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Abstract 40 
Background: Built environment plays an important role in development of cardiovascular disease. Tools 41 

to evaluate the built environment using machine vision and informatic approaches has been limited. We 42 

sought to investigate the association between machine vision-based built environment and prevalence of 43 

cardiometabolic disease in urban cities. 44 

Methods: This cross-sectional study used features extracted from Google Street view (GSV) images to 45 

measure the built environment and link them with prevalence of cardiometabolic disease. Convolutional 46 

neural networks, light gradient boosting machines and activation maps were utilized to predict health 47 

outcomes and identify feature associations with coronary heart disease (CHD). The study obtained 0.53 48 

million GSV images covering 789 census tracts in 7 cities (Cleveland, OH; Fremont, CA; Kansas City, MO; 49 

Detroit, MI; Bellevue, WA; Brownsville, TX; and Denver, CO). Analyses were conducted from February 50 

2022 to December 2022. We used census tract-level data from the Centers for Disease Control and 51 

Prevention’s PLACES dataset. Main outcomes included census tract-level estimated prevalence of CHD 52 

based on GSV built environment features. 53 

Results: Built environment features extracted from GSV using deep learning predicted 63% of the census 54 

tract variation in CHD prevalence. The ExtraTrees Regressor achieved the best result among all models 55 

with the lowest average mean absolute error of 1.11% and Root mean square of error of 1.58. The  56 

addition of GSV features outperformed and improved a model that only included census-tract level age, 57 

sex, race, income and education. Activation maps from the features revealed a set of neighborhood 58 

features represented by buildings and roads associated with CHD prevalence. 59 

Conclusions: In this cross-sectional study, a significant portion of CHD  prevalence were explained by GSV-60 

based built environment factors analyzed using deep learning, independent of census tract demographics. 61 

Machine vision enabled assessment of the built environment could help play a significant role in designing 62 

and improving heart-heathy cities.  63 
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Introduction 64 
Coronary heart disease (CHD) accounts for over 50% of mortality from heart disease in the United States, 65 
responsible for nearly 400,000 deaths in 20201. Despite advances in prevention and treatment over the 66 
past decade in the United States2 CHD remains the leading cause of death in the United States since 1950 67 
with increasing evidence for non-conventional risk factors playing a large  than anticipated role than 68 
previously suspected1,3. 69 
 70 
Socioenvironmental factors are amongst the leading non-traditional risk factors increasingly implicated in 71 
CHD development4–6.  These factors include social determinants such as race, income, education, and 72 
culture  as well as the factors in the built environment and factors in the ambient environment such as 73 
noise, and air pollution all of which have been to exert significant effects on CHD. 5–8 74 
 75 
Large-scale integrated assessment of  the environment at the neighborhood can facilitate rapid and 76 
complete assessment of its impact on CHD. Such data is however scarce, partly because of the costly and 77 
time-consuming nature of neighborhood audits, and inconsistent measurements and standards for data 78 
collection. Machine vision approaches such as Google Street View (GSV) has become an increasingly 79 
popular approach for virtual neighborhood audits since its launch in 2007. GSV image coverage has been 80 
consistently expanding in recent years achieving almost full coverage in the United States9. Previous 81 
studies have shown GSV results are comparable to field assessments and have been used to assess the 82 
built environment features such as greenspace10,11, buildings12, and roads13.  83 
 84 
GSV images further become a favored data source for large-scale studies due to the open availability of 85 
such data, arguably the largest compendium of machine vision enabled assessment of large tracts of the 86 
earth, and the standardized approaches used. Deep learning approaches such as convolutional neural 87 
networks (CNN) have been widely used in many studies and applications, given their excellent 88 
performance in tasks such as image classification, object detection, and image segmentation14. The use of 89 
such approaches to rapidly assess and extract built environment features from GSV images using deep 90 
learning can help facilitate integrated assessment and capture other aspects that may not be otherwise 91 
included. The goal of this study is to use GSV images to assess built environment and use them to estimate 92 
CHD prevalence at the census tract level.  93 
 94 
Methods 95 
Data source for coronary heart disease  96 
The prevalence of census-tract coronary heart disease (CHD) was obtained from the CDC PLACES, a project 97 
that provided chronic disease risk factors, health outcomes, and clinical preventive services. This project, 98 
is a collaboration between the Centers for Disease Control and Prevention (CDC), the Robert Wood 99 
Johnson Foundation, and the CDC Foundation, measures CHD prevalence using data from Behavioral Risk 100 
Factor Surveillance System (BRFSS), where people aged ≥18 are surveyed to report whether or not they 101 

have been told by a doctor, nurse, or other health professional that they had angina or coronary heart 102 
disease. We collected the CHD prevalence data for 789 census tracts in 7 cities: Bellevue, WA; Brownsville, 103 
TX; Cleveland, OH; Denver, CO; Detroit, MI; Fremont, CA; and Kansas City, KS.  104 
 105 
Google street view data 106 
Environment information was derived from approximately 0.53 million GSV images for the 7 cities (143K 107 
for Detroit, 59K for Kansas City, 70K for Cleveland, 65K for Brownsville, 38K for Fremont, 35K for Bellevue, 108 
and 120K for Denver). The GSV images were downloaded via Google Street View Static Application 109 
Programming Interface (API) from 2020-2021.  GSV API provides users with street-level panoramic 110 
imagery which captures the visual domain of pedestrians in thousands of cities worldwide. The GSV 111 
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images of each census tract were downloaded in a grid pattern in the corresponding tract with an interval 112 
of 100m.  At each location where GSV images were retrieved, four images were gathered from different 113 
directions (i.e., the cardinal directions: N, E, S, and W.), which composes a panoramic view of the 114 
surroundings at that location. When latitude and longitude coordinates are provided, the API searches 115 
within a 50-meter radius for a photograph closest to this location.  The API would not return any images 116 
if no available images could be found.   117 
 118 
To process these images and gain environment information from them, a pre-trained deep convolutional 119 
neural network (DCNN) Place365 CNN 15 was used as the feature extractor to obtain the deep features of 120 
the image.  Here, the deep features are the outputs of the deep layers in the hierarchy of the network. 121 
Compared with the shallow features in the shallow layers, these deep features represent the semantic 122 
information of the GSV images. Details of how the extraction was performed can be found in e Figure 1 in 123 
the Supplement. We used Place365 CNN as the feature extractor because the images trained on Place365 124 
CNN are more similar to that of GSV.  Place365 CNN was trained on the subset of Places Database, which 125 
contains more than 10 million images consisting of 400+ unique scene categories such as towers, soccer 126 
fields, streets, swimming pools, and train station platforms.  Compared with the ImageNet database, the 127 
diversity of environmental features found in the Places Database was believed to be representative of 128 
what is contained in GSV images. Through feature extraction, we obtained 4096 features representing the 129 
average built environment information for each census tract. 130 
 131 
Statistical Analysis 132 
Features Visualization using Grad-CAM 133 
Elastic net regression models16 were used to estimate the census tract-level CHD prevalence by using the 134 
DCNN-extracted features from GSV images. There are 4096 features and elastic net can handle this high 135 
dimensional data by applying L1 and L2 regularization. Ten-fold cross-validation was repeated 3 times to 136 
find the best parameters of the elastic net. Elastic net can select important features by simultaneously 137 
performing feature selection and feature shrinkage, so we used it to select top features according to the 138 
coefficients of each feature. The top features can be evaluated by examining the magnitudes and signs of 139 
their coefficients in the elastic net mode, thus understanding how each feature is associated with CHD 140 
prevalence. The top features were then visualized as the saliency map in the original GSV  images using 141 
Grad-CAM technique17, which provides certain explanations of what environmental features the CNN 142 
thinks to be associated with neighborhood CHD prevalence. 143 
 144 
Machine Learning Models with CNN-extracted Features  145 
A variety of machine-learning predictive models were used and compared to explore the association 146 
between the CNN-extracted features of GSV images and the tract-level CHD prevalence. The models for 147 
this analysis included ExtraTrees regressor (ET), AdaBoost regressor (AB), Random Forest Regressor (RF), 148 
Gradient Boosting Regressor (GB), Extreme Gradient Boosting Regressor (XGB), and Light Gradient 149 
Boosted Machine Regressor (LGBM). All models were estimated using a 10-fold cross-validation technique 150 
for a more robust result. For 10-fold cross-validation, the dataset is split into 10 equal-sized subsets, and 151 
the model is trained on 9 subsets and tested on the remaining 1 subset. This process is repeated 10 times 152 
until all 10 subsets were used once as the testing set. R-squared values were reported as the measure of 153 
association between the CNN-extracted features of GSV images and the tract-level CHD prevalence. The 154 
performance of each model was also evaluated using the mean absolute error (MAE) and root mean 155 
squared error (RMSE). 156 
 157 
Multilevel Modeling with Demographics and Socio-Economic Factors 158 
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We analyzed the effects of common demographic and socio-economic factors (DSE) as well as CNN-159 
extracted features of GSV images (GSV) associated with the CHD. We built multilevel regression models 160 
to account for the effect of these factors including city, age, sex, race, income and education. A 161 
multivariate Sparse Partial Least Squares (SPLS) regression18 was applied first to the CNN-extracted 162 
features to reduce the dimensionality issue and the effect of noise. The selected SPLS components and 163 
the demographic and socio-economic factors were then used to fit a Linear Mixed-Effect regression model. 164 
Three models were compared in this analysis: 1) a model containing both DSE factors and SPLS 165 
components (Combined Model); 2) a model with DSE factors alone (DSE Model); 3) a model with the SPLS 166 
components alone (GSV Model). Model performance was assessed using goodness of fits measures such 167 
as Likelihood Ratios Tests (as it applied), AIC and BIC criteria. In addition, all models were compared by 168 
using R squared values obtained from a Light Gradient Boosted Machine (LGBM) and Random Forest (RF) 169 
predictive model, which represent the amount of variance explained by each set of independent variables. 170 
The comparison was done using a 10-fold cross validation scheme. 171 
 172 
Results 173 
Regression results with CNN Features 174 
The 4096 CNN-extracted features from GSV images were able to explain more than 63% of the variance 175 
(R2 = 0.634) on the tract-level CHD prevalence in 7 cities (Figure 1). The ET achieved the best result among 176 
all models with the lowest average MAE of 1.11 and RMSE of 1.58. The actual estimate from CDC’s CHD 177 
prevalence and the model-predicted CHD prevalence were mapped for all census tracts in 7 cities (Figure 178 
2). There was a good agreement between the actual estimates and predicted CHD prevalence across all 179 
census tracts in 7 cities. We found a small number of extreme values that were underestimated by the 180 
models in certain census tracts of Detroit and Cleveland. The CHD prevalence of these underestimated 181 
census tracts was often more than 12%. When examining the CNN-extracted features using t-SNE, we 182 
noticed clustering of census tracts with similar values of CHD prevalence (eFigure2 in the supplement) 183 
 184 
 185 
Visualization of Top CNN Features 186 
Grad-CAM was utilized to visualize top CNN-extracted features identified from the elastic net model. The 187 
saliency maps generated by the Grad-CAM, suggested that feature #1555, which seemed to highlight 188 
deteriorated buildings (suggesting neighborhood blight), had a positive association with CHD prevalence 189 
(Figure 3a). Another feature (feature #484) that was positively associated with CHD was found to be 190 
highlighting road cracks as shown in Figure 3b. In contrast, feature #204 in Figure 3c had a negative 191 
association with CHD prevalence, and its heatmap highlighted trees along the road. Feature #1732, 192 
seeming to focus on well built houses, also had a negative association with CHD prevalence (Figure 3d). 193 
 194 
 195 
Comparison of CNN Features with Demographics and Socio-Economic Factors 196 
With SPLS, an optimal model was obtained with h = 7 SPLS components (η = 0.6), yielding a model with 197 

816 CNN-extracted features that explain 𝑅𝑋𝑌
2  > 66.7% variance of CHD prevalence in the census tracts. 198 

All three models were compared with Table 1 shows model comparisons for all three models Likelihood 199 
Ratios Tests (LRT, also see eMethods in the Supplement). eTable 1 in the Supplement shows the 200 
corresponding regression estimates and ANOVA results. Table 2 and Supplemental eTable 2 show the 201 
amount of total explained variance of the GSV models and demographic and socioeconomic (DSE) 202 
variables (Table 2: LGBM, eTable 2: RF). After adjusting for each individual variable, we found that the 203 
combined model (GSV + DSE) demonstrated a better Goodness of Fit, with statistically significant higher 204 
log-likelihood and lower AIC/BIC when compared to GSV or DSE model alone (Table 1). Also, we found 205 
that nearly all the SPLS components are statistically significant (eTable 1 in the Supplement). Although the 206 
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DSE model has lower AIC and BIC values, with a significant LRT, when compared to the GSV model alone 207 
(Table 1), the GSV features alone explain more variance of CHD prevalence than the DSE variables (Table 208 
2). Altogether, this indicates that GSV features and traditional demographics and socio-economics 209 
variables are both significantly associated and predictive of CHD prevalence. 210 
 211 
Discussion 212 
While many epidemiological studies have examined associations between cardiovascular disease and 213 
individual built environmental features (e.g. greenspace, urban architecture, street connectivity, food 214 
availability), our approach focused on machine vision derived physical environment, relying on 215 
convolutional neural networks (CNN) and its related techniques to extract features. 216 
 217 
Our results showed a good association (R2 = 0.634) between the CNN-extracted features from GSV and 218 
CHD at the census tract level in 7 cities. This indicated that the CNN-extracted features could capture 219 
neighborhood features impacting cardiovascular health. The predicted CHD prevalence using CNN-220 
extracted features tended to underestimate in certain areas compared to observed CHD prevalence 221 
especially in Detroit and Cleveland. This may suggest that certain CHD-related factors may either not be 222 
embedded in these environments at these locations or that perhaps features not captured by street view 223 
images, such as demographic factors, ambient factors and other demographic and traditional variables 224 
may play a much larger role in these environments. 225 
 226 
Our approach took the advantage of the knowledge that fully connected layers in the CNN contain 227 
condensed information of the input imagery that can be extracted and utilized for a variety of purposes. 228 
We utilized a pre-trained deep convolutional neural network (DCNN) Place365 CNN15, so that the deep 229 
features from the CNN may be more representative of the built environment. One advantage of this 230 
approach is that predefined relevant features in the built environment is not required. The 4096-231 
dimensional deep features embeds all essential information of the built environment in the imagery so 232 
that we could retain relevant features as much as reasonably possible. Conversely, the disadvantage of 233 
using deep features from a pre-trained CNN is that it becomes difficult to identify corresponding physical 234 
features that impact CHD at the neighborhood level. To alleviate this issue and provide certain 235 
interpretations of the deep features, we utilized Grad-CAM techniques to visualize the CHD-related 236 
features with a saliency map. 237 
 238 
Grad-CAM highlighted several potential built environment features that are either associated with higher 239 
or lower CHD at the neighborhood level. Deteriorated houses and roads are a feature of urban blight 240 
associated with higher CHD. This feature may in turn embody other features in the neighborhood that 241 
drive cardiovascular risk, including lack of space for physical activity7,19, limited access to nutritionally-242 
balanced food20, lack of access to health care21. Street greenery on the other hand was highlighted as 243 
associated with lower CHD prevalence. This agrees with previous studies that showed a robust association 244 
between green space and decreased cardiovascular risks22,23.  245 
 246 
The results of multilevel modeling using demographics and socio-economic factors, indicate that 247 
demographics and socio-economic variables, were still better predictors of CHD prevalence, than GSV 248 
features. One explanation is obviously the fact that physical environmental feature even if they represent 249 
a “meta” framework for other mediators, may not be sufficient to convey the risk conveyed by other 250 
factors which may be sparsely represented. Another reason may be that GSV features may engender 251 
increased model complexity, by virtue of including 4096 features (Table 1). However, GSV features alone 252 
could still explain preponderant proportion of variance in CHD prevalence (Table 2 and eTable1 in the 253 
Supplement). Therefore, by incorporating GSV features into regular DSE variables, one could help improve 254 
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the prediction of CHD prevalence at the neighborhood level. Our results further suggest that GSV features 255 
indeed may be helpful in highlighting specific built environment information related to CHD prevalence at 256 
the neighborhood level as illustrated by Grad-CAM methods, which provided a way of identifying built 257 
environment information.  258 
 259 
There are multiple limitations of this study that should be noted. Firstly, the GSV images used in the study 260 
are only available along major streets and roads, and there are some populations who do not live in such 261 
neighborhood. However, given the fact that most population live around the urban neighborhood where 262 
GSV are abundant, we believe this would not significantly affect the results for majority of census tracts. 263 
Further, although Place365 database contains 400+ unique scene categories, it may not include all 264 
features that can be found in the built environment. Small objects such as trash, other environmental 265 
pollutants and physical domains that may translate into better urban quality of life, may be difficult for 266 
computer vision techniques like CNN to detect in a GSV image 24.  Additionally, the census tracts with CHD 267 
prevalence data are from 7 representative U.S cities of CDC PLACES dataset, and may not generalize to all 268 
census tracts in the U.S., especially rural areas25. Future work is needed to examinate the disparities of 269 
urban and rural areas and its cardiovascular-related built environment features. 270 
 271 
Conclusion 272 
Built environment impacts cardiovascular health outcome. In this study, we used Google Street View (GSV) 273 
and a scene-pretrained convolutional neural network (CNN) to assess the built environment. We found 274 
CNN-extracted features explain significant portion of coronary heart disease (CHD) prevalence at the 275 
census tract level. Compared to traditional demographic and socio-economic factors, GSV provides unique 276 
information that may relate to CHD such as buildings, greenspace and roads as suggested by the activation 277 
maps from Grad-CAM technique. The outcomes of our study provides proof of concept for machine-vision 278 
enabled identification of urban network features associated with risk that in principle, may enable rapid 279 
identification and targeting interventions in at-risk neighborhoods to reduce cardiovascular burden. 280 
 281 
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Figures 353 

 354 
Figure 1. Scatterplot of the actual estimated (observed) and predicted CHD prevalence (in percentage) in 355 
seven cities. The Black dotted line represents the y = x line. 356 
  357 
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 368 
Detroit, MI 369 

 370 
Kansas City, KS 371 

Figure 2. Maps of the actual estimates of cardiovascular heart disease (CHD) prevalence (left) and 372 
predicted CHD prevalence (right, in percentage). The predicted CHD prevalence is obtained by averaging 373 
the results from 100 random trials based on k-fold cross-validation (with k = 10). 374 
  375 
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GSV associated with higher CHD 376 

  377 
(a) Feature #1555 378 

  379 
(b) Feature #484 380 

 381 

GSV associated with lower CHD 382 

  383 
(c) Feature #204 384 

  385 
(d) Feature #1732 386 

Figure 3. Feature interpretations using Grad-CAMs. Images (a) and (b) show the two pairs of GSV 387 
images (left) and their activation maps (right) for the features associated with higher CHD prevalence. 388 
Images (c) and (d) show the two pairs of GSV images (left) and their activation maps (right) for the 389 
features associated with lower CHD prevalence. 390 
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Tables 392 
 393 
Table 1. AIC, BIC Criteria and Likelihood Ratios Tests (LRT) of LMM models by Model Combination for 394 
CHD Prevalence. Models:  GSV = the reduced LMM model with only the selected SPLS components CHD: 395 
h = 7 obtained from the full CNN features; DSE = the reduced LMM model with only the Demographics 396 
and Socio-Economic variables; Combined = the full LMM model with both sets of independent variables 397 
from GSV and DSE. 398 

CHD        

LMM Model  AIC BIC Log. Lik. Test LRT p-value 

Combined  757.0 835.0 -368.0    

DSE  930.0 967.0 -457.0 Combined vs. DSE 178.0 < 1.00E-4 

Combined  757.0 835.0 -368.0    

GSV  984.0 1029.0 -482.0 Combined vs. GSV 227.0 < 1.00E-4 

DSE  930.0 967.0 -457.0    

GSV  984.0 1029.0 -482.0 DSE vs. GSV 49.0 < 1.00E-4 

        

 399 
  400 
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Table 2. Total Explained Variance of the LGBM Prediction Model by Model Combination for CHD 401 
Prevalence. 402 

CHD 
  

R2 

LGBM Model 
  

Median Mean Std. Error 

DSE 
  

0.360 0.149 0.553 

GSV 
  

0.591 0.597 0.057 
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SUPPLEMENTARY MATERIAL 404 

 405 
Supplementary Information Text 406 

Multilevel Modeling of Demographics and Socio-Economic Effects 407 

Population Demographics and Socio-Economic status variables are well-known factors associated with 408 

the prevalence of disease such as those of interest in this study. To assess the contribution of these 409 

effects besides the CNN-extracted features to the crude prevalence of CHD a multilevel-level regression 410 

model was built to simultaneously account for the effect of City, as well as variables Age (Median), Sex 411 

(Female %), Race (White %), Income (Median $), and Education (< High School %) in addition to the 4096 412 

CNN-extracted features. Further, to reduce the dimensionality of the problem and to reduce the effect 413 

of noise on the error rates of our inferences, we followed a two-step modeling strategy. In the first step, 414 

a multivariate Sparse Partial Least Squares (SPLS) regression27 was applied to the CNN-extracted 415 

features to consider a reduced set of selected SPLS components (latent variables/factors), to which 416 

dimension reduction was further applied by imposing sparsity on their loadings (CNN-extracted 417 

features). This was done by using shrinkage estimates of regression coefficients (loadings of component) 418 

with combined L1- and L2-penalized estimation. The two tuning parameters of the multivariate Sparse 419 

PLS regression model are: (i) the number ℎ ∈ [1,   𝑚𝑖𝑛 (𝑝, (
𝑓−1

𝑓
)𝑛)] of components that enter the Linear 420 

Mixed Effects Model (where f is the number of folds and p is the dimensionality and n is the sample 421 

size), and (ii) the sparsity parameter  that controls the amount of shrinkage by a combination of the L1- 422 

and L2-penalties. Both were tuned simultaneously by 10-fold Cross-Validation. In the second step, a 423 

Mixed-Effect regression model was fitted with the first few selected SPLS components augmented with 424 

the other Demographics and Socio-Economic variables, all treated here as fixed-effects, and where City 425 

was treated as a random effect. Departure from normality of the univariate dependent variable (CHD 426 

Prevalence) was tested by EDA analysis and Shapiro-Wilks test. A Box-Cox transformation of the 427 

response was applied to minimize departure from normality. Because the dependent variables are 428 

continuous, modeling was done by fitting a Linear Mixed Effects Model (LMM). The modeling is entirely 429 

supervised because multivariate SPLS regression seeks latent components that not only capture the 430 

most variance in the X-space (multivariate independent variables) but also the most covariance with the 431 

response Y (univariate dependent variable of disease prevalence). Finally, AIC and BIC criteria as well as 432 

Likelihood Ratios Tests (as it applied) were used for model comparison between the full model and the 433 

reduced models with the Demographics and Socio-Economic variables alone or the selected SPLS 434 

components alone. Goodness of fit results of all models were also compared by the R2 amount of 435 

explained variance achieved by each set of independent variables in the cross validated Random Forest 436 

(RF) and Light Gradient Boosted Machine (LGBM) predictive models as described above. 437 

Comparison of CNN Features with Recognized Factors 438 

An optimal model could be obtained after model parameter tuning by cross-validation with a maximum 439 

of h = 7 SPLS components and η = 0.6, yielding a final model comprising s = 2031 selected loadings or 440 

CNN-extracted features. This resulted in a SPLS model with a cumulative explained variance of CHD: 441 

𝑅𝑋𝑌
2  > 66.7%. Additional selection of the CNN-extracted features was done by excluding loadings with 442 
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0-containing 95% bootstrapped confidence intervals, resulting in a final model of CHD: s = 816 loadings. 443 

Model specification only included main random and fixed effects and no random interaction effect was 444 

found significant. Also, a structure for the covariance matrix was deemed not necessary (not statistically 445 

significantly different). 446 

We further refer to the Google Satellite View (GSV) model, as the reduced LMM model where only the 447 

selected SPLS components (CHD: h = 7) obtained from the full CNN features enter into the model. 448 

Likewise, we refer to the Demographics and Socio-Economic (DSE) model, as the reduced LMM model 449 

where only the Demographics and Socio-Economic variables enter into the model. We compared the 450 

regression estimates and Goodness of Fit (GOF) measures between these reduced models and the 451 

Combined LMM model, where both sets of independent variables enter simultaneously. For all three 452 

models, Table 1 shows model comparisons by GOF and Likelihood Ratios Tests (LRT), and Supplemental 453 

eTable 1 shows the corresponding regression estimates and ANOVA results. Likewise, Table 2 shows the 454 

amount of total explained variance by predictive modeling (Table 2: LGBM, Supplemental eTable2: RF). 455 

  456 
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Supplementary Figures 457 

 458 

eFigure 1. Workflow of the GSV feature extract and regression method.  A Places365 pre-trained 459 

convolutional neural network – ResNet-50 was used as a feature extractor to obtain the deep features 460 

from GSV images.  The aggregated feature vector was used in regression to predict CHD prevalence. 461 
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 462 

eFigure2. T-SNE projection of the 4096 features from GSV data for the tracts of 7 cities. The projected 463 

points are colored by CHD prevalence (%) of the census tract. 464 
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Supplementary Tables 466 

eTable 1. Regression Estimates and ANOVA Results by Model Combination for CHD Prevalence. 467 

CHD        

 Effects Coeff. Std. Error t-value p-value F-value p-value 

Combined sex < 0.1 < 0.1 2.870 0.004 3428 < 0.0001 
 Age < 0.1 < 0.1 14.92 < 0.001 150 < 0.0001 
 Race < 0.1 < 0.1 -3.450 0.001 94.000 < 0.0001 
 Income < 0.1 < 0.1 -10.36 < 0.001 515 < 0.0001 
 Education 1.2 0.18 6.790 < 0.001 132 < 0.0001 
 Comp.1 44.2 19.56 2.260 0.024 52.000 < 0.0001 
 Comp.2 -23.2 11.02 -2.11 0.035 6.000 < 0.0181 
 Comp.3 36.5 9.65 3.780 < 0.001 59.000 < 0.0001 
 Comp.4 32 9.95 3.220 0.001  7.000 0.0109 
 Comp.5 -41.2 10.75 -3.83 < 0.001 1.000 0.4663 
 Comp.6 35.7 10.25 3.480 0.001 10 0.0014 
 Comp.7 49.5 10.67 4.640 < 0.001 21 < 0.0001 

DSE Sex 0.011 0.034 3.22 0.001 18 < 0.0001 
 Age 0.042 0.025 17.06 < 0.001 142 < 0.0001 
 Race -0.006 0.001 -6.37 < 0.001 85 < 0.0001 
 Income 0 0 -10.42 < 0.001 297 < 0.0001 
 Education 1.903 0.181 10.49 < 0.001 110 < 0.0001 

GSV Comp.1 61.8 26.19 2.36 0.019 115 < 0.0001 
 Comp.2 -25.4 13.3 -1.91 0.057 54 < 0.0001 
 Comp.3 58.7 11.64 5.04 < 0.001 137 < 0.0001 
 Comp.4 73.9 12.96 5.7 < 0.001 23 < 0.0001 
 Comp.5 -51.9 14.09 -3.69 < 0.001 5 0.0248 
 Comp.6 36.2 12.74 2.86 0.004 5 0.0258 
 Comp.7 82.2 13.51 6.08 < 0.001 37 < 0.0001 

 468 

eTable 2. Total Explained Variance of the RF Prediction Model by Model Combination for CHD 469 
Prevalence. 470 
 471 

CHD 
  

R2 

RF Model 
  

Median Mean Std. Error 

DSE 
  

0.328 0.160 0.559 

GSV 
  

0.613 0.615 0.045 

      

 472 
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