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Abstract  

ALS causes degeneration of motor neurons, resulting in progressive muscle weakness and impairment in fine 

motor, gross motor, bulbar, and respiratory function. Promising drug development efforts have accelerated in 

ALS, but are constrained by a lack of objective, sensitive, and accessible outcome measures.  Here we investigate 

the use of consumer-grade wearable sensors, worn on four limbs at home during natural behavior, to quantify 

motor function and disease progression in 376 individuals with ALS over a several year period. We utilized an 

analysis approach that automatically detects and characterizes submovements from passively collected 

accelerometer data and produces a machine-learned severity score for each limb that is independent of clinical 

ratings. The approach produced interpretable and highly reliable scores that progressed faster than the gold 

standard ALS Functional Rating Scale-Revised (-0.70 SD/year versus -0.48 SD/year), supporting its use as a 

sensitive, ecologically valid, and scalable measure for ALS trials and clinical care. 
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Introduction 

Novel therapeutic modalities are now aimed at proximal disease mechanisms in amyotrophic lateral sclerosis 

(ALS) and other neurodegenerative diseases1,2. One major barrier to the successful and efficient development of 

disease-modifying therapies for neurodegenerative disorders is a lack of objective clinical outcome measures that 

account for disease heterogeneity and can sensitively quantify disease progression over the duration of a clinical 

trial3–5. The standard tool for assessing disease severity in ALS clinical trials and clinical care is a semi-

quantitative rating scale (ALS Functional Rating Scale-Revised6,7 or ALSFRS-R) that uses multiple choice 

questions to evaluate several behavioral functions (e.g., walking, handwriting, speech, swallowing). The 

assessment is most often completed by clinicians specializing in ALS7,8, however recent studies have shown high 

correlation between clinician-performed ALSFRS-R and at-home, patient-performed ALSFRS-R9. Clinician or 

patient-performed ALSFRS-R is a useful assessment of global motor function, however it is subjective, 

categorical, and is only performed intermittently over time, which limits its sensitivity for measuring disease 

change and contributes to the need for relatively large and expensive trials10,11. This is a particular challenge in 

rare disease and results in pressure to include relatively homogenous cohorts with faster rates of disease 

progression, which restricts participation of some individuals and may not be representative of the entire ALS 

population12. 

There is a great opportunity to reduce the size and cost of ALS trials, increase the population of individuals who 

can participate, and accelerate the evaluation of promising therapeutics through the development of new 

categories of sensitive quantitative motor outcome measures13–15. Quantitative motor outcome measures may be 

task-based (i.e., measuring behavior during performance of a specific task) or task-free, where an individual’s 

natural behavior is measured passively and continuously at home. There has been recent development of several 

task-based approaches to quantify speech and limb function in ALS using scalable technologies at home9,16–18 and 

only a single report of a task-free approach in ALS using a waist-worn accelerometer19. Task-based measures, 

however, have some of the same limitations as rating scales in that they are based on a relatively small number 

of data samples and cannot easily account for diurnal and day-to-day variability, they rely on the participant’s 

ability and motivation to perform the task, and they are susceptible to learning and placebo effects.  

Task-free assessment approaches which passively and continuously measure natural behavior at home using 

consumer grade devices have the potential to overcome these limitations and be transformative by making reliable 

and sensitive measures available at scale. Furthermore, they have the potential to produce measures that more 

closely reflect the day-to-day function of the individual by measuring the individual’s own selection of behaviors. 
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However, the information obtained by the tool must be interpretable and meaningful to support its use in clinical 

trials or clinical care.  

Here we demonstrate that a submovement-focused analysis of triaxial accelerometer data20,21, recorded from wrist 

and ankle sensors worn by hundreds of individuals with ALS at home during natural behavior, produces 

interpretable and robust measures of motor function and disease progression. We develop a machine learning 

approach to train a model that is sensitive to disease change by utilizing the information for how individuals’ 

sensor-based movement patterns change over time, rather than being constrained by existing clinical assessments 

such as ALSFRS-R. We show that the model’s severity estimates and longitudinal trajectories are reliable and 

consistent with ALSFRS-R, but are more sensitive than the clinical scale for measuring change over time. Thus, 

we demonstrate that objective, sensitive, and scalable measures of motor function and disease change can be 

obtained from passive analysis of everyday behavior using inexpensive wearable sensors. 

Results 

Overview of the dataset 

We analyzed accelerometer data from wrist and ankle-worn sensors collected as part of the Precision Medicine 

Program launched by the ALS Therapy Development Institute (ALS-TDI) in 2014 (see Methods). Individuals 

were asked to wear a sensor on each wrist and ankle as much as possible for one week each month. Participants 

also performed a sequence of 5 limb-based exercises on alternating days, lasting a total of approximately 5 

minutes. An analysis of accelerometer data collected only during these brief task-based assessments was 

previously reported17. Here, we analyze the entirety of accelerometer data collected at home as individuals 

performed their typical daily routine without any constraints. Participant data are shown in Figure 1A and dataset 

filtering steps are described in Figure 1B. Cross sectional analysis included 4637 sessions from 402 unique 

participants (376 ALS, 26 controls) with at least 24 hours of recorded accelerometer data from all four limbs. 

Longitudinal analysis was conducted using data from participants with at least three data collection sessions 

spanning a minimum of 0.75 years (188 ALS and 6 control participants). Submovement, activity bout, activity 

index, and spectral movement features (85 total) were extracted from each session as previously described20,21 

(Figure 1C, Supplementary Table 1). Single feature analysis was performed on a subset of 24 key submovement 

(SM) features of interest. These included SM distance, peak velocity, and peak acceleration (8 features each). 

Mean and standard deviation were computed for short duration and long duration SMs in the primary and 

secondary directions of planar movement resulting in 8 features for each measurement type.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.28.23287869doi: medRxiv preprint 

https://paperpile.com/c/h1crdx/MHsC+4hT8
https://paperpile.com/c/h1crdx/pwWE
https://paperpile.com/c/h1crdx/MHsC+4hT8
https://doi.org/10.1101/2023.03.28.23287869


Overview of the pairwise comparisons severity estimation model 

The task was to train a machine learning model that could combine information across the 85 movement features, 

previously shown to strongly reflect motor function in pediatric and adult ataxias20,21, to produce an ALS-specific 

composite measure that was sensitive to disease progression. The standard machine learning approach is to train 

a regression model to predict the clinical scale score (e.g., ALSFRS-R). However, the sensitivity of the model is 

then constrained by the sensitivity of the scale. In the “pairwise model” approach, the model is trained to learn 

the steepest direction of disease change in feature space based on longitudinal data, without using clinician or 

patient-reported information. This approach, described in Figure 2, can be applied to any disease that progresses 

over time. In addition to the pairwise model, linear regression models with L1-regularization22 were trained to 

predict ALSFRS-R total, ALSFRS-R gross motor subscore, and ALSFRS-R fine motor subscore, and were 

evaluated using five-fold cross-validation.  

Cross-sectional properties of ankle and wrist sensor data 

Individual right ankle SM properties, including SM distance, velocity, and acceleration were significantly 

correlated with ALSFRS-R total (r = 0.31-0.58), demonstrated high test-retest reliability (ICC = 0.71-0.93), and 

were significantly different between ALS and control participants (effect size = 0.8-1.3, Table 1, top). All 

submovement properties were positively correlated with ALSFRS-R, indicating that submovement distances, 

peak velocities, and peak accelerations were smaller and less variable in individuals with more severe disease. 

Similarly, right wrist submovement (SM) properties were positively correlated with ALSFRS-R total (r = 0.31-

0.48) and were significantly different between ALS and control participants (effect size = 0.6-1.5, Table 1, 

bottom). Long duration wrist submovements showed high test-retest reliability (ICC = 0.86-0.91), whereas short 

duration submovements had moderate test-retest reliability (ICC = 0.55-0.83). Ankle submovement properties 

were more strongly correlated with the ALSFRS-R gross motor subscore (r = 0.40-0.68) than with the 

ALSFRS-R fine motor subscore (r = 0.16-0.51), and were only weakly correlated with respiratory (r = 0.19-

0.31) and bulbar (r = 0.09-0.20) subscores. Conversely, wrist submovement properties correlated more strongly 

with the ALSFRS-R fine motor subscore (r = 0.40-0.60) compared with ALSFRS-R gross motor subscore (r = 

0.19-0.32), and also only weakly correlated with the respiratory (r = 0.08-0.21) and bulbar (r = 0.10-0.28) 

subscores. Both ankle and wrist submovements demonstrated good agreement between right and left limbs, 

however ankle right/left agreement (r = 0.81-0.97) was stronger than wrist right/left agreement (r = 0.65-0.82).  

Machine learning models trained to learn a composite severity score based on right ankle movement features, 

correlated well with ALSFRS-R total (r = 0.54-0.59) and ALSFRS-R gross motor subscore (r = 0.66-0.77), had 

high test-retest reliability (ICC = 0.88-0.92), distinguished between ALS participants and controls (effect size = 

1.1-1.4), and demonstrated strong right/left limb agreement (r = 0.91-0.95, see Table 1). For the right wrist, 

composite severity scores correlated well with ALSFRS-R total (r = 0.58-0.62) and ALSFRS-R fine motor 
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subscore (r = 0.65-0.72), had high test-retest reliability (ICC = 0.84-0.90), distinguished between ALS 

participants and controls (effect size = 1.4-1.7), and demonstrated strong right/left limb agreement (r = 0.82-

0.86, see Table 1). The ankle and wrist pairwise models had the highest test-retest reliability among the machine 

learning models (ICC = 0.92 and ICC = 0.90) and were the focus of longitudinal analysis. To understand which 

individual features were the most salient in the ankle and wrist pairwise models, we identified features that were 

in the top five (out of 85) in feature importance for all 5 cross-validation folds. For the right ankle pairwise 

model, the features included SM peak velocity (mean, PC2 direction, long duration SM group) and SM distance 

(mean, PC2 direction, long duration SMs). For the right wrist pairwise model the most salient features were SM 

peak velocity (mean, PC2 direction, long duration SMs) and SM peak velocity (mean, PC2 direction, short 

duration SMs). 

Longitudinal properties of ankle and wrist sensor data 

The rate of change over time for each sensor-based composite score and ALSFRS-R score was modeled using 

linear regression, with the slope of the best fit line determining the rate of change23. To compare the rate of change 

of different scores, each with a different range of values, each score was z-scored and rate of change reported in 

z-score/standard deviations (SD) per year.  

The rate of change of the pairwise model composite score was computed for each limb. Rate of change was highly 

consistent across right and left ankles (r = 0.87) and right and left wrists (r = 0.80, Figure 3A). There was lesser 

agreement (r = 0.52-0.56) between each upper and lower limb pair (e.g., right ankle versus right wrist). Individual-

level trajectories demonstrated examples in which all four limbs progressed similarly over time (Figure 3B), the 

lower limb pair had similar trajectories but differed from the upper limbs (Figure 3C), and where the trajectory 

of one or two limbs deviated from the others (Figure 3D).  

There was also congruence between lower limb pairwise model trajectories and ALSFRS-R gross motor subscore 

trajectories and between upper limb and ALSFRS-R fine motor subscore trajectories (Figure 3B-D). The 

population-level agreement between the right ankle pairwise model rate of change and ALSFRS-R gross motor 

rate of change (r = 0.73, p = 1.5x10-33) was stronger than the agreement with ALSFRS-R fine motor (r = 0.56, p 

= 1.4x10-17), and the right wrist pairwise model rate of change showed stronger agreement with ALSFRS-R fine 

motor (r = 0.73, p = 1.1x10-33) compared to ALSFRS-R gross motor rate of change (r = 0.60, p = 4.2x10-20).  

Next, for each participant, the pairwise model rate of change was combined over the four limbs by either taking 

the average rate of change or the maximum rate of change. When taking the average of the four limbs, the pairwise 

model rate of change had strong agreement with ALSFRS-R total rate of change (r = 0.71), gross motor subscore 

rate of change (r = 0.75), and fine motor subscore rate of change (r = 0.68, Figure 4A), and weak agreement with 

respiratory and bulbar subscores (r = 0.38 and r = 0.45, respectively). Similarly, when taking the limb with the 
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maximum rate of change, the pairwise model had strong agreement with ALSFRS-R (r = 0.69), gross motor 

subscore (r = 0.75), and fine motor subscore (r = 0.69, Figure 4B), and weak agreement with respiratory and 

bulbar subscores (r = 0.34 and r = 0.43, respectively). The sensor-based pairwise model, which was trained to 

estimate disease severity without knowledge of ALSFRS-R scores, had strong rate-of-change agreement with the 

regression model trained to estimate ALSFRS-R total score, regardless of whether the average of the four limbs 

or the limb with the fastest progression rate was used (r = 0.92 for both, Figure 4A,B). Thus averaging or taking 

the maximum rate of change across the four limbs produced equally robust and consistent measures of disease 

progression.  

When taking the maximum rate of change, points shift downward with respect to the y=x line (Figure 4A versus 

4B) indicating increased sensitivity of the sensor-based model to disease change in comparison with ALSFRS-R 

total. Using the maximum rate of change, the pairwise model and the regression model progressed faster over 

time (-0.70 SD/year for both) than ALSFRS-total (-0.48 SD/year, p = 0.007 and p = 0.017, respectively; Figure 

4C). Pairwise model and the regression model scores did not progress for control participants and were 

significantly different between ALS and control participants (p = 0.0004 and p = 0.0006, respectively; Figure 

4C). When using the mean rate of change of all four limbs, the pairwise model and ALSFRS-R total score were 

equally sensitive (-0.45 SD/year versus -0.48 SD/year, p = 0.12) and ALSFRS-R total score was slightly more 

sensitive than the regression model (-0.48 SD/year versus -0.44 SD/year, p = 0.037). 

Discussion 

We have shown that data from inexpensive sensors worn on limbs at home during natural behavior can produce 

reliable, sensitive, and interpretable measures of gross and fine motor function in individuals with ALS. Ankle 

movement properties derived from accelerometer data were highly consistent across right and left ankles and 

were in agreement with gross motor function as assessed on ALSFRS-R, both in terms of cross-sectional 

severity and in terms of rate of change over time. Similarly, wrist movement properties were highly consistent 

across right and left wrists and were in agreement with fine motor function on ALSFRS-R. Although there was 

strong right-left limb agreement at a population level, arm-leg agreement showed only moderate agreement, and 

some individuals were observed to have different rates of progression for each limb. Taking the score of the 

limb with the maximum progression rate produced a motor outcome measure that was consistent with but more 

sensitive than the current primary outcome measure in most ALS trials (ALSFRS-R). 

The analysis approach for quantifying motor function in ALS centered on extraction and characterization of 

motor primitives called submovements during natural behavior, which was previously developed for 

quantifying motor function in ataxia-telangiectasia20 and adult cerebellar ataxias21. There is evidence that motor 

control is achieved by combining submovements to compose complex voluntary motor behaviors24–27 and that 
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submovements change in a consistent manner with the state of the motor system. With motor development, 

infants’ reaching trajectories become straighter, and submovements decrease in number and increase in 

duration28. Older individuals compensate for greater noise and lower perceptual efficiency by increasing the 

number of submovements and decreasing the velocity of submovements during accuracy-constrained movement 

tasks29. During recovery from stroke, the number of submovements decreases and their temporal overlap 

increases giving rise to smoother trajectories during point-to-point movements30. In individuals with ataxia, 

wrist submovements during a point-to-point reaching task31 and ankle submovements during a gait task32 

become smaller and slower with increasing ataxia severity. Similarly, during natural at-home behavior, ankle 

submovement distance, peak velocity, and peak acceleration are smaller in adults with spinocerebellar ataxias 

and multiple system atrophy compared to controls and become progressively smaller and less variable as self-

reported function decreased and ataxia severity increase21. The submovement analysis approach contrasts with a 

prior analysis of task-free, at-home measurement in 42 individuals with ALS using waist-worn accelerometers, 

which quantified overall activity levels (e.g., activity count, percent of day active)19. Although overall motor 

activity is a pertinent outcome in ALS, it is reliant on full day sensor wear and is likely more susceptible to day-

to-day changes in behavioral context (e.g., travel, systemic illness, sleep quality), requiring careful 

consideration of reliability. 

Based on our literature review, limb submovement properties have not been previously studied in ALS. Several 

studies, however, have investigated the relationship between muscle strength (a direct cause of motor 

impairment in ALS33) and submovement characteristics. In a heterogeneous population of individuals with 

motor impairments (e.g., spinal cord injury, cerebral palsy, stroke), participants were asked to perform a 

computer-based pointing task and a mechanical dynamometer was used to measure grip strength and pinch 

strength34. The authors found that the number of submovements per pointing movement was negatively 

correlated with grip strength (the movement was composed of smaller submovements as grip strength 

decreased) and that the velocity of movement was directly proportional to grip strength34. In another study of 

individuals with hemiparesis secondary to stroke, it was found that peak arm reaching velocity was influenced 

most by shoulder, elbow, and wrist flexor and extensor muscle strength (58% of variance explained), measured 

using a hand-held dynamometer35. In a study of individuals without motor disability, submovement 

organization was examined as participants tracked a small or large dot on a screen with a pen placed on a 

digitizer tablet, while simultaneously recording activity from muscles in the neck and upper extremity using 

surface electrodes36. When tracking the smaller target, extensor and flexor muscles of the forearm activated 

more strongly, and submovements were found to have increased peak velocities36.  

These studies support that there is a robust relationship between muscle strength and submovement properties, 

in particular peak velocity. Consistent with these studies, we found that wrist and ankle submovements from 

individuals with ALS had smaller velocities, accelerations, and distances traversed. Submovement peak velocity 
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was the only highly selected feature in both the right ankle and the right wrist pairwise models, demonstrating 

its importance for measuring disease progression ALS. This supports a model in which muscle weakness and 

decreased muscle activation caused by motor neuron pathology gives rise to slower and smaller submovements 

during everyday limb movement. Further supporting this model, are the parallels in left-right symmetry 

observed in the present study with the left-right symmetry observed in large studies of hand-held dynamometry 

(HHD)23 and Accurate Test of Limb Isometric Strength (ATLIS)37 in ALS. Individual arm and leg muscles 

were found to correlate strongly with the identical muscles on the contralateral side, both in terms of cross-

sectional strength measurements (r = 0.65 to 0.90) and also in terms of rate of change over time (r = 0.43 to 

0.82)23. We observed similar side-to-side cross-sectional and rate of change symmetry in individual 

submovement features (cross-sectional r = 0.65 to 0.97) and composite models (cross-sectional r = 0.82 to 0.95; 

rate of change r = 0.80 to 0.87). Interestingly, side-to-side cross-sectional symmetry of the leg was stronger than 

side-to-side symmetry of the arm here and in the HHD study. This may have implications for how ALS disease 

pathology spreads and highlights a potential future application of this technology in characterizing phenotypic 

spread across limbs in a continuous and granular fashion, for example in presymptomatic gene carriers. This 

also supports that submovement characteristics may be a suitable proxy for muscle strength in ALS, and offers 

an advantage over HHD and ATLIS of being able to measure strength continuously over multiple days, during 

the individual’s own selection of behaviors, and without relying on participant effort or evaluator training and 

strength. Thus, it may produce more reliable, ecologically valid, and scalable measures of muscle strength and 

motor function. It may also apply to other neurological conditions that affect muscle strength. A future study 

that collects HHD and/or ATLIS measurements along with submovements from accelerometer data would help 

clarify the relationship between strength and submovements in ALS. 

As discussed above, strong side-to-side correlations of ankle and wrist submovement features and composite 

models were observed. This is consistent with previously reported strength measurements in ALS23,37, but also 

highlights the robustness of the submovement measures that are generated independently from each limb’s 

movement during natural behavior at home. Ankle submovement measures correlated strongly with ALSFRS-R 

gross motor subscore (both cross-sectional scores and rate of change) and wrist submovement measures 

correlated strongly with ALSFRS-R fine motor subscores. We found high test-retest reliability of the sensor-

based features and composite models. Finally, two machine learning models trained based on different 

information (pairwise model trained on longitudinal change; regression model trained on ALSFRS-R) generated 

composite scores that had strong agreement in rate of disease progression (r = 0.92). These properties support 

that sensor-derived submovements obtained during natural behavior provide highly robust measures of disease 

severity for each limb. Since each limb can be reliably and independently measured, these data support the use 

of the fastest progressing limb’s rate of progression in order to obtain a personalized overall measure that is 

more sensitive for measuring disease change than ALSFRS-R and which may be more responsive to therapeutic 
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intervention. However, the choice of if and how to combine severity measures from each limb can be 

determined based on the clinical application as well as on the individual’s prior clinical trajectory. 

Two different supervised machine learning approaches were used to create composite measures of overall motor 

impairment for each limb based on the collection of sensor-based movement features. One used the traditional 

approach of training a regression model to predict severity as measured by ALSFRS-R. The other approach 

learned the trajectory of disease progression (in feature space) from the longitudinal data and computed how far 

the individual had moved along that trajectory without ever having access to rating scale data (i.e., pairwise 

model). Despite the very different training approaches, both models were highly consistent in their estimates of 

progression rate (r = 0.92) and were similarly consistent with ALSFRS-R total’s progression rate (r = 0.69 and r 

= 0.71). The pairwise model was highlighted in analysis for three main reasons: 1) it had higher reliability than 

the regression models, 2) the consistency with ALSFRS-R in cross-section and in rate of change was striking 

given that it had no chance to “overfit” to the clinical score, and 3) the pairwise modeling approach may be 

useful for other diseases where the existing clinical rating scale is less sensitive for capturing disease change. 

Furthermore, the pairwise modeling approach can be extended in a number of ways, for example by filtering 

comparisons, changing the type of classifier used, and aggregating data across multiple disease populations.     

The large and longitudinal dataset generated by the ALS-TDI Precision Medicine Program, consisting of 376 

individuals with ALS who wore four sensors for multiple hours and days at home and with 188 participants who 

wore the four sensors longitudinally over a minimum of 0.75 years (median of 15 times over 1.5 years), 

supports the feasibility of the at-home passive data collection approach from both a patient and clinical 

operations perspective.   

There were some limitations to the study. There was a relatively small number of controls included in the study 

and the controls were not age matched. However, the size and characteristics of the control sample do not affect 

the main conclusions of the study. There was heterogeneity in the number of hours each participant wore the 

sensors at home. This was mitigated in part by only including days in which sensors were worn for at least 3 

hours. We anticipate higher reliability estimates of all sensor-based measures if participants are explicitly asked 

to wear the sensor throughout the entire day with exception of bathing (and night if possible). Finally, as 

expected, the severity estimates based on limb movement did not correlate well with bulbar and respiratory 

function. These functions are represented in ALSFRS-R and other digital strategies (e.g., video-based analysis 

of facial movement or speech analysis17,38–40) are needed to quantify these important motor domains in ALS. 

In summary, we have shown that a submovement-based analysis of natural behavior at-home using wearable 

sensors produces interpretable, reliable, sensitive, and ecologically valid measures of gross and fine motor 

function in ALS. This technology has properties that support its use as a novel outcome measure in ALS clinical 

trials with the potential to reduce the cost and size of future trials. The use of inexpensive sensors, worn at home 
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with minimal instruction and no eligibility limitations, could increase access to clinical trials and support virtual 

clinical trials in ALS.  It may also support the routine clinical care of individuals with ALS by providing 

clinicians and patients with an objective and reliable motor assessment that can be passively obtained at home 

with relatively low burden and cost. 

Methods 

This research study was conducted in accordance with the ethical principles posited in the Declaration of 

Helsinki - Ethical Principles for Medical Research Involving Human Subjects. Protocol approval was provided 

by the institutional review board (ADVARRA CIRBI). Every participant consented to participate in this 

research by signing an IRB approved informed consent form.  

Wearable Sensor Data Processing and Feature Types 

Continuous triaxial accelerometer data collected at 30 Hz was obtained from Actigraph GT3X devices (one for 

each limb). In prior work, each participant’s wearable sensor data were manually partitioned into day and night 

segments based on changes in each participant’s daily activity level represented in the accelerometer data20,21,41. 

However, given the large size of this dataset, day segments were automatically partitioned to include data 

collected between 7:21 am and 11:27 pm42, while accounting for each individual’s time zone. Data analysis 

focused on daytime segments. Gravity and high frequency noise were removed from the acceleration time-series 

using a sixth order Butterworth filter with cutoff frequencies of 0.1 and 20 Hz.20,21,41,43 

 

Several classes of features were extracted from daytime ankle and wrist sensor data as in prior work20,21. These 

included total power in the 0.1-5 Hz frequency range and features based on the distribution of activity intensity 

computed in 1-second time bins. Features were also extracted from “activity bouts'' and from submovements. 

Supplementary Table 1 provides a description of the 85 features extracted from ankle and wrist sensor data. Based 

on prior work, single feature analysis was performed on a subset of 24 submovement features of interest as 

described in the main text.  

Severity Estimation Models 

Supervised machine learning approaches were used to create composite severity scores that aggregate over the 

85 movement features. Separate models were trained for each limb. The pairwise comparison approach is 

described in Figure 2 and the main text. To ensure that the pairwise model did not inadvertently learn longitudinal 

changes resulting from changes in device settings, comparisons were only allowed between sessions that had the 

same critical firmware version (where raw data were collected in an identical way). Five-fold cross-validation 

was used: for each fold comparisons from 80% of ALS participants were used to train a classification model and 
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the model weights were applied to data from the held-out 20% of participants to generate severity scores for each 

session. Additionally, we trained linear regression models with L1 regularization (i.e., lasso regression)22 to 

predict ALSFRS-R total, ALSFRS-R gross motor subscore (ankle sensor data only), and ALSFRS-R fine motor 

subscore (wrist sensor data only). Five-fold cross-validation was also used to evaluate performance of the 

regression models. For both the pairwise models and the regression models, each feature was z-score transformed 

prior to model training such that feature value ranges and model weights were comparable.  Pearson correlation 

coefficient was used to measure performance, with each model compared with ALSFRS-R. 

Statistical Analyses 

Statistical analyses were completed in MATLAB (Mathworks, Natick, MA) and SPSS (IBM Corp., Armonk, 

NY). The Mann-Whitney U-test was used to determine individual feature differences between disease and control 

groups and Cohen’s d was used to measure effect size. The Mann-Whitney U-test was also used to determine 

differences in rate of change between different assessments. The Benjamini-Hochberg method was used to adjust 

for multiple comparisons and corrected p-values are reported44. Corrected p-values < 0.05 were considered 

significant. Single measure intraclass correlation coefficients (ICCs) were used to determine the test-retest 

reliability of features and composite scores. To evaluate reliability of sensor-based features, features were 

computed from data recorded in first half of the days in the session and the second half of the days in the session, 

separately, and ICCs were computed using a 2-way mixed effects model.45 Pearson correlation coefficients and 

p-values were used to evaluate the relationship between sensor-based features and ALSFRS-R. As above, the 

Benjamini-Hochberg method was used to adjust for multiple comparisons44. 

Data availability 

Data included in this study will be shared by request from any qualified investigator. 
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Figures 

Figure 1. Overview of population and dataset. A) Participant clinical and demographic data with range of values provided in 

parentheses. B) Filtering steps for inclusion of sessions and participants used in cross-sectional and longitudinal analysis. C) 

Visualization of each participant’s session time points for data collection from 2014 to 2022, along with the movement features extracted 

from each session. Abbreviations: ALSFRS – ALS Functional Rating Scale-Revised; d – day; h – hour; Lt – left; Rt – right 
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Figure 2. Overview of the pairwise comparisons model. A) Schematic showing the intra-subject pairwise session comparisons 

performed for participant 166’s first session. For each individual there are 𝑛 ∗ (𝑛 − 1)/2 possible pairwise comparisons (where 𝑛 

represents the number of time points or sessions for that individual). B) The model takes two 85-dimensional feature vectors or samples 

(S1 and S2) from a single individual as input, representing that individual’s motor function at two different points in time (tm and tn). The 

element-wise difference between the two vectors is computed (S1-S2), representing the direction of change in feature space. This 

difference vector is the input to a binary classifier (logistic regression) which learns to predict whether the direction of change reflects 

disease progression (tn is temporally after tm) or reflects disease improvement (tn is temporally before tm). C) The learned logistic 

regression model parameters (representing the direction of disease progression) were then applied as linear weights to the original feature 

vectors to generate a score that reflects how far in the direction of disease progression the individual had traveled at that moment in 

time. 
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Figure 3. Longitudinal data from each limb. A) Agreement in rate of change of the pairwise model score between right and left 

ankles, and right and left wrists. Each point represents an individual with ALS. B-D) Longitudinal trajectories for nine individuals with 

ALS, with sensor-based pairwise model scores for each limb shown in the top panel and ALSFRS-R scores shown in the bottom panel. 

Individuals were observed to have similar trajectories for all four limbs (B), similar trajectories for both ankles and both wrists (C), or 

divergent trajectories for one or more limbs (D).  Abbreviations: SD – standard deviation; ALSFRS-R – ALS Functional Rating Scale-

Revised 
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Figure 4. Rate of change comparison between sensor-based models and ALSFRS-R. A) Mean pairwise model rate of change across 

four limbs compared with ALSFRS-R total score, gross motor subscore, and fine motor subscore (left) and compared with the mean 

regression model rate of change (right). B) Maximum pairwise model rate of change across four limbs compared with ALSFRS-R total 

score, gross motor subscore, and fine motor subscore (left) and compared with the maximum regression model rate of change (right). 

C) Violin plot comparing the distributions of ALSFRS-R rate of change, pairwise model rate of change (using fastest progressing limb), 

and regression model rate of change (using fastest progressing limb). For A-C, each point represents a participant. Abbreviations: SD – 

standard deviation; ALSFRS-R – ALS Functional Rating Scale-Revised 
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Table 1. Cross-sectional properties of ankle and wrist submovement features and models. Abbreviations: SM – Submovement; SD 

– Standard deviation; AI – Activity Intensity; PC – Principal Component; ALSFRS-R – ALS Functional Rating Scale-Revised; ICC – 

Intraclass correlation coefficient; r – Pearson correlation coefficient; es – effect size. 
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