 

previously published comorbidity phenotypes in patients with IHD(19). We argue that the 

present study displays that continuous exploration and characterization of multimorbidity in 

IHD are key elements in optimizing the exploit the full potential of continuously developing 

treatment strategies. 

 

Previous clustering analyses within the cardiovascular domain have typically included either 

thousands of patients or hundreds of input features, but not both(15,16). For example, Hall et 

al. defined multimorbidity using only eight different chronic conditions, whereas Crowe et al. 

defined multimorbidity with reference to 20 predefined conditions(18,19). Thus, the scale of 

our study exceeds that of previous work, as it includes more than 70,000 patients and more 

than 3,000 input features. And further, we limited the risk of introducing bias by not exerting 

feature selection prior to clustering.  

 

The two main limitations with respect to the data foundation are that (1) owing to the novelty 

of the method, there were no standardized way of assessing the representation of 

multimorbidity and (2) it was only a subset for which laboratory and genetic data were 
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available. These challenges are naturally overcome in clustering analyses based on data from 

randomized controlled trials, such as the studies by Inohara et al, and Karwath et al.(16,20) 

However, in the present, data-rich era, we argue that it is highly important to develop 

methods for structuring and studying other data than what is being collected for trials. Ideally, 

the two approaches, based on nationwide data and randomized controlled trials, respectively, 

will complement each other; and will facilitate more precise identification of patients who are 

likely to benefit from different treatment options as well as guide optimized selection of 

patients for randomized controlled trials.  

 

In conclusion, the study further showcases the strengths of a more fine-grained analysis of 

patient subgroups, which, in turn, may pave the way for successful implementation of 

precision medicine. Owing to its flexibility, the comprehensive, data-driven analysis of 

cardiovascular multimorbidity represents a novel method for characterizing multimorbidity in 

IHD with great potential of applying it to other diseases of interest or other clinical data. Such 

trends may guide clinical decision making in cases, where for example it is not obvious how 

to manage the angiographic findings or the combination of drugs that a specific patient will 

benefit most from.  

 

In conclusion, the present study cements the complexity of multimorbid patients with IHD 

and exemplifies the clinical relevance of a more fine-grained patient subgrouping by carrying 

out a cluster-based risk-stratifying the cohort. Further, owing to its flexibility, the 

comprehensive, data-driven method of cardiovascular multimorbidity presented here 

represents a novel method for characterizing multimorbidity in IHD with great potential. 

Improved patient subgrouping may be critical guide future clinical decision making in cases, 
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where it is non-trivial how to manage the angiographic findings or to find the optimal 

combination of drugs for a given patient.   
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Figure legends 

Fig 1: Graphical overview of study. Conceptual figure displaying the study design. A: 

Assemblage of patient-specific vectors that were the basis for construction of a matrix and an 

n x m matrix, where n corresponds to the number of included patients and m corresponds to 

the number of diagnoses. B: Unsupervised clustering of IHD patients using the MCL 

algorithm, which was the basis for performing unsupervised clustering to identify distinct 

clusters and associating them with clinical outcomes. C: Risk of disease progression (new 

ischemic events or death from non-IHD causes) in clusters. Color bar indicates increased, not 

altered, or decreased risk for patients in one cluster relative to the patients not in that cluster. 

D: Phenotypic and genetic characterization of clusters. Red: Increased risk of both outcomes. 

IHD: Ischemic heart disease. MCL: Markov Clustering. 

 

Fig 2: Flowchart: Data sources, study population, and outcomes. Gray: Identification. 

Blue: Screening. Red: Eligibility. Green: Inclusion and outcomes. AMI: Acute myocardial 

infarction. UAP: Unstable angina pectoris. NPR: The Danish National Patient Registry. IHD: 

ischemic heart disease (ICD-10 codes I20-I25). CAG: Coronary arteriography. CCTA: 

Coronary computed tomography angiography. ICD-10: International Statistical Classification 

of Diseases and Related Health Problems 10th Revision. SKS: Sundhedsvæsenets 

Klassifikationssystem (The Danish Health Authority Classification System). 

 

Fig 3: Risk of new ischemic events and non-IHD causes stratified by cluster. Forest 

plots where clusters are shown against HR for new ischemic events (left) and death from non-

IHD causes (right). X-axis: HR for a single cluster relative to mean HR of the 30 other 

clusters. Y-axis: Clusters arranged by risk of new ischemic events, increasing risk from top to 

bottom. Colors indicating significance. Dark green: Reduced risk of new ischemic events and 
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death from non-IHD causes. Lighter green: Reduced risk of death from non-IHD causes. 

Yellow: No significance. Orange: Increased risk of death from non-IHD causes. Red: 

Increased risk of new ischemic events and increased risk of death from non-IHD causes. 

IHD: Ischemic heart disease. HR: Hazzard ratio.  

 

Fig 4: Infographic summarizing the results of the study. Center: Study cohort. Periphery: 

Graphical overview of results from clustering analysis, survival analysis and characterization 

of clusters. Arrows indicate disease categories (for details, see text). 1: Diabetes mellitus. 2: 

Cardiac diseases. 3: Diseases affecting the upper airways. 4: Cerebrovascular diseases. 5: 

Infections and other acquired diseases. 6: Gynecologic diseases. 7: Inflammatory and 

degenerative of the musculoskeletal system. 8: Diseases of the urinary system. 9: 

Hypertension. C1-31: Clusters. “Underline” indicates little enrichment. “*” indicates genetic 

enrichment. For underlying data, see S5 and S7 Tables.   
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Table 1: Patient demographics, co-morbidities, and outcomes 

Cohort demographics Total Males Females 
Number of patients (%) 72,249 45,576 (63.1) 26,673 (36,1) 
Mean age at index (SD) 63.9 (11.9) 62.9 (11.6) 65.6 (12.1) 
IHD manifestations (ICD-10) Total Males Females 
Angina pectoris (I20) 38,239 22,628 15,611 
Acute myocardial infarction (I21) 33,299 27,720 10,579 
Subsequent myocardial infarction (I22) 61 34 27 
Certain current complications following acute 
myocardial infarction (I23) 

138 92 46 

Other acute ischemic heart diseases (I24) 1,341 814 527 
Chronic ischemic heart disease (I25) 22,750 14,589 8,152 
Common comorbidities (ICD-10) Total Males  Females 
Primary (essential) hypertension (I10.9) 24,818 14,508 10,310 
Hypercholesterolemia (E78.0) 12,780 7,842 4,938 
Non-insulin dependent diabetes (E11.9) 7,551 4,891 2,660 
Atrial fibrillation and atrial flutter, unspecified (I48.9) 7,075 4,509 2,566 
Heart failure, unspecified (I50.9) 6,160 4,059 2,101 
Chest pain, unspecified (R07.9) 5,863 3,441  2,422  
Senile cataract, unspecified (H25.9) 5,764 2,795  2,969  
Pneumonia, unspecified (J18.9) 5,469 3,236  2,260  
Hyperlipidaemia, unspecified (E78.5) 5,002 3,306  1,696  
Chronic obstructive pulmonary disease (J44.9) 4,621 2,449 2,172 
Outcomes, number of cases Total Males Females 
New ischemic events (%) 14,679 10,152 4,527 

n Myocardial infarction 5,833 3,709 2,124 
n Revascularization 6,282 4.718 2,124 
n Death caused by IHD 2,563 1.724 839 

Death from non-IHD causes (%) 10,684 6,710 3,974 
Censored (%) 46,886 28,713 18,172 
Outcomes, time to event Mean time to event in years (SD) 

Total Males Females 
New ischemic events 1.48 (1.40) 1.49 (1.41) 1.48 (1.40) 

n Myocardial infarction 2.40 (1.87) 2.41 (1.89) 2.38 (1.85) 
n Revascularization 2.25 (1.88) 2.28 (1.89) 2.16 (1.84) 
n Death caused by IHD 1.92 (1.13) 1.95 (2.02) 1.88 (2.05) 

Death from non-IHD causes 2.16 (1.50) 2.14 (1.49) 2.20 (1.51) 
Censored 4.37 (1.08) 4.36 (1.09) 4.39 (1.06) 
Total 3.72 (1.64) 3.67 (1.67) 3.81 (1.60) 
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Table 2: Cluster demographics, characteristics, and associations with outcomes 

Cluster Size Mean age at index 
in years (SD) 

Males Females New ischemic 
events  

Death from non-
IHD causes 

HR  Adj. P-val. HR Adj. P-val. 
C1 7,191 64.8 (11.3) 3,897 3,294 1.000  > 0.050 0.856  > 0.050 
C2 5,990 58.6 (11.5) 2,862 3,127 0.825  < 0.001 0.600  < 0.001 
C3 4,641 56.8 (11.4) 2,727 1,914 0.757  < 0.001 0.586  < 0.001 
C4 4,401 69.6 (10.2) 2,853 1,548 0.920  > 0.050 1.461  < 0.001 
C5 4,290 63.9 (10.7) 2,803 1,487 1.402  < 0.001 1.629  < 0.001 
C6 3,589 59.7 (10.9) 2.388 1,201 0.969  > 0.050 0.675  < 0.001 
C7 3,309 63.8 (11.0) 2,025 1,284 0.889  > 0.050 0.611  < 0.001 
C8 2,802 71.1 (10.9) 1,867 935 0.943  > 0.050 0.842  > 0.050 
C9 2,581 63.7 (11.8) 1,803 778 1.314 < 0.001 1.789 > 0.050 
C10 2,562 74.2 (9.6) 1,225 1,337 0.978 > 0.050 0.928 > 0.050 
C11 2,292 66.1 (11.0) 2,186 106 0.926 > 0.050 0.650 < 0.001 
C12 2,213 70.3 (10.2) 2,068 145 0.920 > 0.050 0.805 > 0.050 
C13 2,070 58.6 (10.2) 1,348 722 0.946 > 0.050 0.577 < 0.050 
C14 2,070 68.2 (9.6) 1,030 1,010 1.146 > 0.050 3.390 < 0.001 
C15 2,040 63.9 (10.1) 1,208 805 1.031 > 0.050 0.784 > 0.050 
C16 1,654 64.1 (12.1) 1,013 641 1.107 > 0.050 1.761 < 0.001 
C17 1,281 65.3 (9.9) 714 567 1.001 > 0.050 1.761 < 0.001 
C18 1,251 68.2 (9.8) 802 449 1.790 < 0.001 3.421 < 0.001 
C19 1,168 58.5 (9.7) 995 173 0.752 > 0.050 1.571 > 0.050 
C20 1,119 71.5 (11.3) 713 406 1.213 > 0.050 1.782 < 0.001 
C21 1,000 61.0 (11.0) 769 231 1.116 > 0.050 0.890 > 0.050 
C22 988 69.2 (10.4) 516 472 1.023 > 0.050 0.978 > 0.050 
C23 935 58.7 (12.2) 588 347 1.609 < 0.001 2.275 < 0.001 
C24 932 67.9 (10.1) 28 904 0.787 > 0.050 1.589 < 0.001 
C25 860 56.2 (9.9) 664 196 0.978 > 0.050 2.691 < 0.001 
C26 852 58.7 (12.1) 391 461 0.939 > 0.050 1.108 > 0.050 
C27 823 65.1 (10.9) 532 291 1.201 > 0.050 1.289 > 0.050 
C28 686 71.7 (8.0) 673 13 0.866 > 0.050 1.786 < 0.001 
C29 550 57.2 (11.1) 435 115 0.906 > 0.050 0.985 > 0.050 
C30 533 61.2 (11.7) 391 172 1.874 < 0.001 5.364 < 0.001 
C31 520 64.4 (11.2) 213 307 1.052 > 0.050 1.484 > 0.050 
NA* 5,113 60.1 (11.1) 3,878 1,235 NA NA NA NA 

*Patients that did not cluster or were in clusters of size < 500  
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Fig 1

A. The assemblage of patient-specific vectors

B. Unsupservised clustering based on patient-specific vectors

C. Association between clusters and clinical outcomes

Risk of disease progression

D. Phenotypic and genetic characterization of clusters
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Fig 2

Patients NPR admitted to at least one hospital in Eastern Den-

mark in the years 1995-2018 without an ICD-8 code for IHD

(n = 2,962,102)

Patients assigned an

ICD-10 code for IHD

(n = 163,492)

Patients assigned a proce-

dure code for CAG or CCTA

(n = 154,159)

Patients with an ICD-10 code for IHD

and a procedure code for CAG/CCTA

(n = 104,686)

Patients where date of CAG/CCTA falls

within a visit where IHD was assigned

(n = 93,003)

Patients where earliest CAG/CCTA

was performed 2004-2016

(n = 73,902)

Patient excluded if:

· <18 years,

· died 24 hours or

· not Danish resident

at date of CAG/CCTA

(n = 1,653)

Patients included in clustering and survival analyses

n = 72,249

New ischemic events*

(n = 14,679)

Death from non-IHD-causes

(n = 10,684)

Censored

(n = 46,679)

*New ischemic events defined as:

a) Hospitalization for AMI or UAP,

b) revascularization, or

c) death caused by IHD

during follow-up.
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Fig 3

New ischemic events Death from non-IHD causes

HR HR
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Fig 4
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Supplemental material 

S1 Fig: Classification of new ischemic events. 

S1 Table: Eligible codes for inclusion and outcomes 

S1 Appendix: Construction of patient similarity network, MCL algorithm settings and 

assessment of cluster robustness 

• S2 Fig: Selection of number of components.   

• S3 Fig: Limiting edge-density and average node degree in sex-specific similarity 

networks.  

S2 Appendix: Preprocessing of laboratory data 

• S2 Table: Laboratory codes included in assessment of data quality and completeness 

S3 Appendix: Calculation of polygenetic risk scores for 14 traits 

S4 Fig: Results of robustness analysis.   

S3 Table: Comparison of mean age at index in 31 cluster using Tukey’s HSD 

S4 Table: Demographics for patients not cluster or were in clusters of size < 500 

S5A-B Table: Cluster-wise summarized O/E-ratios, 10 largest O/E-ratios and 10 lowest 

O/E-ratios.  

S6 Table: Chi-squared test for distribution laboratory values in clusters 

S7 Table: Traits with significantly different PGS distributions in clusters 
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