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Abstract     26 

Subtyping of acute myeloid leukaemia (AML) is predominantly based on recurrent genetic abnormalities, but 27 

recent literature indicates that transcriptomic phenotyping holds immense potential to further refine AML 28 

classification. Here we integrated five AML transcriptomic datasets with corresponding genetic information to 29 

provide an overview (n=1224) of the transcriptomic AML landscape. Consensus clustering identified 17 robust 30 

patient clusters which improved identification of CEBPA-mutated patients with favourable outcomes, and 31 

uncovered transcriptomic subtypes for KMT2A rearrangements (2), NPM1 mutations (5), and AML with 32 

myelodysplasia-related changes (AML-MRC) (5). Transcriptomic subtypes of KMT2A, NPM1 and AML-MRC 33 

showed distinct mutational profiles, cell type differentiation arrests and immune properties, suggesting 34 

differences in underlying disease biology. Moreover, our transcriptomic clusters show differences in ex-vivo 35 

drug responses, even when corrected for differentiation arrest and superiorly capture differences in drug 36 

response compared to genetic classification. In conclusion, our findings underscore the importance of 37 

transcriptomics in AML subtyping and offer a basis for future research and personalised treatment strategies. 38 

Our transcriptomic compendium is publicly available and we supply an R package to project clusters to new 39 

transcriptomic studies.  40 
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Introduction 41 

 In acute myeloid leukaemia (AML), recurrent genetic abnormalities (RGA) have been identified 42 

through systematic genomic studies.1–5 Based on these RGAs, the World Health Organization (WHO 43 

2022) and International Consensus Classification (ICC 2022) define several AML subtypes, as well as a 44 

heterogeneous subtype of AML with myelodysplasia-related changes (AML-MRC).6,7 RGAs are essential 45 

for risk-stratification and are increasingly targeted with drugs.8,9  46 

 AML subclassification is genetics-based, but transcriptomics holds immense potential to refine 47 

AML classification further.1–3,10–12 Transcriptomic studies have led to the discovery of CEBPA-mutated 48 

AML13,14, and NPM1-mutated AML subtypes with different cell differentiation arrests and ex-vivo drug 49 

responses.15,16 Similar stratification would be beneficial for AML-MRC, given its heterogeneity.17,18 Still, a 50 

comprehensive examination of AML subtypes defined by gene expression has yet to be performed. 51 

Furthermore, the differentiation arrest state is known to modify drug response in AML19, and failing to 52 

account for this effect when comparing drug responses could skew conclusions.  53 

Therefore, we integrated five mRNAseq datasets with corresponding genetic aberration data and 54 

annotated cases according to WHO and ICC 2022 standards. We outline AML's transcriptomic landscape 55 

and define transcriptional subtypes with distinct gene expressions, genetic aberrations, and cell type 56 

arrests. We relate the clusters to ex-vivo drug responses independently of differentiation arrest and show 57 

how they superiorly capture differences in response compared to genetic classification. We provide all 58 

harmonised data and a transcriptional cluster predictor for future research. Our study underscores the 59 

importance of incorporating transcriptomic data in AML classification. 60 

 61 

  62 
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Methods 63 

Transcriptomic data 64 

We acquired transcriptomics data of primary AML patients from blood or bone marrow from 65 

BEAT3,20 (n = 425), TARGET2 (n = 145), TCGA1 (n = 150), and Leucegene11,21–23 (n = 399), and our in-66 

house LUMC24 dataset (n = 95). Data statements and methods for transcriptome sequencing are 67 

available in the referenced studies.  68 

We acquired quantified gene expression for BEAT, TARGET and TCGA from 69 

https://portal.gdc.cancer.gov/ (release 36) and implemented the same pipeline for Leucegene and LUMC 70 

to harmonise quantification. In short, FASTQ files were aligned and quantified with STAR25 to the 71 

GRCh38 reference genome26, using Gencode v3627 as the gene annotation index which included 60600 72 

genes. 73 

Gene expression count data were corrected with Combat-Seq28 for the variables “cohort”, “sex”, 74 

and “tissue”. We split Leucegene for the batch correction into Leucegene_stranded and 75 

Leucegene_unstranded, since different sequencing libraries were used. We removed 8057 genes that 76 

were not detected in all cohorts, leaving 52603 genes. Finally, we removed genes detected in less than 77 

200 samples or with less than 300 counts leaving 41862 genes for our final dataset. We normalised the 78 

corrected count data using the geometric mean and variance stabilising transformation (VST)29 and 79 

quantified the remaining cohort-specific variation using kBET.30 80 

 81 

Genetic and patient data 82 

We acquired genetic data for the samples from the referenced studies in the form of mutation and 83 

fusion calling, and cytogenetics data and clinical data on sex, age, blast percentage, and survival. 84 

Blacklisted fusions as reported by Arriba31 were removed from the fusion calling data. 85 

We harmonised the data by standardising the annotation of gene names, fusion genes, and 86 

karyotyping. Using genetic data, we subclassified samples according to the WHO 20226 and ICC 20227. 87 

Samples for which we found no RGA and all genetic data available were annotated as “No RGA found”. 88 

We classified samples with missing data and “No RGA found” as “Inconclusive”. 89 

 90 

Clustering 91 
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We employed consensus clustering32,33 on the batch-adjusted gene expression. First, we created 92 

a weighted nearest neighbour graph34 using the 2000 most variable genes (MVGs). MVGs were selected 93 

via the median absolute deviation from samples with a blast percentage over 70% to minimise tumour 94 

microenvironment effects. Using the Leiden algorithm35 – with seed and resolution varied per iteration – 95 

we generated 300 cluster assignments from the graph for each n_clusters ranging from 10 to 20, totaling 96 

3300 assignments. 97 

From these 3300 assignments we created a consensus matrix with values ranging between 0 98 

and 1 based on pairwise co-clustering. We then converted this matrix into a distance matrix (1 - 99 

consensus matrix) and conducted Ward.D2 hierarchical clustering. The final cluster count was 100 

determined based on the individual separation of WHO classes and clusters displaying differential traits. 101 

 102 

Cluster stability 103 

To evaluate per sample clustering stability, we devised a stability score. We constructed a 104 

consensus matrix for each n_clusters (300 assignments) and subtracted each co-clustering value from 1 105 

if it was below 0.5. Then, we took the mean of all values per sample as the stability score, which ranged 106 

from 0.5 to 1, with higher scores indicating less clustering ambiguity. To investigate correlation between 107 

cluster stability and blast percentage we performed a Spearman correlation test. Additionally, we 108 

generated tSNEs using 100 to 2500 MVGs to visually assess cluster stability. 109 

 110 

Cluster prediction 111 

To predict cluster assignments we trained a one-vs-rest SVM per cluster. As input we used the 112 

uncorrected gene expression of the 2000 MVGs used for clustering. To select hyperparameters and 113 

evaluate performance we utilised 5x5 nested cross-fold validation. 114 

To improve predictions we included a reject option using a minimum distance to the decision 115 

boundary. We determined this distance by looping over possible minimum values for the predictions of 116 

the inner fold. We selected the minimum value with the highest Kappa for the accepted inner fold samples 117 

and an accuracy < 0.5 for the rejected inner folds samples. 118 

The final model was trained on the whole dataset, using 5-fold cross-validation to select 119 

hyperparameters and the minimum decision boundary distance. 120 

Differential gene expression analysis 121 
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Differential gene expression analysis between the clusters was performed using DESeq229 using 122 

the corrected gene counts. We performed one-versus-rest analyses to identify differentially expressed 123 

genes in one cluster compared to all others. We annotated genes as transcription factors or coding for 124 

cell surface proteins using public databases.36,37 125 

 126 

Aberration enrichment analysis 127 

 To test if aberrations occurred more in a cluster than in others we first removed aberrations found 128 

in only one cohort or which occurred in less than 1% of the samples. We also included high MECOM 129 

expression in the analysis (VST expression > 6, based on the tail of a MECOM expression density plot). 130 

We tested for enrichment per aberration by performing an one-sided Fisher exact test for one cluster 131 

versus all others and adjusted p-values using the Benjamini-Hochberg (BH) procedure. We considered 132 

aberrations with a false discovery ratio (FDR) < 0.05 enriched.  133 

 134 

Survival analysis 135 

We performed survival analysis using right censored overall survival data by generating Kaplan 136 

Meier (KM) curves on BEAT and TCGA survival data, comparing different groups of patients with the log 137 

rank test. We also performed Cox-regression using BEAT, TARGET and TCGA survival data for different 138 

patient groups and included cohort, sex and age as co-variables to analyse hazard ratios. 139 

 140 

Expression based score 141 

We created cell type score to assess the differentiation arrest of AML samples, using the mean 142 

expression of 30 marker genes for six haematological cells.38 Additionally, we created immune phenotype 143 

scores for cytolytic infiltration and HLA I and HLA II antigen presenting cells using the mean expression 144 

of marker genes.39 145 

 146 

Drug response analysis 147 

To analyse drug response differences, we used ex-vivo drug response data of 331 BEAT3 148 

samples, quantified as area under the curve (AUC). We excluded drugs with less than 200 samples or 149 

missing data for any cluster, leaving 103 of the 123 drugs. We used a Kruskal-Wallis test for each drug 150 

with the AUC as response and clusters as groups to compare the average drug response per cluster. 151 
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Drugs with a significant difference (FDR<.05) were analysed with one-sided Wilcoxon tests to identify 152 

clusters with low AUCs. Additionally, we performed a Kruskal-Wallis test for each drug with the ICC 2022 153 

diagnosis as groups, to compare with clusters as groups. 154 

Multivariate linear models (LM) were evaluated per drug to test if clusters were sensitive to a drug 155 

when adjusted for cell type, with AUC as response and cluster membership (one-versus-rest) and the six 156 

cell type scores as explaining variables. Similarly, we fitted LMs but with cluster membership and ICC 157 

2022 diagnoses as variables. We considered clusters sensitive to a drug if the cluster membership's FDR 158 

was below 0.05 and the LM coefficient was negative. All p-values were corrected using BH. 159 

 160 

Data Sharing Statement 161 

The datasets generated and/or analysed during the current study are available from 162 

www.github.com/jeppeseverens/AMLmap. 163 

 164 

Code availability 165 

All code used to generate results is available on reasonable request. The predictor is available from 166 

www.github.com/jeppeseverens/AMLmapR as an R package. 167 

 168 

Results 169 

Multi-cohort AML gene expression compendium 170 

We collected 1224 RNAseq samples from adult (BEAT, TARGET, TCGA, Leucegene, LUMC) 171 

and paediatric (TARGET) cohorts with corresponding genetic and clinical data (Figure 1A). We quantified 172 

gene expression with the same pipeline and corrected counts for cohort, sex and source tissue 173 

(Supplemental Figure 1). Sample classification by their genetic data according to the WHO (Figure 1C) 174 

and ICC was successful for 97% of the samples. In line with previous reports, frequencies of the AML 175 

subtypes were similar for the adult cohorts but different between paediatric and adult cohorts 176 

(Supplemental Table 1), confirming that our dataset is representative of the AML landscape.40,5 177 

Transcriptomics define 17 AML clusters 178 

 Next, we assigned AML cases to 17 transcriptional clusters using consensus clustering (Figure 179 

Supplemental Figures 2 & 3). We named the clusters based on genetic diagnoses (Figure 1B, 180 

Supplemental Figure 4 & 5). As expected, the distribution over the clusters was different for paediatric 181 
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and adult cohorts, exemplified by the large percentage of paediatric samples in the KMT2AT clusters 182 

(26%), and adult samples in the NPM1T (93%) and AML-MRCT (94%) clusters (Supplemental Table 1, 183 

Supplemental Figure 6). However, samples of identical AML genetic subtypes from adult and paediatric 184 

cohorts clustered together, indicating that the 17 clusters capture differences in AML biology. 185 

We examined clustering robustness using the stability score (Supplemental Figure 7). Median 186 

clustering stability was high (0.97-1.00), with AML-MRC(3)T showing the lowest stability. A correlation 187 

test revealed a significant but weak correlation (rho = 0.18, p-value<.001) between blast percentage and 188 

clustering robustness, but blast percentage varied greatly in clusters. tSNEs generated using different 189 

MVGs (Supplemental Figure 8) were stable from 500 to 2500 features. These results show that 190 

clustering was robust and only weakly influenced by blast percentage. 191 

We developed a transcriptional cluster predictor using uncorrected counts as input (accuracy = 192 

0.90), demonstrating the persistence of expression patterns. The quality of the predictor was further 193 

improved (accuracy = 0.95) by including a reject option (10% rejected) (Supplemental Figure 9). 194 

Next, we tested for enrichment of mutations, fusions and cytogenetic aberrations (n=102) (Figure 195 

1E, p-values and frequencies in Supplemental Table 2). Four transcriptomic clusters corresponded to 196 

singular genetic AML subtypes: RUNX1::RUNX1T1T (RUNX1::RUNX1T1: 94%, FDR<.001), 197 

CBFB::MYH11T (CBFB::MYH11: 95%, FDR<.001), PML::RARAT (PML::RARA: 100%, FDR<.001), and 198 

NUP98T (NUP98::NSD1: 45%, FDR<.001). Risk-stratification for survival based on transcriptional 199 

subtypes performed similarly to genetics (Supplemental Figure 10 & 11). We identified no enrichment 200 

for BCR::ABL1 and DEK::NUP214, possibly due to their limited occurrence. For KMT2A rearrangements, 201 

CEBPA mutations, NPM1 mutations, and AML-MRC, we found evidence that transcriptomics can refine 202 

subtyping, as described below. 203 

 204 

Transcriptome analysis identifies two KMT2A-related clusters 205 

 The WHO classification defines a single KMT2A-rearranged subtype (KMT2A-r), while the ICC 206 

recognises KMT2A::MLLT3 and other KMT2A fusions as distinct.6,7 We identified two KMT2A fusion 207 

clusters. KMT2A(1)T was significantly enriched for KMT2A::MLLT3 (31%, FDR<.001), KMT2A::MLLT10 208 

(19%, FDR<.001) and any KMT2A fusion (67%, FDR<.001), while KMT2A(2)T was enriched for 209 

KMT2A::MLLT4 (67%, FDR<.001) and high MECOM expression (80%, FDR<.001) (Figures 2A & B). 210 
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Interestingly, we found cases with NPM1 mutations and trisomy 8/8q localised in KMT2A(1)T, indicating 211 

that these lead to KMT2A fusion-like gene expression.  212 

The genes LAMP5, and ADCY9 showed high expression in KMT2A(1)T and low expression in 213 

KMT2A(2)T (Figure 2B), and all have been shown to contribute to AML pathogenesis41,42. Additionally, 214 

the transcription factor (TF) ETV2 was highly expressed in KMT2A(1)T, while the TF ERG displayed high 215 

expression in KMT2A(2)T. The cell type scores revealed KMT2A(1)T to have a significantly higher 216 

promonocyte-like score (FDR<.001), while KMT2A(2)T was more hematopoietic stem cell (HSC)-like 217 

(FDR<.001) (Figure 2B, Supplemental Figure 12). FAB annotations showed similar results for 218 

KMT2A(1)T, which had a high M5 (monocytic leukaemia) fraction (90%), while KMT2A(2)T was more 219 

mixed (Figure 2C). Overall, we found that gene expression-based separation of KMT2A-r did not align 220 

with the ICC 2022 classification. 221 

 222 

The CEBPAT cluster indicates a favourable prognosis 223 

As acknowledged in the ELN2022, patients with a CEBPA bZIP inframe mutation have a 224 

favourable prognosis.8,43 We identified a transcriptional CEBPAT cluster significantly enriched for mutated 225 

CEBPA cases (72%, FDR<.001), with 42% of the samples having a CEBPA bZIP indel, either as single 226 

mutation or combined with an N-terminal frameshift mutation (Figure 3A & B). The remaining samples 227 

contained other mutations in the bZIP area or N-terminal region or had no detectable CEBPA mutation. 228 

Of note, a single CEBPA bZIP indel case resided outside the CEBPAT cluster. This patient had an IDH-229 

R132 mutation with a VAF=0.47, while the CEBPA bZIP in-frame mutation had a VAF=0.21. This finding 230 

suggests that the IDH-R132 mutation dominates the expression pattern, placing this case in cluster AML-231 

MRC(1)T. Conversely, all CEBPAT cluster patients showed similar favourable outcomes (log-rank test: p-232 

value=.80), irrespective of whether the CEBPA bZIP inframe mutation was detected (Figure 3C). The 233 

CEBPAT cluster thus marks patients with a favourable outcome regardless of CEBPA mutation detection, 234 

which the CEBPAT expression profile can detect. 235 

Gene expression profiling identifies five transcriptional NPM1-related clusters 236 

The 2022 WHO and ICC classifications include one subtype of NPM1-mutated AML.6,7 However, 237 

we identified five clusters enriched for mutated NPM1 (Figure 4). We observed elevated expression of 238 

HOXA3, HOXB5, and MEIS1 (Figure 4A), which has been earlier associated with NPM1 mutations.44 239 
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Interestingly, NPM1 mutation-lacking samples generally also exhibited high expression of these genes, 240 

suggesting that there are alternative mishaps that disrupt these genes leading to NPM1 mutated-like 241 

AML. 242 

NPM1(1)T exhibited the highest percentage (95%, FDR<.001) of NPM1 mutated samples and 243 

was significantly enriched for IDH1-R132 (25%, FDR<.001), IDH2-R140 (37%, FDR<.001), and TET2 244 

(33%, FDR<.001) co-mutations (Figure 4A). NPM1(2)T samples were enriched for FLT3-ITD mutations 245 

(84%, FDR<.001), but FLT3-ITD was also enriched in NPM1(1)T, NPM1(3)T and NPM1(4)T (42-43%, all 246 

FDR<.001). Additionally, NPM1(4)T and NPM1(5)T had a significantly lower variant allele frequency for 247 

mutated NPM1 (Figure 4B). We found two NPM1::MLF1 cases in our compendium, which both clustered 248 

in NPM1(3)T. NPM1::MLF1 has been shown to localise in the cytoplasm45, like mutated NPM1, possibly 249 

leading to a similar expression profile as NPM1-mutated cases. 250 

Each of the NPM1-related clusters exhibited unique marker genes (Figure 4A). For instance, 251 

FTO expression was high in NPM1(1)T. Additionally, LYRM1, ADAM8, and DNAJC13 were elevated in 252 

NPM1(2)T, NPM1(4)T, and NPM1(5)T, respectively. NPM1(3)T had a less distinct expression pattern, 253 

suggesting a more heterogeneous cluster. Also, we observed differential expression of TFs (RUNX1, 254 

PRDM16, SPI1)46,47 – even in samples lacking the NPM1 mutation – and TF expression aligned with cell 255 

differentiation stages.  256 

NPM1(1)T and NPM1(2)T displayed a HSC-like expression pattern, NPM1(3)T was mixed, 257 

whereas NPM1(4)T and NPM1(5)T were more differentiated (Figure 4A, Supplemental Figure 12). FAB 258 

annotations showed additional differences, with NPM1(5)T containing fewer M4 (myelomonocytic 259 

leukaemia) but more M5 (monocytic leukaemia) cases than NPM1(4)T (Figure 4C & D). Using scores for 260 

HLA I and HLA II antigen-presenting cells39 we found NPM1(1)T to have significantly lower HLA I 261 

(FDR<.001) and HLA II (FDR<.001) scores than the other clusters (Figure 4E & F). NPM1(1)T and 262 

NPM1(5)T patients were significantly older (FDR<.05), while NPM1(3)T patients were younger (FDR<.01) 263 

(Supplemental Figure 6F). Our findings emphasise the existence of distinct NPM1-related subsets, 264 

highlighting the limitations of relying solely on genetic classification. 265 

Gene expression profiling identifies five transcriptional AML-MRC-related clusters 266 

 The ICC 2022 divides AML-MRC into three groups based on TP53 mutations, myelodysplasia-267 

related gene mutations, and cytogenetic abnormalities.7 Our study identified five gene expression-based 268 
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AML-MRC related clusters (Figure 5), with varying fractions of TP53 mutations, MRC gene mutations, 269 

and cytogenetic abnormalities. 270 

Despite sharing these mishaps, each cluster had unique characteristics (Figure 5A). AML-271 

MRC(1)T was characterised by IDH1-R132 (49%, FDR<.001) and IDH2-R170 (27%, FDR<.001) 272 

mutations. A DNMT3A and IDH1/2 mutated subtype has been reported5, but 41% of the AML-MRC(1)T 273 

cases lacked DNMT3A mutations. AML-MRC(2)T, AML-MRC(3)T, and AML-MRC(4)T were all enriched 274 

(FDR<.001) for TP53 mutations, cytogenetic abnormalities and high MECOM expression, and AML-275 

MRC(3)T also contained a large fraction of mutated MRC genes (65%, FDR<0.001). AML-MRC(5)T stood 276 

out with the highest fraction of mutated MRC genes cases (81%, FDR<.001) and the lowest fraction of 277 

TP53 mutations (6%) and cytogenetic abnormalities (34%). 278 

We found marker genes for all clusters (Figure 5A). For instance, high SRSF12 marked AML-279 

MRC(1)T, and LINC00865 marked AML-MRC(5)T. AML-MRC(2)T presented high glycophorin genes and 280 

UROD expression, suggesting an association with acute erythroid leukaemia.48–50 Distinct cell 281 

differentiation scores further highlighted differences (Figure 5A-C, Supplemental Figure 12). For 282 

example, AML-MRC(1)T showed high progenitor-like scores, with 65% M1 (minimal maturation) cases, 283 

and AML-MRC(3)T showed a more differentiated pattern, with 54% M2 (significant maturation) cases. 284 

AML-MRC(2)T was the only cluster with M6 (erythroid leukaemia) – in line with high expression of 285 

erythrocyte cell markers – and M7 (megakaryocytic leukaemia) cases. Additionally, high cytolytic cell 286 

infiltration has been reported for AML-MRC cases.39 Using the same score (Figure 5D) we found that the 287 

cytolytic infiltration was significantly (FDR<.05) lower for AML-MRC(1)T and higher for AML-MRC(2)T 288 

compared to the other AML-MRC clusters. Our results demonstrate that different AML-MRC 289 

transcriptomic clusters can be identified, showing genetic enrichments that do not necessarily align with 290 

the ICC 2022 classification. 291 

AML clusters exhibit cell type-independent differences in ex-vivo drug responses 292 

Finally, we assessed the drug sensitivity of the transcriptional AML subtypes. Using ex-vivo drug 293 

response data, we discovered 101 drug-cluster combinations with significantly lower resistance 294 

(FDR<.05), of which 21 combinations remained statistically significant (FDR<.05) when adjusting for cell 295 

differentiation status (Figure 6, Supplemental Figure 13, Supplemental Table 3). 296 
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The ex-vivo drug responses between NPM1-related clusters were often divergent, exemplified by 297 

venetoclax and selumetinib (Figure 6A,B). NPM1(1)T, NPM1(2)T and NPM1(3)T mostly responded 298 

positively to tyrosine kinase inhibitors and CDK kinase inhibitors. NPM1(4)T and NPM1(5)T samples were 299 

more sensitive to PI3K and MAPK kinase inhibitors. We also found drugs where only one cluster was 300 

responsive, exemplified by axitinib for NPM1(4)T where this effect remained significant (FDR<.05) when 301 

controlled for cell type scores (Figure 6C). 302 

Several drugs demonstrated favourable ex-vivo responses in KMT2A(1)T compared to the other 303 

clusters, exemplified by idelalisib. For KMT2A(2)T we found no significant responsive drugs, but testing 304 

was limited due to small cluster size. For the AML-MRC clusters, most drugs showed strong resistance. 305 

Still, specific drugs were more effective for AML-MRC(1)T, AML-MRC(4)T, and AML-MRC(5)T (Figure 6A, 306 

B), suggesting potential for targeted treatments in this diverse, high-risk patient group. 307 

Next, we examined if transcriptional clusters provide insights beyond genetic classifications. 308 

Comparing the AUCs of each drug between groups, we found 71 drugs with significantly different 309 

(FDR<.05) median AUCs between the clusters, while only 21 drugs were significantly different between 310 

ICC 2022 classes (Figure 6D). Additionally, 57 of the 101 cluster-drug combinations remained significant 311 

(FDR<.05) when cluster membership and ICC 2022 diagnosis were included in a LM, suggesting that the 312 

transcriptional clusters offer information beyond genetic classification. 313 

Overall, our findings offer novel opportunities for targeted therapy in AML. We observed effective 314 

drug responses even after adjusting for differentiation status, possibly allowing gene expression-based 315 

subtypes to guide treatment strategies. 316 

Discussion 317 

  This study presents an overview of transcriptomics in AML and provides a framework for 318 

transcriptional subtyping. We integrate multiple cohorts to identify 17 robust transcriptional subtypes that 319 

subclassify ~75% of our datasets’ patients. We make the harmonised data and a cluster predictor publicly 320 

available, facilitating future research. 321 

 For the CEBPAT cluster, we show that patients without a detected CEBPA bZIP indel mutation 322 

still have similar favourable survival. Patients without the canonical CEBPA mutation in the CEBPAT 323 

cluster could be explained by undetected mutations, given the complexities of CEBPA sequencing. Also, 324 
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CEBPA hypermethylation has been described to lead to a similar expression profile.51 The use of the 325 

CEBPAT gene signature for risk stratification could be a relevant alternative to detect these favourable-326 

outcome patients.  327 

KMT2A(1)T mainly featured KMT2A with the fusion partners MLLT3, MLLT10 and MLLT1 – all 328 

TFs in the super elongation complex whose perturbation leads to disrupted hematopoietic lineage 329 

commitment.52 In contrast, KMT2A(2)T featured KMT2A::MLLT4, which is thought to cause leukaemia by 330 

promoting self-association53. Interestingly, MLLT3, MLLT10 and MLLT1 all fuse a specific region of 331 

KMT2A, but MLLT4 shows less specificity.54 Collectively, these results suggest that two types of 332 

oncogenic mechanisms involving KMT2A fusions exist that may be marked with unique gene expression 333 

patterns. 334 

We identified five NPM1-related clusters, further underpinning findings of transcriptional 335 

heterogeneity among NPM1-mutated patients15,16,55, but also providing additional insight into co-336 

mutations and detailed subtypes. We observed several samples from NPM1-related clusters that lacked 337 

the NPM1 mutation. Several rare NPM1 fusions, like NPM1::MLF1, have been described to lead to 338 

cytoplasmic localisation of NPM1, comparable to the canonical NPM1 frameshift.45,56 These non-339 

canonical mishaps could lead to a NPM1-mutated-like presentation and similarities in survival and drug 340 

response should be explored. Additionally, NPM1(1)T was mutually exclusive enriched for IDH1/2 and 341 

TET2 co-mutations. IDH1/2 mutations lead to an aberrant alpha-ketoglutarate metabolism and are 342 

functionally complementary to TET2 loss-of-function mutations 57. While NPM1(1)T and NPM1(5)T show 343 

significant enrichments for TET2, only NPM1(1)T shows this mutual exclusivity with IDH1/2. This suggests 344 

that only NPM1(1)T is driven by aberrant alpha-ketoglutarate metabolism, which should be further studied 345 

using metabolomics. 346 

Similarly, cytogenetic abnormalities, AML-MRC mutations and high MECOM expression were 347 

found in all AML-MRC clusters, but lead to different gene expression. A possible explanation could be 348 

clonal architecture and the differentiation state of the cell acquiring the leukemic aberration, both known 349 

to influence the biology of the resultant leukaemia.58,59 To our knowledge, we are the first to show different 350 

gene expression-based subgroups in AML-MRC, with divergent drug responses. Accurate identification 351 

of these clusters requires gene expression analysis, showing the relevance of our work. 352 

We found no additional survival differences between other clusters. However, data availability 353 

limited the survival analysis, and different treatment protocols across studies could have led to 354 
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confoundment. Survival differences between transcriptional subtypes should thus be further explored in 355 

one large cohort. However, we did find marked differences in drug responses between the clusters. 356 

Ideally, new studies should test in-patient efficacy of drugs with good ex-vivo responses in transcriptional 357 

subtypes. Furthermore, transcriptional subtyping could aid AML specialists in the highly complex field of 358 

clinical care and lead to multidisciplinary tailored-based treatment advice.60 359 

In conclusion, the transcriptional subtypes reveal heterogeneity in AML not captured by genetic 360 

classification. Integration of transcriptomics into AML research and diagnostics could improve disease 361 

understanding and lead to more treatment options. 362 
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Figure legends 521 

Figure 1: Transcriptomic analysis further stratifies AML. 522 

A) Flowchart of the used data and methods. B) Sankey plot showing the assignment of WHO 2022 523 

diagnoses over the identified clusters. C) tSNE visualisation of the gene expression of patient samples. 524 

Each dot represents a patient. The samples are coloured according to the WHO 2022 subtyping of AML. 525 

D) The same tSNE visualisation as in C, but samples are coloured according to the 17 clusters. E) Dot 526 

plots that show enriched aberrations in the 17 clusters. The dots are coloured according to the adjusted 527 

p-value. The dots are sized according to the sample fraction with the aberration in the cluster. The x-axis 528 

shows the aberrations, and the y-axis shows the clusters. We only visualised enriched aberrations that 529 

occurred in at least 10% of the patients in a cluster. 530 

 531 

Figure 2: Transcriptome analysis identifies two KMT2A-related clusters. 532 

A) tSNE visualisation of patient samples, coloured according to KMT2A-fusion or NPM1 mutation and 533 

trisomy 8. B) Waterfall plot of aberrations in the KMT2A clusters, including the percentage of samples 534 

with the aberration. The plot is combined with heatmaps showing the expression of marker genes and 535 

cell type scores. The columns are samples, which are split according to transcriptional clusters. C) 536 

Fraction of FAB annotations per cluster. HSC = hematopoietic stem cells, Prog. = progenitor, GMP = 537 

granulocyte-monocyte progenitor, Prom. = promonocytes, Mono. = monocytes, cDC = conventional 538 

dendritic cells 539 

 540 

Figure 3: The CEBPAT cluster indicates a favourable prognosis. 541 

A) Waterfall plot and gene expression heatmap of all samples in the CEBPAT cluster and samples with a 542 

CEBPA mutation located outside the CEBPAT cluster. B) tSNE visualisation of patient samples, coloured 543 

according to the type of CEBPA mutation. For samples with multiple CEBPA mutations, we used the 544 

ordering as in A to decide which mutation to display. C) Kaplan-Meier curve of the survival of BEAT and 545 

TCGA patients in and outside the CEBPAT cluster. 546 

 547 

Figure 4: Gene expression profiling identifies five transcriptional NPM1-related clusters. 548 

A) Waterfall plot of aberrations in the NPM1-related clusters, including the percentage of samples with 549 

the aberration. The plot is combined with heatmaps showing the expression of marker genes and cell 550 
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type scores. The columns are samples, which are split according to transcriptional clusters. B) Boxplot 551 

showing the scaled variant allele frequency (VAF) of mutated NPM1 from the BEAT, Leucegene, and 552 

LUMC cohorts. The VAF was scaled per gene and study to allow for a combined analysis. We used a 553 

two-sided Wilcoxon test to test for statistical differences and Benjamini-Hochberg to adjust p-values for 554 

multiple testing. C) tSNE visualisation of patient samples, coloured according to the FAB annotation. Only 555 

NPM1-related clusters are coloured; the rest are in grey. D) Fraction of FAB annotations per cluster. E) 556 

and F) show boxplots of HLA I and HLA II antigen presenting cell scores, respectively. Tests were 557 

performed as in B, but were only done between the two KMT2AT, the five NPM1T and the five AML-MRCT 558 

clusters. FDR values: * < 0.05, ** < 0.01, *** < 0.005, **** < 0.001. HSC = hematopoietic stem cells, Prog. 559 

= progenitor, GMP = granulocyte-monocyte progenitor, Prom. = promonocytes, Mono. = monocytes, cDC 560 

= conventional dendritic cells, VAF = variant allele frequency 561 

 562 

Figure 5: Gene expression profiling identifies five transcriptional AML-MRC-related clusters 563 

A) Waterfall plot of aberrations in the AML-MRC-related clusters, including the percentage of samples 564 

with the aberration. We did not plot enriched individual large chromosomal mishaps. The plot is combined 565 

with heatmaps showing the expression of marker genes and cell type scores. The columns are samples, 566 

which are split according to transcriptional clusters. MRC genes are ASXL1, BCOR, EZH2, RUNX1, 567 

SF3B1, SRSF2, STAG2, U2AF1, or ZRSR2. Cytogenetic abnormalities are the ICC 2022 aberrations that 568 

define AML-MRC with cytogenetic abnormalities. B) tSNE visualisation of patient samples, coloured 569 

according to the FAB annotation. Only AML-MRC clusters samples are coloured are coloured; the rest 570 

are in grey. C) Fraction of FAB annotations per cluster. D) Boxplots of cytolytic cell score per cluster. We 571 

used a two-sided Wilcoxon test to test for statistical differences and Benjamini-Hochberg to adjust p-572 

values for multiple testing. Tests were performed only between the two KMT2AT, the five NPM1T and the 573 

five AML-MRCT clusters. FDR values: * < 0.05, ** < 0.01, *** < 0.005, **** < 0.001. HSC = hematopoietic 574 

stem cells, Prog. = progenitor, GMP = granulocyte-monocyte progenitor, Prom. = promonocytes, Mono. 575 

= monocytes, cDC = conventional dendritic cells 576 

 577 

Figure 6: AML clusters exhibit cell type-independent differences in ex-vivo drug responses 578 

A) Heatmap coloured according to the median scaled area under the curve (AUC) of the ex-vivo drug 579 

response per drug and cluster. On the left is the drug name, and on the right is the drug family. A green 580 
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colour indicates a lower median AUC for the drug for the samples in the cluster compared to the other 581 

clusters, indicating a strong drug response. Red indicates a higher median AUC, meaning a weak drug 582 

response. B) Boxplots showing ex-vivo drug responses for a selection of drugs. We performed 583 

significance testing using a two-sided Wilcoxon test. FDR values: * < 0.05, ** < 0.01, *** < 0.05, **** < 584 

0.001. C) Plots of the multivariate linear models with cluster membership and the six cell type scores as 585 

independent variables and AUC as the dependent variable. On the x-axis, the coefficient of the variables 586 

in the models is shown, and the y-axis shows the -log10 of the p-value for each variable. The shown p-587 

values are not corrected and are for visualisation to indicate variable importance in the multivariate model. 588 

The corrected p-values of the cluster membership variable are shown in Supplemental Table 3. The red 589 

line indicates a p-value of 0.05. D) Barplots of the top 40 drugs with highest corrected p-values for Kruskal-590 

Wallis tests between ex-vivo drug response and clusters or ICC 2022 diagnosis to test if there were 591 

significant differences in the median AUCs. All p-values were corrected with Benjamini-Hochberg. 592 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.03.29.23287896doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.03.29.23287896doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287896
http://creativecommons.org/licenses/by-nc-nd/4.0/


KMT2A::AFF1

KMT2A::ELL

KMT2A::MLLT1

KMT2A::MLLT10

KMT2A::MLLT3

KMT2A::MLLT4

KMT2A::MLLT6

KMT2A::SEPT6

KMT2A::SEPT9

No KMT2A

NPM1 + trisomy 8/8q

Other KMT2A

Figure 2A

B

G
e
n
e

C
e
ll
 t

y
p

e
A

b
e
rr

a
ti

o
n

s

KMT2A(1)T

NPM1
+8/8q

67%

31%

19%

3%

4%

2%

15%

28%

17%

LAMP5
ADCY9

ETV2
CCL1

P2RY1
ERG

HSC like
Prog. like
GMP like

Prom. like
Mono. like

cDC like

KMT2A(2)T

100%

7%

14%

67%

7%

0%

0%

0%

80%

Mutated

Yes
No

Yes & FDR<.05

−4

−2

0

2

4
Scaled expr.

Score

−2

−1

0

1

2

High MECOM expr.

Any KMT2A fusion
KMT2A::MLLT3

KMT2A::MLLT10
KMT2A::MLLT4
KMT2A::MLLT1
KMT2A::EPS15

0.01 0.14

0.04 0.29

0 0.07

0 0

0.05 0.29

0.9 0.21

0 0

0 0M7

M6

M5

M4

M3

M2

M1

M0

KM
T2A

(1
)
T

KM
T2A

(2
)
T

Clusters
F
A

B

0.00

0.25

0.50

0.75

1.00

Freq

C
FAB fractions

KMT2A(1)T

KMT2A(2)T

KMT2A fusions & NPM1 + trisomy 8/8q

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.03.29.23287896doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.03.29.23287896doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.03.29.23287896doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287896
http://creativecommons.org/licenses/by-nc-nd/4.0/


 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.03.29.23287896doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287896
http://creativecommons.org/licenses/by-nc-nd/4.0/


· ** ·
*
·*
*·**

*

*
*
*
**
*·

*·
**
**·
**·

***
**·
**·
**
*· *

**
*· *
*·
** ··*
***
**·**

* ·
*·*

*

·
*

*·

*

*
*

· *
*
*** ·
·*
*

·
*

* ·
* * ·
*

* *
*

*
* ·

**
*·
**
*

**

*
*

*·
*· *

* *
· **

**
**

*

*
*
**
*

*

Bcl-2 inhibitor

Notch cleavage blocker

PKC-beta inhibitor

Aurora kinase inhibitor

Tyrosine kinase inhibitor

CAMKK inhibitor

IGF1 inhibitor

ATM inhibitor

MET inhibitor

ALK inhibitor

JAK inhibitor

SRC inhibitor

Cuproptosis

PI3K inhibitor

MAPK kinase inhibitor

26S proteasome binding

SMO inhibitor

mTOR inhibitor

Heat shock proteins

AKT inhibitor

CDK kinase inhibitor

Venetoclax

DBZ

LY-333531

Alisertib

Tozasertib

Crenolanib

Linifanib

Motesanib

Cediranib

Nilotinib

Vandetanib

Canertinib

AZD1152-HQPA

Erlotinib

RAF265

Pelitinib

Neratinib

KW-2449

Vargetef

Pazopanib

PD173955

Axitinib

Tivozanib

Regorafenib

Ibrutinib

Foretinib

Cabozantinib

Sunitinib

Sorafenib

Dovitinib

Quizartinib

Midostaurin

MGCD-265

Dasatinib

Lenvatinib

STO609

Bay 11-7085

NVP-ADW742

GSK-1838705A

KU-55933

PHA-665752

NVP-TAE684

Ruxolitinib

Saracatinib

Elesclomol

Idelalisib

Rapamycin

GDC-0941

Selumetinib

CI-1040

Trametinib

Bortezomib

Vismodegib

INK-128

17-AAG

MK-2206

A-674563

Roscovitine

JNJ-7706621

SNS-032

AT7519

K
M

T2A
(1

)T

K
M

T2A
(2

)T

N
P
M

1(
1)
T

N
P
M

1(
2)
T

N
P
M

1(
3)
T

N
P
M

1(
4)
T

N
P
M

1(
5)
T

A
M

L-
M

R
C
(1

)T

A
M

L-
M

R
C
(2

)T

A
M

L-
M

R
C
(3

)T

A
M

L-
M

R
C
(4

)T

A
M

L-
M

R
C
(5

)T

Median

scaled AUC

-1

-0.5

0

0.5

1

*
·
*

FDR<.10

FDR<.05

FDR<.05, LM with cell type score

NF-kB Inhibitor
NF-kB Inhibitor

D
ru

g
 F

a
m

ilie
s

D
ru

g
s

**
****

****
*

****
****
**

−2

0

2

N
PM

1(
1)

T

N
PM

1(
2)

T

N
PM

1(
3)

T

N
PM

1(
4)

T

N
PM

1(
5)

T

s
c
a

le
d

 A
U

C

Venetoclax

*
****

****
***

****
*

****

−2

0

2

N
PM

1(
1)

T

N
PM

1(
2)

T

N
PM

1(
3)

T

N
PM

1(
4)

T

N
PM

1(
5)

T

Selumetinib

****

−2

0

2

KM
T2A

(1
)T

O
th

er
cl
us

te
rs

s
c
a
le

d
 A

U
C

Idelalisib

*

−2

0

2

AM
L−

M
R
C
(1

)T

O
th

er
cl
us

te
rs

****

−2

0

2

AM
L−

M
R
C
(4

)T

O
th

er
cl
us

te
rs

*

−2

0

2

AM
L−

M
R
C
(5

)T

O
th

er
cl
us

te
rs

CediranibElesclomolGSK−1838705A

Monocyte-like

AML-MRC(5)T

GMP-like

cDC-like
0

2

4

6

-1 0 1

Coefficient

-l
o
g
1
0
(p

-v
a
lu

e
)

NPM1(4)T

GMP-like

Monocyte-like

cDC-like

0

2

4

6

-1 0 1

Coefficient

Axitinib

-l
o
g
1
0
(p

-v
a
lu

e
)

Roscovitine

A B

C

Sunitinib
Axitinib

Vandetanib
GSK-1838705A

Canertinib
A-674563

Regorafenib
Pazopanib
GDC-0941

INK-128
Bortezomib

Vargetef
YM-155

Linifanib
Quizartinib

CI-1040
Crenolanib

Dasatinib
Cediranib

Motesanib
NVP-ADW742

Rapamycin
NVP-TAE684

Cabozantinib
Pelitinib
17-AAG

Erlotinib

Vismodegib
PHA-665752

Nilotinib
Sorafenib
MK-2206
Dovitinib

AZD1152-HQPA
Elesclomol

KW-2449
Selumetinib

Trametinib
Venetoclax

0 5 10
-log10(FDR)

T
o

p
 4

0
 D

ru
g

s

Nutlin 3a
KU-55933
Canertinib

NVP-ADW742
DBZ

Saracatinib
Vandetanib

INK-128
CI-1040

GSK-1904529A
Lenvatinib

Linifanib
Bortezomib

MLN120B
KW-2449

AZD1152-HQPA
Dovitinib
Pelitinib

Flavopiridol
TG100-115

Cabozantinib
Regorafenib

Dasatinib
AT7519

Nilotinib
Crenolanib

Selumetinib
Sorafenib

Rapamycin
MK-2206
Axitinib

Bay 11-7085
Elesclomol

Ibrutinib
17-AAG
YM-155

GSK690693
Trametinib
Venetoclax

0 5 10
-log10(FDR)

ICC 2022Transcriptional clusters

FDR < 0.05

FDR >= 0.05

FDR < 0.05

FDR >= 0.05

Test for differences in median ex-vivo drug responses for:D

NF-kB Inhibitor

NF-kB Inhibitor

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2023. ; https://doi.org/10.1101/2023.03.29.23287896doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.29.23287896
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

