
Decoding the Best Automated Segmentation Tools for Vascular White Matter 

Hyperintensities in the Aging Brain: A Clinician's Guide to Precision and Purpose 

Lucia Torres-Simon1,2*; Alberto del Cerro-León1,2*; Miguel Yus3,4; Ricardo Bruña1,3,5; Lidia Gil-Martinez6; 

Alberto Marcos Dolado3,7,8; Fernando Maestú1,2,3; Juan Arrazola-Garcia3,4,9; Pablo Cuesta1,3,5 

1 Center of Cognitive and Computational Neuroscience, Universidad Complutense de Madrid (UCM), Madrid, Spain; 2 Department of Experimental 

Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid (UCM), Madrid, Spain; 3
 Health Research Institute of the 

Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; 4 Department of Diagnostic Imaging, Hospital Clínico San Carlos, Madrid 28040, Spain; 5 

Department of Radiology, Complutense University of Madrid, 28040 Madrid, Spain; 6 Foundation for Biomedical Research at Hospital Clínico San Carlos 

(FIBHCSC), Hospital Clínico San Carlos, Madrid 28040, Spain; 7 Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid 

28040, Spain; 8 Department of Neurology, Hospital Clínico San Carlos, Madrid 28040, Spain; 9 Department of Radiology, Rehabilitation and Radiation 

Therapy, School of Medicine, Complutense University of Madrid, Madrid 28040, Spain. 

* These authors contributed equally to this work 

 

Corresponding autor: Alberto del Cerro-Leon, aldelcer@ucm.es 

Facultad de Psicología, Campus de Somosaguas, 28223 Pozuelo de Alarcón 
 

Key words: White matter hyperintensities, automatic detection tools, cerebrovascular disease, aging 

Abstract 

Cerebrovascular damage from small vessel disease (SVD) occurs in healthy and pathological aging. SVD 

markers, such as white matter hyperintensities (WMH), are commonly found in individuals over 60 and 

increase in prevalence with age. WMHs are detectable on standard MRI by adhering to the STRIVE criteria. 

Currently, visual assessment scales are used in clinical and research scenarios but is time-consuming and has 

rater variability, limiting its practicality. Addressing this issue, our study aimed to determine the most precise 

WMH segmentation software, offering insights into methodology and usability to balance clinical precision 

with practical application. This study employed a dataset comprising T1, FLAIR, and DWI images from 300 

cognitively healthy older adults. WMHs in this cohort were evaluated using four automated neuroimaging 

tools: Lesion Prediction Algorithm (LPA) and Lesion Growth Algorithm (LGA) from Lesion Segmentation 

Tool (LST), Sequence Adaptive Multimodal Segmentation (SAMSEG), and Brain Intensity Abnormalities 

Classification Algorithm (BIANCA). Additionally, clinicians manually segmented WMHs in a subsample of 

45 participants to establish a gold standard. The study assessed correlations with the Fazekas scale, algorithm 

performance, and the influence of WMH volume on reliability. Results indicated that supervised algorithms 

were superior, particularly in detecting small WMHs, and can improve their consistency when used in parallel 

with unsupervised tools. The research also proposed a biomarker for moderate vascular damage, derived from 

the top 95th percentile of WMH volume in healthy individuals aged 50 to 60. This biomarker effectively 

differentiated subgroups within the cohort, correlating with variations in brain structure and behavior.  
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1 Introduction 

White matter hyperintensities (WMH) can be observed in magnetic resonance image (MRI) among older 

adults, with or without dementia [1], [2], being small vessel disease (SVD) the most common underlying 

cause [3]. The significance of white matter hyperintensities (WMH) is well-documented, with strong 

associations to dementia, particularly vascular cognitive impairment (VCI),  and to the lifetime risk of stroke 

[4], [5]. Research indicates that WMH volume correlates with cognitive decline, disability progression, and 

overall prognosis [6], [7]. These effects are evident in both cognitively healthy seniors [8], [9] and those with 

dementia [10], [11], impacting attention and executive function. Moreover, WMHs have implications for 

mental health, contributing to conditions like depression and anxiety [12], [13]. Pathologically, WMHs are 

linked to broader brain changes, including amyloid and tau deposits [14], [15], grey matter atrophy [14], [16], 

ventricular enlargement [17], and disruptions in structural [18] and functional [19], [20] connectivity. 

Consequently, the careful monitoring of WMHs is crucial for the early identification and management of 

individuals at risk, underscoring its importance in research and clinical practice.   

Per STRIVE guidelines, WMH are identified as diffuse, bright areas (hence, “hyperintense”) on T2-weighted 

or FLAIR MRI scans, crucial for diagnosing and tracking white matter deterioration [21], [22]. Nowadays, 

visual assessment is the most used method, being the Fazekas scale [23] and the age-related white matter 

changes scale (ARWMC) (Wahlund et al., 2001) the most recommended. Nevertheless, these scales lack the 

precision needed for quantifying subtle progressions in WMH. Comprehensive MRI analysis of WMH—

including number, volume, and distribution—can inform on disease etiology and prognosis [25], [26]. 

Moreover, quantifiable WMH biomarkers could provide objective thresholds for clinical decisions, such as 

treatment eligibility [27], [28]. In this context, manual segmentation is the most precise protocol for 

quantifying WMH [29], [30] but has high inter- and intra-rater variability and is too time-consuming and for 

practical use. Consequently, there's a growing demand for automatic segmentation tools, which are either 

supervised, requiring a pre-labeled training set, or unsupervised, not depending on a gold standard [31]. These 

tools, primarily designed for studying multiple sclerosis [32], [33], must be evaluated for their effectiveness 

in identifying WMH related to vascular changes in aging [25]. Comprehensive reviews [25], [31] have 

previously analyzed such automated methods, but the diversity of tools and methodologies yields 

inconclusive results that are not yet fully applicable in clinical settings. In addition, consideration of WMH 

load on the performance of the segmentation software is scarce but crucial in scenarios where the amount of 

injury ranges from low to moderate proportions like ageing. 

Our study aims to evaluate widely used neuroscience software packages (SPM12, Freesurfer & FSL) to 

identify the best algorithm for automatic WMH volume measurement, tailored to user needs. We assessed 

four algorithms: 1) SPM12's lesion segmentation tool - lesion growth algorithm (LST-LGA); 2) SPM12's 

lesion segmentation tool - Lesion prediction algorithm (LST-LPA); 3) FreeSurfer's sequence adaptive 

multimodal segmentation (SAMSEG); and 4) FSL's brain intensity abnormality classification algorithm 

(BIANCA) in 45 cognitively healthy seniors with varying WMH levels, using expert manual segmentation 

as the gold standard. Correlations between algorithmic and manual WMH total volumes, as well as the 

Fazekas scale, were examined, alongside algorithm performance metrics. The top algorithms were then tested 

on a larger database of 300 individuals to determine their clinical and research utility, including identifying 

a WMH volume threshold with potential clinical significance. 

2 Materials & Methods  

2.1 Participants 

The participants in the study were sourced from an established database designed for dementia research and 

detection, compiled from 2010 to 2018 through a collaborative effort with three clinical centers in Madrid: 

The Neurology Department in “Hospital Universitario Clínico San Carlos”, the “Centro de Prevención del 

Deterioro Cognitivo”, and the “Centro de Mayores del Distrito de Chamartín”. We initially recruited 520 

cognitively healthy Spanish speakers. Each participant completed a thorough set of neuropsychological 

evaluations, genetic profiling, and neuroimaging assessments, which included structural MRI scans: T1, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 15, 2024. ; https://doi.org/10.1101/2023.03.30.23287946doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.30.23287946


3 
 

FLAIR, and diffusion-weighted imaging (DWI) (see supplementary material 1 for a detailed description of 

the neuropsychological evaluation). Exclusion criteria included a history of psychiatric or neurological 

disease and psychoactive or chronic medication use. We also conducted tests (class II evidence level) to rule 

out other causes of cognitive decline such as B12 deficiency, diabetes mellitus, thyroid problems or 

infections. After informed consent and ethical clearance, participants underwent MRI scans. We excluded 

(number in brackets) individuals based on age below 50 (26), Mini Mental State Examination [34] score 

under 26 (22), brain abnormalities other than WMH (24), inadequate MRI data (100), and excessively high 

WMH volumes (4). The final sample comprised 300 individuals (Age = 66 ± 8; 68% females) that were 

employed in the following analyses (Figure 1). 

2.2 MRI acquisition 

Each participant was subjected to an MRI assessment, which included a 3D T1-weighted, a 3D T2-weighted 

FLAIR image, and a DWI, obtained with a General Electric 1.5 Tesla magnetic resonance scanner. The T1 

and FLAIR images were acquired using a high-resolution antenna and a homogenization PURE filter (Fast 

Spoiled Gradient Echo sequence). The parameters for the T1 image were repetition time (TR) of 11.2 ms, 

echo time (TE) of 4.2 ms, inversion time (TI) of 450 ms, a field of view (FOV) of 25 cm, a flip angle (FA) = 

12°, obtaining 252 coronal slices (in-plain resolution of 256×256) with a voxel size of 0.98 x 0.98 x 1 mm3, 

and an acquisition time ≃ 8:00 min. The T2-weighted 3D FLAIR images were obtained using a TR of 7000 

ms, a TE of 101 ms, a TI of 2112 ms, a FOV of 24 cm, obtaining 252 sagittal z-axis interpolated slices (in-

plain resolution of 256×112) with a voxel size of 0.94 x 0.94 x 1.6 mm3 and an acquisition time ≃ 4:57 min. 

Finally, the DWI images were acquired using a single shot echo planar imaging sequence with a TE of 96.1 

ms, a TR of 12ms; a NEX 3 for increasing the signal-to-noise ratio, a FOV of 30.7 cm (in pain resolution of 

128 x 128), a 4 mm slice thickness, yielding an isotropic voxel of 2.4 mm3. In the DWI sequence, on image 

had no diffusion sensitization (i.e., T2-weighted b0 images); and 25 were DWI (b = 900 s/mm2). 

2.3  MRI clinical assessment: Fazekas Scores and WMH manual segmentation 

Each participant's FLAIR images were aligned with their T1 images for a unified anatomical reference. The 

radiology team at "Hospital Universitario Clínico San Carlos" manually outlined the WMH on the FLAIR 

images, consulting the T1 images as needed. They used FSLeyes (McCarthy, 2018) on a standard monitor, 

to ensured uniformity in segmentations. Discrepancies were resolved by two senior radiologists to set a 

consistent gold standard. The segmented WMH were then grouped into a 3D map of individual lesions per 

subject, and a Fazekas score was assigned to reflect WMH severity. See Figure 2 for a visual indication of 

the Fazekas scores. 

2.4 Automatic WMH segmentation 

WMH quantification from FLAIR/T1 images was conducted using four algorithms (Figure 1, panel 1), 

illustrated in Figure 2, panel 1. Within SPM12, we utilized the Lesion Segmentation Tool's "lesion growth 

algorithm" (LST-LGA) and "lesion prediction algorithm" (LST-LPA), representing unsupervised and 

supervised methods respectively. From FSL, the "Brain intensity abnormality classification algorithm" 

(BIANCA), a supervised method, was employed. Additionally, from FreeSurfer, the unsupervised "Sequence 

adaptive multimodal segmentation" (SAMSEG) was applied. For an in-depth explanation of each method, 

please refer to the Supplementary Material 2. Additionally, we considered FreeSurfer's T1-based WMH 

segmentation for being the most accessible in case of having only a T1 image.  

2.5 Grey and white matter integrity 

The T1 images were processed using the FreeSurfer software (version 6.1.0) for automated cortical and 

subcortical segmentation. [35]. The measures that were included in further analyses were total volumes (mm3) 

of gray matter, total white matter, lateral ventricles, and hippocampus; and the cortical thickness (mm). The 

volumes of bilateral structures were collapsed to obtain a single measure per region. 
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DWI images were processed with  AutoPtx (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx) for probabilistic 

tractography, as outlined by [36]. The procedure extracted the mean fractional anisotropy (FA) for each tract, 

combining bilateral tracts into single measures. For a detailed description see Supplementary materials 3.   

2.6 Algorithm performance analysis 

Out of the 300 participants, we randomly selected 45 based on their clinical reports to represent a spectrum 

of WMH loads: 15 with no alterations in their MRI, 15 with subclinical WMH, and 15 with WMH presumably 

associated with cerebrovascular disease (CBVD). This selection ensured a diverse range of WMH loads for 

the study. The demographic and clinical data at baseline evaluation for these participants are described in 

Table 1. 

User-friendliness 

To address the user-friendliness (Supplementary Material 4) of each algorithm, three neuroimaging experts 

(authors L.T-S, A.C-L and P.C.) used each of the tools and indicated whether they had encountered any of 

the following difficulties during their execution: 1) installation packages (if the algorithm is included or it 

requires one or more additional packages); 2) file preparation (making reference to the images pre-processing 

required before the segmentation); 3) brain extraction (if it is required before segmentation process); 4) 

training set (if it is required for the algorithms and when it is, if this set is included or the user should provide 

its own); 5) interface (if there is an user-friendly interface or the user should work in the terminal 

environment); 6) RAM requirements (amount of available RAM required to run the algorithms); and 7) 

execution time (which was calculated for each algorithm as the corresponding time (in minutes) expended 

for the computation of the WMH masks, without considering the images or dataset preparations and/or 

preprocessing). 

Correlation analysis 

We conducted Spearman correlation analyses to compare WMH total volumes from automatic algorithms 

and the gold standard with Fazekas scores, assessing the accuracy of segmentation methods against the widely 

used clinical visual rating scale. Additionally, we compared total lesion volumes from each algorithm to those 

from the gold standard (Figure 1, panel 3). 

Mean performance 

Segmentation quality was assessed by comparing algorithm-generated binary masks with the gold standard 

(Figure 1, panel 4), accounting for true positives (TP), true negatives (TN), false positives (FP) and false 

negatives (FN). Consequently, we calculated 4 reliability metrics: 1) interclass correlation coefficient, 

reporting consistency and agreement between metrics; 2) Dice score, reporting the degree of similarity 

between automatic segmentation and the gold standard mask [37]; 3) precision, indicating the percentage of 

the segmented lesion that corresponds to an real lesion; and 4) sensitivity, indicating the percentage of the 

lesion present in the gold standard and captured by the automatic tool. The mathematical expression per each 

measure is depicted in the Figure 1, panel 4. The scores 2-4 were obtained per participant, obtaining three 

series of 45 values. Performance differences between tools were tested using paired t-tests and Hedges-

corrected Cohen's D  

Performance based on WMH load. 

Regression analyses determined the impact of lesion volume on precision, sensitivity, and Dice scores for 

each segmentation tool (Figure 1, panel 5). To evaluate the tools' performance relative to individual lesion 

size, all manual segmentations of the gold standard were clustered using a labeling algorithm based on 

elements connected in 26 directions in a binary matrix Only lesions comprising at least 4 voxels were 

included. Then, regardless of the participant, lesions were pooled together to create a data set of 1960 lesions. 

The sensitivity was measured in each lesion separately, and the results were sorted by volume into 10 groups 
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of 196 lesions, ascending order of size. For each group of lesions, One-tailed t-tests evaluated if tool 

sensitivity significantly exceeded 0.5 for each volume group. 

Outliers’ detection. 

We tested the LST-LGA and LST-LPA algorithms' performance in a real-world context by evaluating total 

WMH across the entire sample (n = 300) (Figure 1, panel 5). For each participant, we computed the absolute 

difference in WMH volumes yielded by the two algorithms. We then determined the mean and standard 

deviation of these discrepancies for the sample, setting an outlier threshold at three standard deviations above 

the mean. An expert in neuroimaging (author A.C.L) manually reviewed any cases with differences 

exceeding this threshold.  

 

2.7 Biomarker extraction 

To establish a threshold at which WMH volume in the brain may have clinical significance, we calculated a 

specificity-based cutoff following the guidelines for defining imaging cut points [38]. Consistent with the 

study's recommendations, only clinically normal individuals were included to identify potential biomarkers. 

We utilized WMH volumes from automatic segmentations of participants aged 50 to 60 years without 

evidence of brain damage, including vascular disease. This resulted in a subsample of 82 individuals (mean 

age 55 ± 3 years). For these subjects, the cutoff was determined to be the 95th percentile of the WMH volume 

distribution. 

Sample characterization according to the cerebrovascular damage (WMH) 

Based on this cutoff point, we divided the participants into two subgroups: ow vascular load (Low-VL) below 

the WMH threshold and mild vascular load (Mild-VL) exceeded it (Figure 1, panel 6). After establishing 

both groups, we assessed differences in demographic, cognitive, and anatomical variables using ANCOVA 

tests between groups, adjusting for age and total brain volume as covariates. We then adjusted the resulting 

p-values for multiple comparisons using a false discovery rate (FDR) of 0.05 [39]. 

 

2.8 Data availability 

The data that support the findings of this study are available from the corresponding author upon reasonable 

request. All the algorithms used in the present paper are reported in the ‘Materials and methods’ section. 

3 Results 

The performance of each WMH segmentation algorithm was evaluated using the procedure outlined in the 

methods section (Figure 1). This sequence was designed to guide researchers through the necessary steps to 

master the methods, comprehend the clinical implications of the results, and apply them to a population of 

older adults. 

3.1. Correlation analysis 

We assessed the correlation between total WMH volumes from each tool (and the gold standard) and clinical 

Fazekas scores using Spearman correlations. The gold standard had the strongest association (R2 = 0.71) with 

Fazekas scores. All tools showed significant correlations (R² > 0.61), with BIANCA demonstrating the 

highest variability explained (R² = 0.64) among automated methods (see Supplementary material 5). 

Correlation analyses revealed all tools underestimated WMH volume compared to the gold standard, with 

LST-LPA being closest (slope of 0.97). LST-LGA and SAMSEG had slopes of 0.89 and 0.86, while 

BIANCA was furthest with a slope of 0.73 (graphical representations of these correlations can be found in 

Supplementary material 6). Regarding model fitting, BIANCA had the best linear regression fit (R² = 0.91), 

followed by LST-LGA (R² = 0.89), SAMSEG (R² = 0.86), and LST-LPA (R² = 0.62). The results of 

FreeSurfer package are available in Supplementary material 7A. 
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3.2. Performance analysis: mean scores 

Each tool's performance was gauged by comparing WMH brain masks to the gold standard, using interclass 

correlation coefficient (ICC), precision, sensitivity, and Dice scores (Figure 3). We also used paired samples 

t-tests to check for significant method differences in sensitivity, precision, and Dice scores. 

Interclass correlation coefficient. The analysis of method consistency revealed that all tools had high 

consistency, with SAMSEG being the tool with the highest ICC (0.99), followed by BIANCA (0.93), LST-

LPA (0.91) and LST-LGA (0.88).  

Sensitivity. LST-LPA showed the highest value (mean: 0.5 ± 0.3), followed by BIANCA (0.4 ± 0.2), LST-

LGA (0.4 ± 03) and SAMSEG (0.4 ± 0.3). Statistical analysis revealed significant differences among methods 

except between BIANCA and SAMSEG (see Figure 3, top right panel). The largest sensitivity discrepancies 

were seen between LST-LPA and the others: BIANCA (D = 1.018), LST-LGA (D = 1.284), and SAMSEG 

(D = 1.115). Comparisons of BIANCA with LST-LGA and SAMSEG with LST-LGA yielded Cohen’s d 

values of 0.427 and 0.534, respectively. No significant differences were found between BIANCA and 

SAMSEG 

Dice score. LST-LPA showed the highest Dice score (mean: 0.5 ± 0.3), followed by BIANCA (0.5 ± 0.2), 

LST-LGA (0.3 ± 0.2), and SAMSEG (0.4 ± 0.2). The Dice score of LST-LPA was found to be significantly 

higher (see Figure 3, middle right panel) than the values obtained by BIANCA (D = 0.606), LST-LGA (D 

= 1.087), and SAMSEG (D = 1.172). Regarding BIANCA, its dice scores showed significantly higher values 

than the ones obtained with LST-LGA (D = 0.851) and SAMSEG (D = 0.970). Eventually, no significant 

differences were observed between the dice score of LS-LGA and SAMSEG. 

Precision. Precision scores were 0.6 ± 0.3 for both BIANCA and LST-LPA, 0.3 ± 0.2 for LST-LGA and 0.3 

± 0.3 for SAMSEG. Significant differences in precision were found between LST-LPA, BIANCA, and the 

other tools (see Figure 3, bottom right panel), but not between LST-LPA and BIANCA themselves. Effect 

sizes were higher when comparing LST-LPA vs LST-LGA (D = 0.822), LST-LPA vs SAMSEG (D = 1.181), 

BIANCA vs LST-LGA (D = 0.997), and BIANCA vs SAMSEG (D = 1.562) whereas a modest effect size 

(D = 0.369) was observed when comparing LST-LGA and SAMSEG.  

Finally, FreeSurfer's performance was inferior to tools based on FLAIR segmentation (see Supplementary 

material 7B for more details). 

3.3. Performance by total lesion volume 

Plotting Dice scores, precision, and sensitivity against the total WMH volume on the gold standard revealed 

a logarithmic influence of WMH burden on the performance (Figure 4). We used R2 scores and two 

quantitative measures to highlight method differences (Figure 4, left): 1) the 95% value (in mm3) indicates 

the WMH volume achieving 95% performance; and 2) ∫f(x) represents the area under the fitting curve. 

FreeSurfer's results are detailed in Supplementary material 7C. 

For Dice scores, LST-LPA showed a strong logarithmic fit (R2: 0.67), stabilized at a lower WMH volume 

(95% value: 23230 mm3), and had the largest area under the curve (∫f(x) = 26020). BIANCA obtained a  R2 

of 0.71, 95% value: 24612 mm3 and ∫f(x): 24108, whereas LST-LGA (R2: 0.65, 95% value: 25694 mm3, 

∫f(x): 18870) and SAMSEG (R2: 0.50, 95% value: 26406 mm3, ∫f(x): 19840) reached the 95% value at higher 

volumes and obtained a lower area under the fit curve and a worse log fit. 

In precision, BIANCA obtained the best logarithmic fit with a R2 of 0.73, 95% value: 24327 mm3 and ∫f(x): 

30180. In contrast, LST-LPA (R2: 0.48, 95% value: 22433 mm3, ∫f(x): 27733) and LST-LGA (R2: 0.65, 95% 

value: 23191 mm3, ∫f(x): 20092) had poorer log fit and lower area under the fit curve but stabilized at a lower 

WMH volume. On the other hand, SAMSEG (R2: 0.39, 95% value: 26111 mm3, ∫f(x): 19751) was the tool 

with the worst logarithmic fit, the lowest area under the fit curve and which stabilized at higher values. 
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For sensitivity, LST-LPA reached an R2 of 0.53, 95% value: 23371 mm3 and ∫f(x): 26061, followed by 

BIANCA (R2: 0.3, 95% value: 20678 mm3, ∫f(x): 19871) that stabilized at lower WMH volumes but obtained 

lower log fit and area under the fitting curve. By contrast, SAMSEG (R2: 0.42, 95% value: 23694 mm3, ∫f(x): 

20849), and LST-LGA (R2: 0.47, 95% value: 25086 mm3, ∫f(x): 18981) had lower R2, ∫f(x) and stabilized at 

higher WMH values. 

3.4. Performance by individual lesion volume 

To assess the sensitivity of each tool in detecting individual lesions as defined by the gold standard, we 

stratified our analysis by lesion volume. Figure 5 illustrates the sensitivity of each tool across different lesion 

volume ranges. The initial finding was that the majority of lesions 8 mm^3 or smaller were not detected by 

any of the tools. Moreover, the trend of sensitivity relative to lesion size exhibited distinct patterns for each 

tool. Additionally, we investigated whether any tool significantly surpassed a sensitivity threshold of 0.5 for 

any lesion group. The outcome was that only the LST-LPA algorithm demonstrated a sensitivity higher than 

0.5, specifically within the lesion group larger than 111 mm^3. FreeSurfer results are presented in 

Supplementary material 7D. 

3.5. Real world scenario and outlier evaluation 

Based on the results obtained, we decided to test the consistency of the differences in a sample of 300 elderly 

individuals from our research group using both LST algorithms. The LST tools were chosen for their 

performance, particularly the LST-LPA, and for their rapid processing and user-friendliness. The findings 

indicated that LST-LPA experienced malfunctions in 2 patients, whereas LST-LGA had issues in 3 patients. 

Notably, the results suggested that using both LST tools together provided a reliable estimate of WMH 

volumes, with only those cases showing large discrepancies between the two tools' results requiring visual 

verification. Figure 6 illustrates the differences in the outputs of these tools for the sampled individuals and 

includes MRI images for cases in which WMH segmentation was suboptimal. 

3.6. Biomarker extraction and sample characterization 

The obtained cut point corresponded to a WMH volume of 960 mm3 (¡Error! No se encuentra el origen de la 

referencia.), which, for the purposes of characterizing the complete sample, was rounded to 1000 mm3. Based 

on this cut-off, we divided the sample into two subgroups: those with a low vascular load (Low-VL), defined 

as having less than 1000 mm3 of WMH, and those with a mild vascular load (Mild-VL), defined as having 

WMH volumes above this threshold (see Figure 7). It was observed that 59% of the population fell into the 

Low-VL category, while the remaining 41% had WMH volumes exceeding the cut point. The latter group 

demonstrated an exponential increase in WMH volume, reaching up to 23203 mm3. 

To characterize the populations divided according to the cut-off point, we investigated potential 

sociodemographic, behavioral, and brain integrity differences associated with the severity of vascular 

damage, with the findings detailed in Table 2. For clarity, we have organized the results into four categories: 

sociodemographic, cognitive performance, brain structural integrity, and white matter integrity. 

Sociodemographically, age was the sole significant difference between the WMH volume-based subgroups. 

Cognitively, only delayed recall showed a significant difference (p=0.041). No notable differences were 

found in standard dementia markers like gray matter or hippocampal volume. Yet, significant differences 

were observed in SVD-related neuroimaging markers, specifically lateral ventricle enlargement (p=1E-08) 

and reduced white matter volume (p=0.039). Differences in white matter integrity were noted in certain 

projection fibers, thalamic radiations, and association fibers, but post-FDR correction, only lateral ventricle 

and white matter integrity differences remained significant. See Table 2 for detailed p-values. 
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4 Discussion  

In this study, we aimed to guide clinicians and researchers in choosing the most suitable method for 

evaluating and monitoring white matter hyperintensities (WMH) of suspected vascular origin. We assessed 

the performance of four open-access algorithms (LST-LPA, LST-LGA, SAMSEG, and BIANCA) for WMH 

segmentation in MRI across a sample of 45 cognitively healthy older adults with varying WMH loads. These 

algorithms are part of three popular neuroimaging toolboxes (FSL, FreeSurfer, and SPM). We evaluated each 

tool by correlating its output with the Fazekas scale and radiologist manual segmentations, considering 

lesion-level sensitivity. The algorithms generally correlated well with clinical scales and the manual gold 

standard, with LST-LPA and BIANCA performing best. However, we chose to focus further on the LST 

tools for their complementary strengths. The two LST algorithms were applied to a larger dataset of 300 

seniors to test consistency and defined a vascular damage biomarker at the 95th percentile of WMH volume. 

Using the established cut-off, we identified two distinct groups with significant differences in brain integrity 

metrics and potential cognitive decline trends. 

4.1 Where the automatic results related to the clinical status? 

The automated tools demonstrated strong correlations with Fazekas scores, nearly matching the gold standard 

in total WMH volume estimation, despite a tendency to underestimate lesion volumes (see Supplementary 

material 5 & 6). These findings underscore the clinical utility of automated segmentation as a reliable 

surrogate for the Fazekas scale and manual segmentation. By combining Fazekas scores with total WMH 

volume, we gain a robust measure of vascular damage, balancing the Fazekas scale's limitations with the 

granularity of WMH volume assessment. Previous studies have validated the correlation between automatic 

and manual segmentations for LST-LPA [40], [41], LST-LGA [40], [41], and BIANCA [31], [42], with 

literature indicating a general trend for these tools to report smaller lesion volumes compared to manual 

segmentation [31], [41]. However, no previous SAMSEG's correlation with manual segmentation were found 

in the literature. As can be seen in Supplementary material 6, LST-LPA showed the highest concordance 

with manual segmentation, with LST-LGA and SAMSEG also performing well. These findings diverge from 

those reported by [40], where LST-LGA outperformed LST-LPA. In contrast, BIANCA was less aligned 

with clinical measurements but fitted regression models best, suggesting a potential systematic issue in 

handling false negatives, as indicated by sensitivity analyses (Figures 3 and 4). 

4.2 General performance comparison: total volume matters 

All algorithms displayed high stability, with SAMSEG achieving the highest ICC, followed by BIANCA and 

the LST tools. While previous studies on LST-LPA, LST-LGA, and BIANCA report mixed ICC results, our 

findings are in line with some and differ from others (Griffanti et al., 2016; Heinen et al., 2019; Hotz et al., 

2021; Tran et al., 2022). We assessed the correlation between automated WMH segmentation and manual 

radiologist segmentation by analyzing precision, sensitivity, and Dice scores. LST-LPA was identified as the 

most sensitive and closely matched algorithm to manual segmentation. Regarding precision, LST-LPA and 

BIANCA obtained comparable values, surpassing SAMSEG and LST-LGA (Figure 3). Consequently, our 

results pointed out that supervised methods (LST-LPA and BIANCA), which use complex algorithms such 

as logistic regression [43] and K-nearest neighbors [42], respectively, outperformed the unsupervised 

methods. Algorithm performance, in terms of sensitivity, accuracy, and Dice score, increased logarithmically 

with higher lesion burden (Figure 4), confirming previous findings [30], [31] that effectiveness diminishes 

in cases with minimal vascular damage. Our results highlighted that LST-LPA showed the most significant 

improvement in Dice score and sensitivity with increasing WMH volume compared to BIANCA. LST-LPA 

also reached the cut-off value faster than BIANCA in both precision and Dice score, although BIANCA 

exhibited a quicker improvement in sensitivity. Among the unsupervised methods, SAMSEG demonstrated 

superior performance in sensitivity, whereas LST-LGA excelled in precision. 

Our results align with prior findings on supervised tools [40], [44] and SAMSEG [45], yet LST-LGA 

underperformed in our analysis [40], [46]. Similar patterns of algorithm performance varying with lesion 

volume have been noted, with other studies reporting more effective results at lower levels of vascular 
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damage [41], [42], [47]. The performance disparity might stem from the use of MRI scanners with different 

magnetic field strengths, as LST-LGA's accuracy is compromised on the 1.5 tesla machines commonly used 

in clinical settings due to their lower resolution, especially for small lesions [45]. This is particularly relevant 

for LST-LGA, which depends on T1 hypointensities to initialize lesions that will subsequently grow on the 

FLAIR image [47]. As mentioned by the authors of LST-LGA, hypointensities in T1 images are sensitive to 

field strength, and may not exist for certain lesions on low-resolution scans [47].Moreover, lesion etiology 

[25] could play a role, as most comparative studies focused on multiple sclerosis patients. 

4.3 Individual lesion size bias 

Detecting small lesions is crucial in clinical and scientific research, particularly in studies on healthy aging 

or early stages of pathological aging, where vascular damage is often minimal, and in longitudinal studies 

tracking disease progression. The location and distribution patterns of WMH are linked to various pathologies 

[25], [48] and cognitive impairments [49]. While automatic segmentation tools are generally validated for 

their sensitivity, precision, and Dice scores, their performance on smaller lesions is less impactful on these 

global measures due to differences in lesion volume, definition, and etiology [25], [50]. Moreover, metrics 

sensitive to the surface-volume ratio of lesions require careful consideration of lesion size for accurate 

performance evaluation [30], [32]. Small lesions present challenges due to their intensity range affected by 

the partial volume effect at tissue boundaries, leading to non-homogeneity [25], [32], [50]–[52]. Additionally, 

their blob-like structures and variable locations contrast with larger lesions typically found around the 

periventricular area [50]. This heterogeneity makes small lesion segmentation a complex, nonlinear problem 

for automatic algorithms, impacting their performance [30]. We addressed this by measuring the sensitivity 

for each lesion individually. 

Our findings indicate that lesion size significantly impacts segmentation quality, with each tool showing 

variable performance based on lesion volume (see Figure 5). BIANCA maintains consistent sensitivity for 

lesions from 10 to 13 mm³, aligning with previous research [51]. LST-LPA achieves similar consistency at 

slightly larger sizes, between 13 and 18 mm³. Both tools show a marked sensitivity increase for lesions over 

26 mm³, but only LST-LPA exceeds a sensitivity of 0.5 for larger lesions. Unsupervised methods only reliably 

segment lesions above 26 mm³, with SAMSEG being marginally more sensitive. This limitation may stem 

from difficulties in delineating lesion borders, particularly for smaller lesions with high surface-to-volume 

ratios. In summary, although BIANCA and LST-LPA perform well with small lesions, they fail to 

consistently segment those smaller than 8 mm³. Moreover, no algorithm consistently achieves over 50% 

sensitivity for lesions larger than 111 mm³, leading to an underestimation of total vascular burden. Recent 

machine learning approaches show promise for small lesion segmentation, utilizing multiscale deep features 

[51] or separate systems for small and large lesions [50]. However, these methods need external validation 

and testing on larger and more diverse samples to confirm their effectiveness. 

4.4 Comparison between algorithms: Which algorithm should be used? 

Supervised methods outperform unsupervised ones in lesion segmentation, achieving higher sensitivity and 

precision, partly due to their ability to use more diverse characteristics to identify lesions [32]. LST-LPA 

surpasses BIANCA in sensitivity and Dice score, offering high-quality segmentation and better performance 

with larger lesions. Although LST-LPA shows less consistency with small lesions, it effectively segments 

them and demonstrates increased sensitivity with larger lesions. Methodologically, the primary distinction 

between the two algorithms lies in their preparation; BIANCA is trained on a sample akin to the gold standard, 

whereas LST-LPA employs a pre-trained algorithm on multiple sclerosis patient samples. The original 

authors have indicated that they are developing a version of LST-LPA that can tailor the learning process to 

individual samples (Schmidt, 2016). In terms of preprocessing, BIANCA often encounters issues when 

setting exclusion masks, resulting in numerous false positives—a challenge in managing large databases. 

Given these considerations, along with its user-friendliness, minimal computational demands, and quick 

processing times, LST-LPA stands out as one of the superior options available. Attending to unsupervised 

methods, LST-LGA has higher precision, but lower sensitivity compared to SAMSEG, with the latter 

detecting smaller lesions. LST-LGA stands out with its user-friendly interface, minimal computational load, 
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and rapid processing. In contrast, SAMSEG offers comprehensive data, including volumetrics of cortical and 

subcortical areas, valuable for academic research.  

Considering other algorithms not evaluated in this work, recent advancements have seen convolutional neural 

networks (CNNs) outperforming traditional methods like LST-LPA in some cases, unaffected by vascular 

load [44]. Additionally, methods considering spatial intensity variability have been proposed to enhance 

segmentation accuracy [53]. Despite these innovations, CNN-based tools have not consistently outperformed 

simpler methods such as LST-LPA and BIANCA. This suggests that while newer techniques offer potential 

improvements, traditional tools remain competitive due to their specificity [25]. 

Considering our results, we employed both LST tools for WMH segmentation in a larger older adult cohort 

due to their optimal quality-cost ratio, sharing a toolbox with low computational demands and swift 

processing. Among 300 participants, we identified 5 outliers based on discrepancies in WMH volume 

between the tools. Visual checks (Figure 6, bottom panel) revealed that LST-LPA inaccurately marked false 

positives in two cases, while LST-LGA failed in three. One possible explanation is that the advantage of 

LST-LGA in some of these segmentations may be due to its independence from manual segmentations of 

varying reliability [31], [40]. Studies show that while complex algorithms like CNNs struggle with routine 

clinical images, simpler methods like LST-LPA and BIANCA are more robust [46]. Despite this, managing 

large datasets with these tools still demands significant review and quality control. However, our findings 

suggest that the combined use of both LST tools provides a reliable, efficient approach for WMH 

segmentation. 

4.5 Clinical relevance: How automated tools can define early biomarkers of vascular damage? 

Due to the impracticality of manual segmentation by radiologists for our entire database, we explored the 

efficacy of automatic segmentation tools for assessing vascular damage. Accurate WMH assessment is 

crucial as it influences diagnosis, particularly with low lesion volumes. LST-LPA closely matched the gold 

standard, adapting quickly with vascular load, which led to its selection for subsequent analysis. Our findings 

revealed in our sample a significant WMH volume variability, suggesting an exponential increase beyond a 

certain threshold. Investigating a potential clinical tipping point, we established a WMH volume cutoff at 

1000 mm³ for the healthiest adults aged 50-60, following the guidelines by Jack et al. (2017). 

Previous studies suggest that WMH progression is non-linear and dynamic, with age accounting for roughly 

a third of WMH volume variance [54], [55]. Our cross-sectional study, spanning ages 50 to 84, confirms 

age's influence on WMH quantity, with notable WMH total volume differences across age-defined groups 

(Table 2). Although vascular damage is linked to cognitive decline [8], [9], our sample, divided by vascular 

burden, showed no significant cognitive differences post-FDR correction, indicating early-stage disease with 

preserved cognition. However, structural brain changes were evident, including ventricular dilatation and 

altered white matter tract integrity, particularly in connections from deep brain regions [17], [18]. No gray 

matter deterioration or ApoE ε4 allele-related differences emerged, likely due to our healthy aging cohort. In 

essence, a vascular damage biomarker distinguished groups with structural brain differences and potential 

cognitive decline risk, underscoring its value in identifying high-risk individuals in clinical and research 

settings. 

4.6 Limitations and Future research 

Despite the study's contributions, we must acknowledge its methodological limitations. The reliance on 

manual segmentation as a gold standard is problematic due to the subjective nature of WMH definitions and 

the resulting inter-rater variability [32], [46]. Moreover, using 1.5 tesla MRI scanners, while clinically 

relevant, hinders comparison with studies employing higher-resolution 3 tesla MRI images. These factors 

collectively challenge comparisons with prior studies and could account for some observed discrepancies. 

The proliferation of automatic segmentation methods presents an opportunity for advancement, yet the lack 

of access to these tools or their proprietary algorithms complicates efforts to compare and improve upon 

them. To address this, our work focused solely on publicly available tools with established use in clinical and 
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research settings. A standardized consensus on WMH segmentation is critical for combining different 

methodologies and enhancing precision. Furthermore, due to variations in sample characteristics and 

technical specifications across studies, WMH measurements may not be directly comparable [55]. Therefore, 

the cutoff value proposed in this thesis is a preliminary benchmark specific to our sample and requires further 

validation before it can be considered clinically generalizable. 

5 Conclusion 

Selecting the right WMH segmentation method depends on the desired metrics and sample traits. For 

assessing total WMH volume, unsupervised tools reliably mirror manual segmentation. In contrast, when 

identifying lesion locations or handling populated samples of small lesions, supervised methods excel. 

However, the importance of quality control cannot be underestimated; it's essential for detecting 

segmentation anomalies. In our experience, the LST suite stands out, offering two robust, easy-to-use options: 

the supervised LST-LPA and the unsupervised LST-LGA. These can be employed synergistically for reliable 

WMH segmentation The utilization of these methods has led to the accurate determination of WMH volumes 

on MRI scans, ensuring a reliable index of vascular damage and improving the consistency of research 

findings. Furthermore, they have been instrumental in establishing a biomarker threshold for vascular 

damage, associated with structural brain alterations and a potential cognitive decline, anchoring these 

measures in clinical significance. 
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10 Tables 

  N Age Sex  Education MMSE Fazekas Volume WMH 

Whole sample 45 71 ± 5 30/15 14 ± 6 29 ± 1 0.9 ± 0.8 (5 ± 7) ∙103 

No WMH 15 69 ± 5 11/4 12 ± 5 28 ± 1 0.2 ± 0.4 (1 ± 2) ∙103 

Subclinical 

WMH 
15 71 ± 5 11/4 13 ± 6 29 ± 1 0.7 ± 0.5 (2 ± 1) ∙103 

CBVD WMH 15 72 ± 4 8/7 15 ± 6 28 ± 2 1.8 ± 0.6 (13 ± 8) ∙103 

Table 1. Demographic and clinical data. Values are presented as mean ± standard deviation. Sex (female/male), age 

(in years), education (expressed in years of education). MMSE: Mini Mental State Examination. WMH volume (in mm3) 

corresponded with those obtained with the radiologist’s manual segmentation. Demographics are displayed for the 

whole sample and for each subsample of interest. 
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    Mild VI (124) Low VI (176) p-value F value Partial η2 

S
a

m
p

le
 

fe
a

tu
re

s 

Sex (females) 63% 71% 0,168     

Apoe-ε4 30% 27% 0,683  
 

Age 72 ± 6 62 ± 7 9E-27* 140,35 0,321 

Education (years) 14 ± 5 14 ± 5 0,533 0,39 0,002 

MMSE 29 ± 1 29 ± 1 0,330 0,95 0,003 

Immediate Recall 35 ± 12 39 ± 11 0,106 2,63 0,009 

Delayed Recall 21 ± 10 25 ± 8 0,041 4,23 0,015 

C
o

g
n

it
iv

e
 

 p
er

fo
rm

a
n

ce
 

Digit Spam Forward 9 ± 2 9 ± 2 0,286 1,14 0,004 

Digit Spam Backward 6 ± 2 6 ± 2 0,462 0,54 0,002 

Phonemic Fluency 14 ± 5 14 ± 4 0,852 0,03 1E-04 

Semantic Fluency 17 ± 3 19 ± 4 0,212 1,57 0,006 

TMT A (time) 52 ± 20 44 ± 18 0,892 0,02 7E-05 

TMT B (time) 133 ± 75 96 ± 56 0,132 2,28 0,008 

Brain segmentation 1042299 ± 114543 1062790 ± 103158 0,069 3,32 0,011 

GM 0,53 ± 0,02 0,54 ± 0,03 0,214 1,55 0,005 

B
ra

in
 s

tr
u

ct
u

re
 

(V
o

lu
m

e 
in

 m
m

3
) 

 Cortical GM 0,39 ± 0,02 0,39 ± 0,02 0,386 0,75 0,003 

Subcortical GM 0,047 ± 0,003 0,047 ± 0,002 0,792 0,07 2E-04 

WM 0,40 ± 0,02 0,42 ± 0,03 0,039 4,29 0,014 

Cortical thickness (mm) 2,3 ± 0,1 2,3 ± 0,1 0,220 1,51 0,005 

Lateral ventricles 0,02 ± 0,01 0,01 ± 0,005 1E-08* 34,25 0,104 

Hippocampus 0,007 ± 0,001 0,007 ± 0,001 0,146 2,12 0,007 

Forceps Minor (fmi) 0,39 ± 0,02 0,40 ± 0,02 0,003* 9,08 0,032 

Forceps Major (fma) 0,39 ± 0,02 0,40 ± 0,02 0,003* 8,89 0,032 

W
M

 m
ic

ro
st

r
u

ct
u

re
  

(F
ra

ct
io

n
a

l 
A

n
is

o
tr

o
p

y
) 

Middle cerebellar peduncle (mcp) 0,50 ± 0,04 0,50 ± 0,03 0,734 0,12 4E-04 

Medial lemniscus (ml) 0,44 ± 0,02 0,46 ± 0,02 7E-07* 25,89 0,087 

Corticospinal tract (cst) 0,41 ± 0,02 0,42 ± 0,02 0,094 2,83 0,010 

Acoustic radiation (ar) 0,54 ± 0,02 0,54 ± 0,02 0,123 2,40 0,009 

Anterior thalamic radiation (atr) 0,47 ± 0,02 0,19 ± 0,02 6E-06* 21,33 0,073 

Superior thalamic radiation (str) 0,43 ± 0,02 0,44 ± 0,02 0,002* 10,17 0,04 

Posterior thalamic radiation (ptr) 0,40 ± 0,02 0,41 ± 0,02 0,179 1,82 0,007 

Superior longitudinal fasciculus (slf) 0,45 ± 0,03 0,45 ± 0,02 0,759 0,09 3E-04 

Inferior longitudinal fasciculus (ilf) 0,50 ± 0,02 0,47 ± 0,08 0,002* 9,98 0,036 

Inferior fronto-occipital fasciculus (ifo) 0,44 ± 0,03 0,44 ± 0,03 0,255 1,30 0,005 

Uncinate fasciculus (unc) 0,47 ± 0,02 0,47 ± 0,02 0,884 0,02 8E-05 

Cingulate gyrus part of cingulum (cgc) 0,51 ± 0,03 0,53 ± 0,02 1E-08* 34,21 0,112 

Parahippocampal part of cingulum (cgh) 0,41 ± 0,03 0,41 ± 0,02 0,911 0,01 5E-05 

Table 2. Sample characterization across all collected variables. Values are presented as mean ± SD. MMSE = Mini-

Mental State Examination, TMT-A = Trail-Making Test part A, TMT-B = Trail-Making Test part B, GM = grey matter, 

WM = white matter. p-values and F scores correspond with between-groups ANCOVA test with age and total brain 

volume segmentation as covariates. Symbol * depict those p-values that survived the FDR correction. For age and brain 

segmentation volume we used between-groups ANCOVA test excluding the correspondent as covariate. For sex and 

ApoE-ε4 we used Fisher exact test. η2 account for partial-Eta squared for all comparisons but for the case of age and 

brain segmentation, where the values correspond to η2 values. 
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11 Figures 

 

 

Figure 1. Methodological pipeline. From left to right: 1: 3D T1 weighted and 3D FLAIR images co-registration, when 

required. Optimization of each algorithm performance and computation of the WMH masks of each participant. The 

circular arrows represent the algorithms that needs a training set. 2: Assessment of User-friendliness by means of 3 

expert neuroscientists. 3: Battery of comparison based on performance and clinical relevance. 4: comparison of the 

WMH masks computed by each algorithm. 5: Evaluation of the models’ performance based on different WMH volumes, 

when evaluating at the individual lesion level and when testing the algorithm in a large dataset 6: Biomarkers extraction 

and evaluation of behavioral and structural integrity differences in function of vascular damage.    

 

Figure 2. Explanation of the Fazekas scale, from left to right the different degrees of severity are detailed from lowest to 

highest. 
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Figure 3. Lesion segmentation performance in terms of precision, sensitivity, and Dice score for the proposed methods (from left to right: LST-
LPA, LST-LGA, SAMSEG and BIANCA). Violin plots depict the distribution of the values obtained in each tool LST-LPA (dark blue), LST-LGA (light 
blue), SAMSEG (yellow) and BIANCA (green). Within each violin plot, boxplots indicate the quartile positions. MRI images provide examples of 
segmentations performed by the various tools. Lesions identified by the gold standard are shown in red; those by LST-LPA in dark blue, LST-LGA 
in light blue, SAMSEG in yellow, and BIANCA in green. Gray circles on the MRI images highlight the principal differences among the tools' 
segmentations. Adjacent to each measure, the effect sizes of the pairwise comparisons (paired t-tests) between the tools are denoted using 
Hedges' g (corrected Cohen's d), with color-coded indications of magnitude: small (yellow), medium (orange), or large (red). Additionally, the 
significance levels attained are also presented (* marks p<0.05 and *** marks p<0.001). 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 15, 2024. ; https://doi.org/10.1101/2023.03.30.23287946doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.30.23287946


19 
 

 

Figure 4. Performance (Dice score, precision, and sensitivity) of each method as a function of the gold standard’s total 

WMH volume. LST-LPA is depicted in dark blue, LST-LGA in light blue, SAMSEG in yellow, and BIANCA in green. On the 

right side of the graph, the trend line for each tool and performance measure is shown. On the left, the graph displays the 

WMH volume that achieves 95% of the maximum performance, the area beneath the curve, and the R2 value for each tool 

and measure. The results for BIANCA are shown in green, SAMSEG in yellow, LST-LGA in light blue, and LST-LPA in dark 

blue. 
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Figure 6. Representation of absolute differences between LST-LPA and LST-LGA across 300 subjects. The dashed line 

indicates the outlier threshold, set at three standard deviations above the mean. Blue bars represent subjects whose 

differences fall below the outlier threshold and who have good quality segmentations according to the LST-LPA tool. 

Grey bars identify outliers with good WMH segmentation as determined by the LST-LPA tool. Red bars highlight outliers 

with poor WMH segmentation by the LST-LPA tool. Examples of suboptimal LST-LPA segmentations are provided at the 

bottom of the figure. 

Figure 5. The sensitivity of each tool when assessing individual lesions stratified by volume ranges is presented. Each volume 

range includes an equal number of lesions (196). For every tool and volume range, the boxplot displays the median, as well 

as the second and third quartiles. The whiskers extend to the first and fourth quartiles, excluding outlier individuals. The 

asterisk (*) denotes groups that achieved a sensitivity significantly greater than 0.5. 
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Figure 7. On the left, a graphical summary illustrates the method employed to determine the WMH volume cut-off point. 

The cumulative distribution function is plotted with WMH volume on the horizontal axis and the proportion of 

observations with WMH volume less than or equal to that on the vertical axis. This is visually represented by a dice with 

a side length of 1 cm, the volume of which corresponds to the cut-off point for WMH volume. On the right, the total 

sample distribution is categorized based on cerebrovascular damage, as indicated by WMH volume. 
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