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Abstract

HER2 (human epidermal growth factor receptor 2) is a protein that
is found on the surface of some cells, including breast cells. HER2 plays
a role in cell growth, division, and repair, and when it is overexpressed,
it can contribute to the development of certain types of cancer, particu-
larly breast cancer. HER2 overexpression occurs in approximately 20%
of cases, and it is associated with more aggressive tumor phenotypes and
poorer prognosis. This makes its status an important factor in determin-
ing treatment options for breast cancer. While HER2 expression is typ-
ically diagnosed through a combination of immunohistochemistry (IHC)
and/or fluorescence in situ hybridization (FISH) testing on breast cancer
tissue samples, we sought to determine to what extent it is possible to
diagnose from H&E-stained specimens. To this effect we trained a deep
learning model to classify HER2-positive image patches using a dataset
of 10 whole-slide images (5 HER2-positive, 5 HER2-negative). We eval-
uated the model on a different test set consisting of patches extracted
from 10 WSIs (5 HER2-positive, 5 HER2-negative), and we compared the
performance against two pathologists on 100 512x512 patches (50 HER2-
positive, 50 HER2-negative). Overall, the model achieved an accuracy of
73% while the pathologists achieved 58% and 47%, respectively.

1 Introduction

The HER-2/neu (c-erbB-2) is an oncogene that encodes a transmembrane gly-
coprotein with tyrosine kinase activity known as p185, which belongs to the
family of epidermal growth factor receptors [1, 2]. Overexpression of HER-2 in
breast cancer has been associated with poor overall survival and has been shown
preclinically to enhance malignancy and the metastatic phenotypes [1]. HER2
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overexpression can be identified by immunohistochemistry (IHC) or fluorescence
in situ hybridization (FISH) on histopathological specimens [3]. It has been re-
vealed that repression of HER-2 suppresses the malignant phenotypes of HER-
2-overexpressing cancer cells, which strongly suggests that HER-2 may serve as
an excellent target for anticancer agents specific for HER-2-overexpressing can-
cer cells [1]. According to the American Society of Clinical Oncology (ASCO)
and College of American Pathologists (CAP) guidelines in 2018 [4], surgical
pathologists select invasive breast cancer patients to be treated with anti-HER2
drugs. IHC 0 (negative) is defined as invasive breast cancer with faint mem-
brane staining observed in less than 10% of cancer cells. IHC 1+ (negative)
is defined as invasive breast cancer with faint membrane staining observed in
over 10% of cancer cells. IHC 2+ (equivocal) is defined as invasive breast can-
cer with weak to moderate complete membrane staining observed in over 10%
cancer cells. IHC 3+ (positive) is defined as invasive breast cancer with strong
complete membrane staining observed in over 10% cancer cells [4]. According
to the guideline, in this study, we defined IHC 0 and IHC 1+ as negative and
IHC 3+ as positive.

In this short study we aimed to investigate the feasibility of diagnosing HER2
expression from H&E-stained specimens, as the current standard practice in-
volves using IHC and/or FISH testing on breast cancer tissue samples. We
developed a deep learning model to classify HER2-positive image patches using
a dataset of 10 whole-slide images, including 5 HER2-positive and 5 HER2-
negative cases. We then evaluated the performance of the model on a separate
test set consisting of patches extracted from 10 whole-slide images (5 HER2-
positive, 5 HER2-negative), and compared it to the performance of two patholo-
gists who assessed 100 512x512 patches (50 HER2-positive, 50 HER2-negative).
The results of our study showed that the deep learning model achieved an ac-
curacy of 73% in HER2 classification, which outperformed the pathologists’
accuracy of 58% and 47%, respectively. On the entire set of test patches the
model achieve an ROC AUC of 0.744 [0.712-0.767]. These findings suggest that
it may be possible to diagnose HER2 expression from H&E-stained specimens
using deep learning models, which could potentially improve the efficiency and
accuracy of HER2 testing in clinical practice.

2 Method

2.1 Dataset

In this retrospective study, 10 HER2 positive breast cancer, 10 HER2 negative
breast cancer were collected from the surgical pathology files of Kamachi Group
Hospitals (Wajiro and Shinkomonji hospitals, Fukuoka, Japan) after histopatho-
logical review of all specimens by surgical pathologists. We collected both H&E
stained and HER2 immunohistochemical stained glass slides from hospitals. The
glass slides were digitised into WSIs at magnification x20 using a Leica Aperio
AT2 Digital Whole Slide Scanner (Leica Biosystems, Tokyo, Japan) was used
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to scan the slides at a magnification of x20. The diagnosis of each specimen
was extracted from the medical reports. In the training set, we used 5 HER2
positive WSIs (5 IHC 3+), 5 HER2 negative WSIs (four IHC 0 and one IHC
1+). In the test set, we used 5 HER2 positive WSIs (5 IHC 3+) and 5 HER2
negativWSIs (four IHC 0 and one IHC 1+).

One pathologist manually annotated HER2 positive and HER2 negative
breast cancer areas by reviewing HER2 immunohistochemical WSIs (Figure
2.1). We set two annotation labels: HER2 positive and HER2 negative. The
average annotation time per WSI was about 15 min.

From the annotations areas in the training set, we extracted 95,561 patches
for HER2 positive and 136,132 for HER2 negative. In the test set, we extracted
147,837 HER2 positive and 124,518 HER2 negative. The patch size was 512x512
at magnification x20 with an overlap stride of 128x128.

Figure 1: Annotation overview.

2.2 Deep learning model

The deep learning model was trained using a weakly-supervised training method
exactly as described in previous works[5, 6]. To refer the reader to the referenced
publications for training details.

We performed tissue detection using Otsu’s thresholding method [7] by ex-
cluding the white background. We then extracted tiles only from the tissue
regions. During prediction, we extracted tiles from the entire tissue regions
using a sliding window with a fixed-size stride.
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3 Results

3.1 Patch-level evaluation

We first evaluated the performance of the model on a test set of 512x512 patches
consisting of 147,837 HER2 positive and 124,518 HER2 negative. The model
achieved an ROC AUC of 0.744 [0.712-0.767]. We summarise the results in Fig.
3.1.

Figure 2: ROC for classifying HER2 positive as evaluated on the patches in the
test set.
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3.2 Comparaison against two pathologists

In addition to evaluating the performance of our deep learning model, we also
assessed the ability of two pathologists to detect HER2 protein expression from
WSI patches. The pathologists independently reviewed 100 512x512 patches (50
HER2 positive, 50 HER2 negative) that were randomly extracted from 10 WSIs,
and they provided a binary classification (HER2 positive or HER2 negative) for
each patch. This evaluation was carried out two months after the annotation
process to allow enough time for the pathologists to not easily recall particular
cases. The pathologists achieved 58% and 47%, respectively, while the model
achieved an accuracy of 73%.

4 Conclusion

The results of the study showed that the deep learning model performed bet-
ter than two pathologists in classifying HER2 protein expression from patches
extracted from breast cancer WSIs.

Even though H&E slides are not the primary way used for diagnosing HER2
protein expression, the study demonstrated that a deep learning model could
potentially achieve better accuracy at it compared to pathologists, meaning
that the model is most likely picking up on subtle patterns which are harder to
pick up by pathologists that are not typically used to detecting HER2 protein
expression from histopathology images. The results suggest that deel learning
models can be a useful tool for pathologists, particularly in settings where access
to expert pathologists is limited, and they can help improve the consistency of
detection.

Competing interests

M.T. and F.K. are employees of Medmain Inc.

Acknowledgements

We are grateful for the support provided by Dr. Shigeo Nakano at Kamachi
Group Hospitals (Fukuoka, Japan). We thank pathologists who have been en-
gaged in reviewing cases, performing annotation, and clinicopathological dis-
cussion for this study. This study is based on results obtained from a project,
JPNP14012, subsidized by the New Energy and Industrial Technology Devel-
opment Organization (NEDO).

Ethics approval and consent to participate

The experimental protocol was approved by the ethical board of Kamachi Group
Hospitals (Wajiro and Shinkomonji hospitals, Fukuoka, Japan) (No. 173). All

5

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 29, 2023. ; https://doi.org/10.1101/2023.03.29.23287897doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287897


research activities complied with all relevant ethical regulations and were per-
formed in accordance with relevant guidelines and regulations in the all hos-
pitals mentioned above (Wajiro and Shinkomonji hospitals, Fukuoka, Japan).
Informed consent to use histopathological samples and pathological diagnostic
reports for research purposes had previously been obtained from all patients
prior to the surgical procedures at all hospitals, and the opportunity for refusal
to participate in research had been guaranteed by an opt-out manner.

Funding

This study is based on results obtained from a project, JPNP14012, subsi-
dized by the New Energy and Industrial Technology Development Organization
(NEDO).

4.1 Software and Statistical Analysis

We used the open-source TensorFlow library [8] to implement the models. We
calculated the AUCs using the scikit-learn package [?] and plotted using mat-
plotlib [9]. We computed the 95% CIs of the AUCs using the bootstrap method
[10] with 1000 iterations.
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