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Abstract 

The levels of specific proteins in human blood are the most commonly used indicators of 
potential health-related problems1. Understanding the genetic and other determinants of the 
human plasma proteome can aid in biomarker research and drug development.  Diverse factors 
including genetics, age, sex, body mass index (BMI), growth and development including puberty 
can affect the circulating levels of proteins2–5. Affinity-based proteomics can infer the relationship 
between blood protein levels and these factors at a large scale6–10. Compared to these methods, 
mass spectrometry (MS)-based proteomics provides much higher specificity of identification and 
quantification11–13, but existing studies are limited by small sample sizes or low numbers of 
quantified proteins14–17. Here we aim to elucidate to which extent genomic variation affects plasma 
protein levels across diverse age ranges and cohort characteristics. Employing a streamlined and 
highly quantitative MS-based plasma proteomics workflow, we measured the plasma proteome of 
2,147 children and adolescents. Levels of 90% of these proteins were significantly associated with 
age, sex, BMI or genetics. More than 1,000 protein quantitative trait loci (pQTLs) – a third of which 
were novel – regulated protein levels between a few percent and up to 30-fold. These replicated 
excellently in an independent cohort of 558 adults, with highly concordant effect sizes (Pearson’s 
r > 0.97). We developed a framework to eliminate artefactual pQTLs due to protein-altering 
variants, paving the way for large-scale interrogation of pQTLs using MS-based proteomics. Our 
data reveal unexpectedly extensive genetic impacts on plasma protein levels, consistent from 
childhood into adulthood. These findings have implications for biomarker research and drug 
development. 

Discovery and replication cohorts 
Our cohort of 2,147 children and adolescents aged 5-20 years for discovery consists of individuals from 
the HOLBAEK Study including the general population (45%) and the Children’s Obesity Clinic in Holbæk, 
Denmark (55%) (Fig. 1a). For replication of the genetic effects on plasma protein levels, we used a cohort 
of adults (n=558) with alcohol-related liver disease (ALD) aged 19-82 years matched with healthy controls 
recruited from the Region of Southern Denmark18. Supplementary Table 1 provides baseline participant 
characteristics for both cohorts, on which we conducted single nucleotide polymorphism (SNP)-based 
genotyping and MS-based plasma proteome profiling (Fig. 1b and Methods). We acquired plasma 
proteome profiles of all participants (n�=�2,147) with a data-independent acquisition (DIA) strategy19 and 
a single-run workflow using a liquid chromatography system designed for robust clinical use20 coupled 
online to a high resolution Orbitrap mass spectrometer21. After stringent quality control, the filtered 
dataset contained 420 proteins with a data completeness of 88%. Analyzing 94 quality assessment 
samples over a six-week measurement period revealed an 18% median coefficient of variation for the 
entire workflow (Extended Data Fig. 1). We estimated the effect of age, sex, BMI SDS (BMI standard 
deviation score adjusting for age and sex)22, and 5.2 million SNPs on the quantitative levels of these 
plasma proteins using a high-performance computing server (Fig. 1d).  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.23287853doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23287853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

 

Fig. 1 Study overview and proteomics workflow. a, Discovery- and replication cohorts used in this 
study. b, MS-based plasma proteome profiling and SNP-based genotyping were performed on both 
cohorts. c, Proteome profiling workflow and the computational tools used for processing of proteomics 
data including (1) sample organization, (2) sample preparation, (3) data acquisition and (4) informatics. d, 
Schematic representation of the analyses of associations between protein levels and age, sex, BMI SDS 
(1) and, genome-wide genetic variants (2) with a quality control step to eliminate artefactual pQTLs, as 
described below in the main text (3). 

 

Extended Data Fig. 1 Proteomics data quality in the discovery cohort. a, The number of proteins 
quantified in each sample before and after filtering for data completeness at protein level. n=2,147 
biologically independent samples. The gray line in the middle of the box is the median, the top and bottom 
of the box represent the upper and lower quartile values of the data and the whiskers represent the upper 
and lower limits for consideration of outliers (Q3�+�1.5�×�IQR, Q1�–�1.5�×�IQR). IQR represents 
the interquartile range (Q3�–�Q1). Median values are indicated. b, Protein intensity as a function of 
abundance rank. c, The coefficients of variation (CV) of each protein assessed by quality assessment 
samples are plotted against their median intensity. n=94 workflow replicates. d, Principal component 
analysis for the plasma proteome profile of all samples, showing the first and second principal 
component. Samples are color-coded according to the sample preparation batch.  
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Nongenetic effects on the plasma proteome 
To assess the impact of age, sex, and BMI SDS22 on the plasma proteome, we performed multiple linear 
regression analysis (Fig. 2a and Methods). As per the study design, we estimated the effect of BMI SDS 
separately for the group with overweight (BMI SDS >= 1.28) and the group with normal weight. 
Remarkably, 90% of quantified plasma proteins were associated with at least one of the three factors 
(about 60% with age, 43% with sex, and 63% with BMI SDS) and nearly a quarter of the quantified 
plasma proteome was associated with all three factors (Fig. 2b). Sex had the strongest associations in 
terms of effect size, followed by BMI SDS and age (Fig. 2c). Exploring the proteins most strongly 
associated with the three factors revealed those with known age-dependent effects such as F923, RBP424, 
and COL1A12, and others not previously reported to be associated with age, such as GPLD1, APCS, and 
IGFALS (Fig. 2d). The association between IGFALS and age is supported by the fact that defects or low 
expression of IGFALS can lead to pubertal delay in children25. Similarly, we recapitulated known 
differences in protein levels between girls and boys, such as the pregnancy zone protein (PZP) and 
plasma esterase (BCHE), but also uncovered previously unreported proteins that exhibit sex-specific 
differences, including CD5L (Fig. 2f).  

As expected, inflammatory proteins are most strongly associated with BMI SDS including the complement 
system proteins (C3, CFH, CFI), inflammatory markers (CRP), and acute phase proteins (APCS, SAA1, 
ORM1, LBP)26 (Fig. 2e). Interestingly, except for CFH and ORM1, all these proteins were statistically 
significant in the normal weight group as well, albeit with a smaller effect size, demonstrating that 
elevated levels of inflammatory proteins with increasing BMI SDS is not exclusive to obesity 
(Supplementary Table 2). Previously we had found PRG4 to decrease in response to weight reduction26, 
concordant with its positive association with BMI SDS in this data. PRG4 deficiency protects against 
glucose intolerance and fatty liver disease in mice, suggesting therapeutic potential of proteins identified 
here27.  

Levels of plasma proteins can serve as a “biological clock” based on data from adults2. Having 
established the association between age and the plasma proteome in this cohort, we asked if the same is 
true in children and adolescents. Indeed, a set of 80 proteins predicted age with high accuracy (+/- 1.3 
years, Pearson’s r 0.84 between predicted and actual age in a held out set of 639 individuals) 
(Supplementary Table 3, Fig. 2g-h and Methods). Likewise, a panel of 69 proteins accurately predicted 
BMI (Fig. 2i). Thus age, sex, and BMI SDS significantly contribute to the inter-individual variability in 
plasma protein levels, underscoring the impact of considering them in clinical studies of childhood 
diseases.  
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Fig. 2 Relationship between the plasma proteome and age, BMI SDS, and sex. a, Schematic 
representation of linear modeling of the plasma proteome adjusted for pubertal stage and time to 
analysis. b, Number of proteins associated with age, BMI SDS and sex (FDR-corrected p < 0.05). 
n=1,603 biologically independent samples. c, Beta coefficients of proteins associated with age, BMI SDS, 
and sex. d-f, Volcano plots showing proteins associated with age (d), BMI SDS (e) and sex (f), 
highlighting strongly associated proteins. g, Schematic representation of linear modeling of age and BMI 
using plasma proteome. h,i, Prediction of age (h) and BMI in the test set (i). Pearson’s r between 
predicted and real values are indicated. n=639 biologically independent samples. 

The few studies that have explored age-related trajectories in the plasma proteome, have primarily 
focused on early-stage development (infancy4 and childhood3) or adulthood2. Here we provide insights 
related to pre- and post- pubertal stages (age 5 to 20 years), addressing a gap in current knowledge. 
Hierarchical clustering analysis revealed seven age-related protein abundance trajectories, comprising 
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between 5 and 38 proteins each (Fig. 3a, Supplementary Table 4 and Methods). Half of these proteins 
decrease with age. Notable examples include A2M in Cluster 1 with a linear trajectory, whereas THBS4 in 
Cluster 2 behaves non-linearly, remaining relatively constant until approximately age 12 years before 
declining eight-fold (Fig. 3c-e).  

The overall trend of proteins in Clusters 3 and 4 is positive with age, such as LBP, HPX, and VTN (Fig. 2f-
I). The well-established inflammatory marker CRP remained relatively stable until age 13 years before 
rising, which aligns with previous efforts to determine reference ranges of clinical parameters in children 
and adolescent populations28. Interestingly, the patterns of some proteins diverge between girls and boys 
at the onset of puberty, such as PZP and angiotensinogen (AGT) in Cluster 7 (Fig. 3n-o), as well as sex-
hormone binding globulin (SHBG), the latter of which has been reported before29 (Fig. 3b). Girls reach 
puberty on average one year earlier than boys30, which is reflected by a corresponding shift in the 
trajectory of proteins such as IGFALS and IGFBP-3 (Fig. 3j-k).  

A number of platelet proteins increased with age (Fig. 3i-m), which might have been caused by platelet 
contamination31. However, some of these proteins, including THBS1 and TLN1, have already been 
reported to have this trend32 and participants were randomly recruited regardless of age, making this 
observation unlikely a systematic bias. Taken together, our protein abundance trajectories may provide a 
valuable reference for investigating childhood diseases and establishing reference levels for 
development- and disease-relevant markers. 

 

Fig. 3 Sex-dependent temporal plasma proteome profiles. a, Hierarchical clustering dendrogram of 
proteins significantly associated with age. The heat maps display z-scored median intensities across age 
for girls (n=1,171) and boys (n=959). b-o, Temporal trajectories of representative proteins in Cluster 1-7 
in panel (a). Mean values along the age axis and 95% confidence intervals are shown. 
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Genetic effects on the plasma proteome 
Next, we tested 5.2 million SNPs for association with plasma levels of 420 proteins in 1,914 individuals. 
We defined a primary pQTL as the most significant variant in linkage disequilibrium (LD) (r2>0.2) within a 
region (+/- 1Mb) that was associated with plasma levels of a protein (Methods). Applying a study-wide 
significance level of p<1.2x10-10 (5x10-8/420 proteins) resulted in 712 primary pQTLs for 158 proteins 
(Supplementary Table 5). For further downstream analysis, we decided to adopt the conventional GWAS 
significance threshold of p<5x10-8, resulting in 1,116 primary pQTLs and 201 regulated proteins (Fig. 4a). 
Genomic inflation was well controlled with median lambdaGC=1.003 (standard deviation=0.004) 
(Methods). The identified pQTLs were distributed across chromosomes roughly as expected by their 
number of protein coding genes (Fig. 4b). These pQTLs are primarily located in non-coding regions, with 
only 3% and 1% being missense variants and synonymous variants, respectively (Methods, Fig. 4i and 
Supplementary Table 5). Remarkably, two thirds were in cis and more than 70% of the proteins had at 
least one cis-pQTL associated, implying pervasive local regulation (Fig. 4c-e). The MS-based proteomics 
data recapitulated that the same genomic locus can regulate multiple proteins, and that one protein can 
be regulated by multiple genomic loci. Specifically, 9% of the pQTLs were associated with more than one 
protein, while 72% of the proteins had multiple pQTLs associated with them – and 37% of these had 
pQTLs located on different chromosomes (Fig. 4f-g).  

Compared to previous MS-based pQTL studies in blood, at study-wide significance level (p<1.2x10-10), 
our study identified pQTLs for 2.5 to 30 times more proteins14–17. Simulation suggested that this was 
largely due to limited sample sizes (Fig. 4h). In comparison to affinity-based studies of similar size, we 
also identified pQTLs for a higher fraction of proteins analyzed33–35. A greater efficiency at identifying 
pQTLs, could reflect the ultra-high specificity of identification that is a hallmark of MS-based proteomics. 
However, our sample sizes are up to 25-fold less than those of the latest affinity-based projects8–10. Thus, 
a next step should be to perform pQTL studies on tens of thousands of samples and also with increasing 
depth, perhaps with enrichment strategies36. Nonetheless, our study already identified pQTLs for 50% of 
the analyzed proteome, a proportion that may even go up with sample size, revealing extensive genetic 
influence over the plasma proteome. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 31, 2023. ; https://doi.org/10.1101/2023.03.31.23287853doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.31.23287853
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

 

Fig. 4 Genetic architecture of pQTLs. a, Primary pQTLs across the genome. b, The number of primary 
pQTLs by chromosome. c, Primary pQTLs against the locations of the transcription start site of the gene 
coding the protein target. Cis- (red) and trans- (blue) pQTLs. d, The number of cis- and trans pQTLs. e, 
The number of proteins that are associated with cis only-, trans only- and both cis and trans pQTLs. f, 
Distribution of number of associated proteins per SNP. g, Distribution of number of associated SNPs per 
protein. h, Identification rate of pQTLs with increasing sample size. i, Variant annotation.  

Eliminating artefactual pQTLs 
Protein variants can modify binding surfaces and lead to alterations in peptides encompassing variant 
regions, potentially introducing biases in proteomic studies11,17,37. We developed a framework to 
thoroughly examine peptide-level information for indications of artefactual pQTLs (Extended Data Fig. 
2a). Taking into account that not all peptides of a protein are detected, and that algorithms will not use all 
peptides for quantification, we flag a pQTL as a false positive if the signal arose solely from the peptide 
that is affected by protein-altering variants with no corroborating evidence from other peptides (Methods). 
Among all plasma proteins with pQTLs, only one protein presented artefactual pQTLs. Specifically, the 
measurement for the Complement Factor H (CFH) protein (Uniprot ID A0A0D9SG88) was biased due to 
the missense variant rs1061170, which results in the substitution of histidine with tyrosine (H/Y) at 
position 402. This amino acid change introduces an artificial difference in protein levels across the 
genotypes (Extended Data Fig. 2b-c). Although in rare cases, missense variants could influence the 
accuracy of the effect size measured, they did not result in false identifications of pQTLs (Extended Data 
Fig. 2d-e). Consequently, more than 98% of the pQTLs were reliable, demonstrating a high level of 
confidence in the results obtained through mass spectrometry (MS)-based proteomics.  
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Extended Data Fig. 2 Peptide-level data distinguishes true pQTLs from artefacts. a, A framework to 
identify artefact pQTLs caused by missense variants. b, Protein sequence of CFH (Uniprot ID 
A0A0D9SG88) that contains the amino acid affected by the missense variant rs1061170. c, Peptide level 
quantification of CFH in individuals stratified by rs1061170. d, Protein sequence of HGFAC (Uniprot ID 
D6RAR4) that contains the amino acid affected by the missense variant rs2498323. e, Peptide level 
quantification of HGFAC in individuals stratified by rs2498323. 

Characterization of pQTL effect sizes 
Having established the quality of the pQTLs, we investigated the effect size based on beta statistics 
derived from the association tests as well as allelic fold change calculated on data without normalization38 
(Methods). While they were mostly mild, 79 pQTLs for 27 proteins were associated with two- to 35-fold 
change in protein levels comparing homozygous genotypes for the reference (0/0) and alternative (1/1) 
allele (Fig. 5a-b and Supplementary Table 6). Conversely, relative changes in protein levels of 6% 
corresponding to the smallest absolute beta value were also confidently detected. Local (cis-pQTL) 
regulation generally had the largest effect sizes (Extended Data Fig. 3a-b). Furthermore, variants located 
in the 5’ and 3’ untranslated regions, non-coding exons as well as transcription factor binding sites had a 
larger average effect size compared to those located in the intron and intergenic regions (Extended Data 
Fig. 3c), supporting an important role of these regions in transcriptional regulation. Large genetic effect 
sizes for proteins such as HLA-C, MST1, C4A, PROCR, LBP, and CFHR may have important implications 
for clinical and biomarker research (Fig. 5c-h). For instance, we found a protein coding variant as a pQTL 
that reduced levels of lipopolysaccharide (LPS)-binding protein (LBP) four-fold (Fig. 5g). As this protein is 
important in innate immunity, we speculate that individuals with the mutant form have compromised 
immunity, which has indeed been reported39. The observed substantial genetic effects emphasize the 
importance of considering pQTL information when interpreting findings from clinical and biomarker 
research, particularly for proteins whose plasma levels are under strong genetic control. 
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Fig. 5 Effect sizes and integration of pQTLs with known variant-trait associations. a, Fold change of 
protein levels between homozygous variant alleles and homozygous reference alleles for all primary 
pQTLs. b, Fold change of protein levels between heterozygous and homozygous reference alleles for all 
primary pQTLs. c,d,e,f,g,h, Distribution of log2 intensity values of the top six proteins with the highest 
absolute beta value. The gray line in the middle of the box is the median, the top and bottom of the box 
represent the upper and lower quartile values of the data and the whiskers represent the upper and lower 
limits for consideration of outliers (Q3�+�1.5�×�IQR, Q1�–�1.5�×�IQR). IQR represents interquartile 
range (Q3�–�Q1). For genotype 0/0:0/1:1/1, n=1278:328:6, 1708:191:0, 1490:399:23, 1225:410:35, 
1637:260:15, 1227:606:79, respectively. Only non-imputed values are shown. i,j,k, Regional association 
plots between APOA1 and trans locus rs173539 (i), APOB and trans locus rs73001065 (j), and LTF and 
trans locus rs6762719.  
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Extended Data Fig. 3 Effect size according to pQTL categories. a, Swarmplot showing fold change of 
protein levels between homozygous variant alleles and homozygous reference alleles for all primary 
pQTLs stratified by cis- and trans-pQTLs. Values within 10th-90th percentiles are indicated. b, Fold change 
of protein levels between heterozygous variant alleles and homozygous reference alleles for all primary 
pQTLs stratified by cis- and trans-pQTLs. c, Kernel density estimation plot of beta statistics stratified by 
variant categories.  

Novel pQTLs link proteins to GWAS results 
To investigate if our MS-based study had discovered any novel pQTLs, we compared it to 33 published 
studies (Extended Data Fig. 4a, Supplementary Table 7 and Methods). This revealed 310 novel pQTLs 
regulating 93 proteins, 47 of which had no previously reported genetic regulation. This includes, for 
instance, the C4A and C4B isotypes of complement factor 4, which cannot be distinguished by affinity-
based platforms (Supplementary Table 5). Their sequences differ in less than one percent, but this 
greatly affects their binding affinity towards their molecular targets40. Of the remaining pQTLs, 61% were 
replicated in at least five studies (Extended Data Fig. 4b).  

Genome wide association studies (GWAS) provide increasingly detailed associations between genomic 
loci and phenotypes but are missing a mechanistic link to the proteins mediating the effect38,41,42. With a 
view to close this gap, we next investigated whether any of our novel pQTLs were known to be 
associated with phenotypic traits. Mapping our protein-associated variants to the GWAS Catalog revealed 
85 such cases (Supplementary Table 8 and Methods). Many of these were immediately biologically 
plausible, for example the trait ‘high density lipoprotein (HDL) cholesterol levels’ is associated with 
rs173539, a variant that our data connects to levels of APOA1, a component of HDL (Fig. 5i). This 
suggests that the variant influences HDL cholesterol levels by upregulating APOA1 levels. Similarly, 
rs73001065 has been associated with a decreased risk for non-alcoholic fatty liver disease, which our 
data indicates may happen through reduced levels of APOB (Fig. 5k). Finally, the ion binding capacity 
associated variant rs6762719 regulates levels of the transferrin protein LTF (Fig. 5j).  

Cross-referencing all significant pQTLs to GWAS results, beyond the novel ones, provides many more 
links between variant and phenotypic trait associations (Supplementary Table 8). Some but not all of 
these connections are expected, but others open up intriguing avenues for further investigation. These 
results illustrate how integrating high-confidence pQTLs with GWAS results helps to uncover or 
understand the molecular mechanisms between variant-disease/trait associations.  
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Extended Data Fig. 4 Comparison of pQTLs to previous plasma or serum studies. A, Comparison of 
the number of proteins analyzed and the number of samples analyzed by 33 previous studies. Studies 
were color-coded based on the proteomics platforms used to generate the proteomics data. B, The 
number of pQTLs replicated in previous studies.  

Highly replicated pQTLs in an independent cohort  
To test if our primary pQTLs could be replicated in an independent cohort with a completely different age 
range and other phenotypic characteristics, we leveraged an existing adult cohort of alcohol-related liver 
disease (ALD) that we had recently measured by MS-based proteomics18. Of the 93% of pQTLs that 
could be compared due to genotype and proteomics quality filters and at a nominal significance level of 
p<0.05, a full 90% were successfully replicated – 94% of the cis, 83% of the trans, and 72% of the novel 
(Fig. 6a, Supplementary Table 9, Methods). Furthermore, the direction and magnitude of the effects 
aligned well between discovery and replication cohorts (Pearson’s r=0.97, Fig. 6b), which is also reflected 
by the strikingly similar distribution of protein levels among genotypes between the two cohorts – see 
Extended Data Fig. 5a-I for examples.  

We next asked if pQTL information could improve biomarker performance. We had previously reported 
three marker panels for detecting liver fibrosis, inflammation and steatosis 18. For half of these, including 
TGFBI and LBP, which had the largest genetic effect sizes, our study identified replicated pQTLs (Fig. 6c 
and Fig. 6e). Our data revealed a shift in distribution of TGFBI protein levels depending on its 
corresponding pQTL in both disease and control groups (Fig. 6d). Adding genotype information to protein 
levels further improved the accuracy of classifying patients with F0-1 vs. F2-4 fibrosis stages using TGFBI 
(Extended Data Fig. 6a). Similarly, we observed a more striking downward shift in LBP levels in the 
presence of the variant rs2232613 (Fig. 6f, Extended Data Fig. 6b). These findings suggest that pQTLs 
should be considered in biomarker research, especially for those with strong genetic effects. However, 
whether integrating pQTLs in classification algorithms has beneficial effects needs to be evaluated on a 
case-by-case basis.  
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Fig. 6 Replication of pQTLs in an independent cohort. a, Testable and replicated pQTLs in the 
independent study. b, Beta values of pQTLs in the discovery and replication study, with pQTLs ranked in 
increasing order of beta values in the discovery study. Pearson’s r of beta values between the two 
cohorts is indicated. c, Manhattan plot of association between SNPs and plasma levels of TGFBI in the 
discovery cohort (upper panel) and replication cohort (lower panel) with the lead variant annotated. d, 
Distribution of plasma levels of TGFBI stratified by the genotype of its pQTL and fibrosis stage in the 
replication cohort. For genotype 0/0:0/1:1/1, n=96:181:90 and 55:93:43 for fibrosis stage f0-1 and F2-4, 
respectively. e, Manhattan plot of association between SNPs and plasma levels of LBP in the discovery 
cohort (upper panel) and replication cohort (lower panel) with the lead variant annotated. f, Distribution of 
plasma levels of LBP stratified by the genotype of its pQTL and steatosis stage in the replication cohort. 
For genotype 0/0:0/1:1/1, n=318:52:3 and 157:25:3 for steatosis <5% and ≥5%, respectively.  
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Extended Data Fig. 5 Replication of pQTLs in an independent cohort. a-l, Distribution of log2 
intensity values of the top six proteins with the highest absolute beta value in the discovery study (a-f) and 
replication study (g-i). The gray line in the middle of the box is the median, the top and bottom of the box 
represent the upper and lower quartile values of the data and the whiskers represent the upper and lower 
limits for consideration of outliers (Q3�+�1.5�×�IQR, Q1�–�1.5�×�IQR). IQR represents interquartile 
range (Q3�–�Q1). For genotype 0/0:0/1:1/1, n=1490:399:23, 1225:410:35, 1637:260:15, 1227:606:79, 
1602:288:8, 1078:716:118 for a-f, and n=427:133:10, 373:105:14, 482:82:7, 374:179:17, 458:91:4, 
303:232:36 for g-l, respectively. Only non-imputed protein values are shown.  

 

Extended Data Fig. 6 Incorporating pQTLs affect biomarker performance. a, Classification 
performance metrics of TGFBI and TGFBI+rs17689879 for identifying significant fibrosis in the ALD 
cohort18. Error bars represent s.d. Significance levels are indicated (* p<0.05, ** p<0.01, *** p<0.001) b, 
Classification performance metrics of LBP and LBP+rs2232613 at identifying any steatosis.  

Discussion 
Here, in one of the most extensive MS-based proteomics studies to date, we analyzed the plasma 
proteomes of more than 2,000 children and adolescents, obtaining highly specific and quantitative protein 
trajectories throughout childhood and adolescence. Some of these age-dependent trajectories exhibit 
sex-specific patterns reflective of puberty-related differences between girls and boys. One striking finding 
was that about 90% of all quantified plasma proteins were significantly regulated – about half of these by 
genetic variants. Turning these relationships around allowed accurate prediction of the age or BMI from 
the plasma proteome. The results of our study can be explored online and are a resource for 
understanding protein changes across age and sex, and can serve as a reference for proteomic 
biomarker studies of childhood diseases (proteomevariation.org). 
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Our study emphasizes the importance of large sample sizes in pQTL studies, which has already been 
made for non-MS-based proteomics8. We demonstrated by simulation that previous MS-based studies 
would not have been expected to yield many pQTLs for statistical reasons. Although the largest of its 
kind, its size is still moderate compared to affinity-based studies. Nevertheless, we found evidence for 
regulation by genetic variants for at least half the quantified plasma proteome, as well as hundreds of 
novel pQTLs.  

The high replication rate in the independent adult cohort and the highly consistent direction and strength 
of effects between the two cohorts suggest that pQTLs between children and adults are comparable, 
despite plasma protein levels being influenced by many non-genetic factors, such as disease. Some 
effect sizes were particularly large – often several-fold – suggesting important physiological 
consequences. Furthermore, our results indicate a need to tailor the reference levels of candidate 
biomarkers according to pQTLs affecting the protein of interest. We found that incorporating pQTLs of 
candidate biomarkers can improve their classification performance. This may apply to prognostic and 
predictive biomarkers as well.  

Our study also has limitations. First, it employs a cross-sectional design. A longitudinal study design 
would reduce inter-individual variability between time points and thus more accurately depict the age-
dependent trajectories of protein levels in plasma. Second, we performed stringent quality control on the 
genotype data, and nearly 90% of total SNPs were filtered out due to low minor allele frequency and/or 
imputation quality. Consequently, low frequency pQTLs may have been omitted. A larger sample size is 
needed to lower the minor allele frequency threshold. Third, we could not exclude the possibility that 
unobserved SNPs could be protein-altering variants in high linkage disequilibrium with the identified 
pQTLs and therefore contribute to artefactual pQTLs.  

Existing large-scale pQTL studies have predominantly used affinity-based proteomics platforms, which 
are optimized for body fluids. These platforms report the quantification of tens to thousands of proteins, 
but they do not always agree and large-scale validation of the specificity of binding reagents is lacking, 
ideally obtained by orthogonal methods such as MS11–13. Additionally, although artefactual pQTLs due to 
the ‘epitope effect’ associated with these platforms can be estimated by approaches such as conditional 
analysis and comparing pQTLs to expression QTLs, they cannot be directly assessed7,10. In contrast, MS-
based proteomics has the advantages of being highly specific and agnostic to the sample type and 
species, and we here show how artefactual pQTLs can be directly eliminated using peptide-level data. 
Our data also indicates that MS-based proteomics more efficiently retrieves pQTLs than affinity-based 
approaches at similar sample sizes. It would now be exciting to study this with further comparative 
analysis, accounting for various factors such as cohort characteristics, computational methods, sample 
size, proteome coverage, and variants analyzed. Clearly, there is a need to further broaden the proteome 
depth without compromising throughput and reproducibility, which could be accomplished by emerging 
workflows that combine depletion- and multiplex strategies as well as new MS acquisition schemes. 

To date, affinity-based studies have identified tens of thousands of pQTLs for thousands of circulating 
proteins. However, the quest for pQTL discovery is far from complete especially regarding sample types 
beyond plasma. Many proteins are only leaked into the plasma, but have their primary role in tissues, 
where MS-based proteomics can readily quantify nearly complete proteomes. A few pioneering MS-
based proteomics studies with a few hundred samples in human or mouse have already identified pQTLs 
in the human brain and liver proteomes43–45. Based on the results shown here, we propose to greatly 
expand such efforts. Besides establishing a deep and high-throughput workflow, access to genotyped 
samples will be a key challenge in this exciting endeavor. Beyond bulk tissue, specific cell types in 
specific tissues could also be envisioned46. We believe these efforts will enable fruitful downstream 
applications such as colocalization and Mendelian Randomization for causal inference and identification 
and prioritization of drug candidates47,48. 
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Method  
Study participants 
We included 2,147 children and adolescents (55% girls and 45% boys, 17 had missing values) from The 
HOLBAEK Study, aged 5 through 20. The participants were recruited from 1) the Children’s Obesity 
Clinic, Centre of Obesity Management offering the multidisciplinary childhood obesity management 
program at Copenhagen University Hospital Holbæk49 and 2) a population-based cohort recruited from 
schools in 11 municipalities across Zealand, Denmark50 in a cross-sectional study design. Both groups 
were enrolled between January 2009 and April 2019. Eligibility criteria for the children in the obesity clinic 
group were an age of 5–20 years and a BMI above the 90th percentile (BMI SDS >=1.28) according to 
Danish reference values22. Exclusion criteria for this study for both groups are 1) age at recruitment 
younger than 5 years or older than 20 years; 2) diagnosed type 1 diabetes; 3) diagnosed type 2 diabetes; 
4) treatment with medications including insulin, liraglutide, and/or metformin; 5) meeting type 2 diabetes 
criteria51 based on the blood sample taken for this study (fasting plasma glucose > 7.0 mmol/L and/or 
hemoglobin A1c (HbA1c) > 48 mmol/mol. The study protocol was approved by the ethics committee for 
the Region Zealand (protocol no. SJ-104) and is registered at the Danish Data Protection Agency (REG-
043-2013). The HOLBAEK Study including the obesity clinic cohort and the population-based cohort are 
also registered at ClinicalTrials.gov (NCT00928473). The study was conducted according to the principles 
of the Declaration of Helsinki, and oral and written informed consent was obtained from all participants. 
An informed oral assent was given by the participant if the participant was younger than 18, and the 
parents gave informed written consent. Tanner stage52,53 was evaluated by a pediatrician for individuals 
recruited at the obesity clinic and self-evaluated using a questionnaire with picture pattern recognition for 
individuals in the population-based group.  

Plasma proteomics 
We prepared 2,147 plasma samples together with 94 quality assessment samples (pooled plasma 
sample) on an automated liquid handling system (Agilent Bravo) in a 96-well plate format as previously 
described18,54 in six batches. We acquired plasma proteomics data using a DIA method and the Evosep 
One liquid chromatography system coupled online to an Orbitrap Exploris 480 mass spectrometer as 
previously described18,54 between August and September in 2021 (6-week measurement time in total). 
We analyzed the plasma proteomics dataset with Spectronaut v.15.455. Default settings were used unless 
otherwise noted. Data filtering was set to ‘Qvalue’. ‘Cross run normalization’ was enabled with the 
strategy of ‘local normalization’ based on rows with ‘Qvalue complete’. FDR was set to 1% at both the 
protein and peptide precursor levels. A previously generated deep fractionated plasma data-dependent 
acquisition (DDA) library was used in the targeted analysis of DIA data against the human reference 
proteome database (2018 release, 21,007�canonical and 72,792�additional sequences). Plasma 
proteomics dataset was filtered for 40% valid values across all samples (proteins with >60% missing 
values were excluded from downstream statistical analysis), log2 transformed with the remaining missing 
values imputed by drawing random samples from a normal distribution with downshifted mean by 1.8 and 
scaled s.d. (0.3) relative to that of abundance distribution of all proteins in one sample. Specifically, in 
total 588�proteins were quantified, filtering for 40% valid values across all samples resulted in a dataset 
of 420�proteins with a data completeness of 88%. Assessed on 94�quality assessment samples, 
median workflow coefficient of variation was 18% across a 6-week measurement period (Extended Data 
Fig. 1). The resulting dataset was then corrected for sample preparation batches using ComBat (version 
0.3.2)56. 

Association of plasma proteome with age, sex, and BMI SDS 
Plasma protein levels were normalized by rank-based inverse normal transformation (INT) with a Python 
implementation (https://github.com/edm1/rank-based-INT). The default Blom offset of c=3/8 was adopted. 
We used the following equation:  
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where ri is the rank of the ith observation among total number of N, and Φ−1 denotes the quantile function 
(or percent point function) implemented in SciPy (version 1.7.1; https://scipy.org/citing-scipy/). We used 
multiple linear regression implemented in Pingouin57 (version 0.4.0) to estimate the effects of age, sex, 
BMI SDS22 on the protein level. We included pubertal status and time to analysis (plasma sample 
storage) as covariates in the regression model. Pubertal status was dichotomized according to the tanner 
stage: tanner 1 = prepubertal, tanner 2-5 =pubertal/post-pubertal. Associations were considered 
significant if the Benjamini-Hochberg corrected p-values were below 0.05. For 83% of the proteins, 
residuals are normally distributed (Shapiro-wilk test). Samples with missing values of variables in the 
regression analysis were excluded (n=1,603 remained).  

Prediction of age and BMI using plasma proteins 
We used the linear regression model implemented in scikit-learn58 (sklearn version 1.0) for the prediction 
of age and BMI (here we used the BMI without adjusting for age and sex). We split the dataset into a 
training and test set (70:30) with the training set further divided into a training and validation set (70:30). A 
linear regression model was trained using all protein features in the training set. Features were ranked 
based on their coefficients in absolute values and a new model was trained again with an increasing 
number of features from one to 420 on the training set and evaluated on the validation set where the 
optimal number of features was determined based on the mean squared error. The final model was then 
trained on the training set using the selected features and evaluated on the held-out test set. Mean 
absolute error and Pearson’s r between the predicted values and real values in the test set were 
calculated to indicate prediction accuracy.  

Hierarchical cluster analysis of protein trajectories  
Unsupervised hierarchical clustering of age-associated proteins was performed in the Perseus 
computational software (1.6.5.0). Proteins that passed the Benjamini-Hochberg corrected P-value with an 
absolute coefficient of above 0.04 were included. Row clustering was based on median log2-intensity 
after Z-score normalization across ages for girls and boys, respectively.  

Genotyping and imputation in the discovery cohort 
Participants in this study were genotyped in three batches on the Infinium HumancoreExome12 v1.0 and 
HumancoreExome24 v1.1 Beadchips (Illumina, San Diego). Genotypes were called using the Genotype 
module of the GenomeStudio (Illumina). Before imputation, datasets from the 3 different batches were 
merged after quality control (only variants present on both chip versions were kept), and monomorphic 
variants as well as batch-associated variants were removed (Fishers exact test, P < 1e-7). We used the 
Sanger imputation server to phase the genotype data using EAGLE2 (v2.0.5) and impute it using PBWT 
with the HRC1.1 panel (GRCh37). We excluded individuals with more than 5% missing genotypes, with 
too high or too low heterozygosity (inbreeding coefficient abs(F) > 0.2), duplicated measurements 
(keeping the one with higher quality), as well as individuals of non-European descent as determined using 
PCA based on ancestry informative markers. All study samples whose Euclidean distance from the center 
falls outside a radius of > 1.5 x maximum Euclidean distance of the European reference samples (the 
1000 Genomes dataset), are considered non-European. We excluded SNPs with a call rate < 95% and 
actionable variants. We conducted additional quality control steps for genetic association analysis 
according to the guidelines59 using PLINK v1.90b6.24 and custom R scripts. Briefly, we checked for sex 
discrepancy based on X chromosome inbreeding coefficient and none had mismatches. We removed 
SNPs with an imputation INFO score < 0.7, minor allele frequency < 0.05, and SNPs that deviated from 
Hardy-Weinberg equilibrium (p < 1e-6), as well as SNPs on the sex chromosomes. We removed 
individuals with high or low heterozygosity rates (individuals who deviate ± 3 s.d. from the sample’s 
heterozygosity rate mean), resulting in a final dataset of 5,242,958 SNPs and 1,924 individuals (846 
males, 1078 females).  
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Genome-wide association analysis 
For each protein, we adjusted rank-based inverse normal transformed levels for age, sex, BMI SDS, and 
plasma sample storage time. We standardized the residuals again using rank-based inverse normal 
transformation and used the standardized values as phenotypes and genotyping arrays as covariates for 
genome-wide association testing using univariate linear mixed model (LMM) implemented in GEMMA60 
(version 0.98.5). We calculated the centered relatedness matrix to control for cryptic relatedness and 
population stratification. In total, 1,914 individuals passed the genotype data QC and had proteomics and 
covariate data available. We used the Wald test to compute all P values. Genomic inflation factor from 
GWAS results was calculated for each protein using the open-source Python script compute_lambda.py 
(version 2.0).  

Definition and refinement of significant loci 
We reported the total number of identified significant associations using both a conservative multiple 
comparison-corrected threshold of p<1.2x10-10 (5x10-8 Bonferroni-adjusted for 420 proteins tested) and 
the conventional genome-wide threshold of 5x10-8, the latter of which was used for all downstream 
analysis. We defined primary pQTLs through linkage disequilibrium (LD) clumping (r2>=0.2) within +/- 
1Mb (Plink version 1.90b6.24 with parameters --clump-r2 0.2 --clump-kb 1000) and treating the HLA 
region (chr6: 29691116–33054976 for hg19) as one locus, for which we report one representative SNP-
protein association with the lowest P-value. We defined a cis-pQTL variant as a SNP residing within 500 
Kb upstream or downstream (+/- 500 Kb) of the transcription start site (TSS) of the corresponding protein-
coding gene. We extracted the TSS information for all proteins from BioMart by mapping UniProt IDs 
(automatic) or gene names (manual) to UniParc IDs.  

Previous research has utilized various methods to report the pQTLs. These methods can be classified 
into two main groups: LD- and distance-based clumping or grouping 34,35,61,62, as well as conditional 
analysis aimed at identifying independent pQTLs6–9,63–65. In this study, we utilized the clumping approach. 
To account for long-range LD that may have been overlooked by this approach, we calculated the 
pairwise LD between all primary pQTLs for the same protein. The results showed that only a small 
percentage (2%) had an r2 greater than 0.2, indicating a low level of correlation between the primary 
pQTLs identified in this study. We note that the lack of unified reporting standards in pQTL studies 
hinders direct cross-study comparisons. Therefore, we contextualize our findings with those of previous 
studies by comparing the number of proteins with identified pQTLs, rather than the number of pQTLs 
themselves. 

Eliminating artefactual pQTLs 
In MS-based proteomics, the presence of protein-altering variants can create artefactual pQTLs because 
the reference human proteome database used in the analysis does not contain the variant protein 
versions11. This means that after enzymatic digestion, peptides containing variant amino acids will not be 
quantified, and the reference version of the variant peptide can only be detected in individuals 
homozygous and heterozygotes for the reference allele. As a result, this creates artificial differences in 
the observed peptide abundances, which can bias quantification at the protein level if the reference 
peptide was used. To address this issue, we used a framework to assess the validity of identified pQTLs. 
First, all significant pQTLs (not limited to the primary pQTLs after the clumping procedure) are screened 
for protein-altering variants, specifically missense variants in genes encoding the same associated 
proteins. Next, affected peptides are then looked up in the peptide level data to see if any have been 
detected by MS and further used for protein quantification. Finally, a pQTL is considered an artifact if no 
supporting evidence from other non-affected peptides is present.  

Effect size of pQTLs 
In addition to beta statistics derived from the association test, we determined the effect size of the pQTLs 
by calculating the ratio of mean protein abundance in heterozygotes (1/0) and homozygotes (1/1) to that 
of the wild type (0/0) without any data transformation.  
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Comparison with previous pQTL studies  
To assess the novelty of the identified pQTLs in this study, we compared our results at genome-wide 
significance level to 33 previously published pQTL studies. These prior studies contain more than 
100,000 pQTLs above 5,000 distinct genes from various proteomics platforms dominated by the 
SomaScan assay and Olink panels. For all studies, we retained the pQTLs at the reported significance 
levels. We defined novelty of variant-protein pairs if no variants residing within +/- 1Mb of the primary 
pQTLs in this study have been reported in previous plasma/serum pQTL studies for the corresponding 
protein, and otherwise a replication. LD was not considered in this analysis. Comparison was done at 
protein level by matching the reported gene name from each study. Gene names are mapped based on 
Uniprot IDs through Uniport ID mapping in case of missing values. Genome coordinates based on 
GRCh38 were converted to GRCh37 using pyliftover (version 0.4).  

Mapping pQTLs to GWAS Catalogue results 
We sought to identify if any of the primary pQTLs have been reported to be associated with a disease or 
trait. We did this by mapping the primary pQTLs to GWAS Catalogue results (v. 1.0.2) through SNP IDs. 
LD was not considered in this analysis.  

Replication of pQTLs in the independent cohort 
The study protocol for the GALAXY replication cohorts was approved by the ethics committee for the 
Region of Southern Denmark (nos. S-20160006G, S-20120071, S-20160021 and S-20170087) and is 
registered with both the Danish Data Protection Agency (nos. 13/8204, 16/3492 and 18/22692) and 
Odense Patient Data Exploratory Network (under study identification nos. OP_040 and OP_239 
(open.rsyd.dk/OpenProjects/da/openProjectList.jsp)). Genotype and proteomics data processing and the 
association analysis in the GALAXY replication cohorts of the ALD study was carried out similarly to the 
pipeline used for the discovery study where applicable except that 1) liver disease status (histological 
scoring of fibrosis F0-F4, inflammatory activity I0-5 and steatosis score S0-3), alcohol abstinent status, 
and statin use status were further controlled for at the protein level in addition to age, BMI and, sex and 2) 
genotype imputation was performed using minimac4 (version 1.0.2) and quality was filtered at R2>0.5, 
which has been shown to be a good threshold for separating between poorly and well-imputed variants 
and equivalent to an INFO score>0.766,67. Out of the 1,116 primary pQTLs found in the discovery cohort, 
1,037 were testable in the replication study with both variant and protein data available (n=558). A pQTL 
was considered replicated if the same SNP or its proxy (r2>0.2 within a region +/- 1Mb) is also 
significantly associated (p<0.05) with the protein with a concordant direction of effect. Applying a 
Bonferroni corrected p-value of 4.8x10-5 (0.05/1,037) led to a replication rate of 53%. 

Data availability  
The human reference proteome database (2018 release, both canonical and additional sequences) was 
downloaded from the European Bioinformatics Institute database 
(https://ftp.ebi.ac.uk/pub/databases/reference_proteomes/); The GWAS Catalog (v.1.0.2) was 
downloaded at https://www.ebi.ac.uk/gwas/docs/file-downloads; Transcription start site of proteins was 
extracted from BioMart accessed in August 2022 
(https://grch37.ensembl.org/info/data/biomart/index.html); The datasets generated and/or analysed during 
the current study are not publicly available due to need to maintain privacy of study participants, but are 
available from the corresponding authors on reasonable request. All analysis results are available as 
supplementary tables. Searchable results are available online at proteomevariation.org. The study 
protocol is also available upon request to Jens-Christian Holm, jhom@regionsjaelland.dk.  

Code availability 
The software used in this study can be accessed here: Spectronaut (v15.4): 
https://biognosys.com/software/spectronaut/; Python (v3.9.0 and 3.8.11): https://www.python.org/; 
Combat (v0.3.2): https://pypi.org/project/combat/; Perseus (v1.6.5.0): https://maxquant.net/perseus/; 
Compute-lambda.py (v0.2): https://github.com/pgxcentre/lambda; bcftools (v1.14): 
https://samtools.github.io/bcftools/; Gemma (v0.98.5): https://github.com/genetics-statistics/GEMMA; Plink 
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(v1.90b6.24): https://www.cog-genomics.org/plink/; Variant effect predictor was performed online with the 
RefSeq transcript database (http://grch37.ensembl.org/Homo_sapiens/Tools/VEP); Scikit-learn (v1.0): 
https://scikit-learn.org/stable/whats_new/v1.0.html; INT-transformation: https://github.com/edm1/rank-
based-INT; Scipy (v1.7.1): https://scipy.org/; Pingouin (v0.4.0): https://pingouin-
stats.org/build/html/index.html; Pyliftover (v0.4): https://pypi.org/project/pyliftover/; The customed scripts 
can be accessed at github.com/llniu/pQTL_HolbaekStudy. 
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