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Abstract 

Background: 

Step counts are increasingly used in public health and clinical research to assess wellbeing, lifestyle, and health 

status. However, estimating step counts using commercial activity trackers has several limitations, including a lack 

of reproducibility, generalizability, and scalability. Smartphones are a potentially promising alternative, but their 

step-counting algorithms require robust validation that accounts for temporal sensor body location, individual gait 

characteristics, and heterogeneous health states. 

 

Objective: 

Our goal was to evaluate an open-source step-counting method for smartphones under various measurement 

conditions against step counts estimated from data collected simultaneously from different body locations 

(“internal” validation), manually ascertained ground truth (“manual” validation), and step counts from a 

commercial activity tracker (Fitbit Charge 2) in patients with advanced cancer (“wearable” validation). 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.28.23287844doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.03.28.23287844
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Methods: 

We used eight independent datasets collected in controlled, semi-controlled, and free-living environments with 

different devices (primarily Android smartphones and wearable accelerometers) carried at typical body locations. 

Five datasets (N=103) were used for internal validation, two datasets (N=107) for manual validation, and one 

dataset (N=45) used for wearable validation. In each scenario, step counts were estimated using a previously 

published step-counting method for smartphones that uses raw sub-second level accelerometer data. We 

calculated mean bias and limits of agreement (LoA) between step count estimates and validation criteria using 

Bland-Altman analysis. 

 

Results: 

In the internal validation datasets, participants performed 751.7±581.2 (mean±SD) steps, and the mean bias was -

7.2 steps (LoA -47.6, 33.3) or -0.5%. In the manual validation datasets, the ground truth step count was 

367.4±359.4 steps while the mean bias was -0.4 steps (LoA -75.2, 74.3) or 0.1 %. In the wearable validation 

dataset, Fitbit devices indicated mean step counts of 1931.2±2338.4, while the calculated bias was equal to -67.1 

steps (LoA -603.8, 469.7) or a difference of 0.3 %. 

 

Conclusions: 

This study demonstrates that our open-source step counting method for smartphone data provides reliable step 

counts across sensor locations, measurement scenarios, and populations, including healthy adults and patients 

with cancer. 

 

 

Keywords: smartphone; accelerometer; step count; validation; open-source; cancer; wearable. 
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Introduction 

Walking is the most common form of physical activity (1). It is also important to prevent chronic disease and 

premature mortality (2–4). The recent proliferation and integration of wearable activity trackers into public health 

and clinical research studies has allowed investigators to identify gait-related biomarkers, such as decreased daily 

step counts, as risk factors for cardiovascular disease, cancer, stroke, and type 2 diabetes (5–10). 

 

Despite the potential for wearable activity trackers to increase physical activity, improve health, and provide 

unique behavioral insights, there are several important limitations. First, the adoption of wearables is uneven 

across the population, and most people stop using wearable activity trackers after 6 months (11–14). Second, 

commercial devices rarely allow access to their raw (sub-second level) data, or provide open-source algorithms for 

processing data into clinically meaningful endpoints (15–17). Third, the accuracy of step count estimates are 

affected by metrological and behavioral factors, such as the location of the wearable on the body and temporal gait 

speed (18–20). 

 

Smartphones are a promising alternative for collecting objective, scalable, and reproducible data about human 

behavior (21–24). Although smartphones can overcome many limitations of wearable activity trackers—e.g., 

through access to raw sensor data (25) and increased adoption among older individuals (26)— the quantification 

of gait-related biomarkers remains challenging. This is largely because of the variation in the location and 

orientation of smartphones in relation to the body in real-life conditions, which affects the data collected from 

smartphones’ inertial sensors (27–29). 

 

To address this problem, we have recently proposed an open-source walking recognition method (29), which can 

be applied to accelerometer data collected from various locations on the body, making it suitable for smartphones. 

In this paper, we demonstrate how our method can be used for quantifying steps, and we validate its performance 

in eight independent datasets. We validate this method in three ways: (i) by comparing step counts estimated from 

multiple sensors worn simultaneously at various known body locations; (ii) by comparing step counts estimated 

from a sensor worn at an unspecified body location against visually assessed and manually annotated ground truth 

(i.e., observed step counts); and (iii) by comparing step counts estimated from a sensor worn at an unspecified 

body location against estimates provided by an independent commercial activity tracker (Fitbit Charge 2) worn on 

the wrist. The first ("internal") and second (“manual”) validations involve healthy subjects whose data were 

obtained from publicly available datasets collected in controlled, semi-controlled, and free-living conditions, while 

the third (“wearable”) validation includes data collected by our team from patients with advanced cancer receiving 

chemotherapy as outpatients in free-living conditions. 
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Methods 

Step counting algorithm 

Our method leveraged the observation that regardless of the sensor location, orientation, or subject, during 

walking activity device’s accelerometer signal oscillates around a local mean with a frequency equal to the 

performed steps (29). To extract this information, we used the continuous wavelet transform to project the 

original signal onto the time-frequency space of wavelet coefficients which are maximized when a particular 

frequency matches the frequency of the observed signal at a given time point (Figure 1). To translate this 

information into number of steps, we split the projection into non-overlapping one-second windows, and we 

estimated the temporal step frequency as a frequency with the maximum average wavelet coefficient. The 

estimated frequency reflects the number of steps a person performs within this time window. Finally, the total 

number of steps was calculated as a sum of all one-second step counts calculated over the duration of the observed 

period of walking. 

 

The step counting method described above is embedded into the walking recognition algorithm published in the 

public domain (30,31). 

 

Figure 1. About here. 

 

Data description 

We evaluated the step counting method in three ways, which we refer to as “internal,” “manual,” and “wearable” 

validations. Each approach was selected to assess a different aspect of the method’s performance: the internal 

validation aimed to determine the consistency of step counts across different body locations; the manual validation 

aimed to assess the method’s accuracy against step counts assessed visually by an observer; and the wearable 

validation aimed to assess the method’s step count compared with step counts obtained from a commercial, 

consumer-grade activity tracker (Fitbit Charge 2) worn at the wrist. Cumulatively, the entire validation was 

conducted using eight independent datasets, including seven datasets available in the public domain and one 

dataset collected by our research team. All datasets are described in the following subsections. 

Internal validation 

For the internal validation, we identified five publicly available datasets, including: Daily Life Activities (DaLiAc) 

(32), Physical Activity Recognition Using Smartphone Sensors (PARUSS) (33), Real-World (RealWorld) (34), 

Simulated Falls and Daily Living Activities (SFDLA) (35), and Human Physical Activity (SPADES) (36). The datasets 
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contained accelerometer data on walking activity collected simultaneously at several body locations that are 

representative of everyday use of smartphones. 

 

Table 1. About here. 

 

The aggregated internal validation dataset included measurements collected from 103 healthy adults (Table 1) 

who performed walking activities in controlled environments (i.e., all participants followed some predefined path), 

typically around a university campus (Table 2). One dataset, RealWorld, involved participants walking outside in a 

parking lot and a forest. 

 

Table 2. About here. 

 

Accelerometer data were collected using various wearable devices, including Android-based smartphones and 

research-grade wearable accelerometers from SHIMMER (Dublin, Ireland), Xsens Technologies (Enschede, The 

Netherlands), and ActiGraph (Pensacola, FL). The devices were positioned at various locations across the body, i.e., 

around the thigh, at the waist, on the chest, and on the arm (Table 3). Dataset measurements differed based upon 

data collection parameters, including the sampling frequency (e.g., between 25 Hz in SFDLA to 204.8 Hz in DaLiAc) 

and measurement range (between ±6 g in DaLiAc to ±12 g in SFDLA). The measurement range was not provided in 

the PARUSS and RealWorld datasets. 

 

Table 3. About here. 

 

Manual validation 

Manual validation was performed using two publicly available datasets: Walking Recognition (WalkRec) (37) and 

the Pedometer Evaluation Project (PedEval) (38). The aggregated dataset consisted of both raw accelerometer data 

for 107 healthy participants and ground truth step counts for each walking activity performed by study 

participants. 

 

In this approach, walking activities were performed in controlled, semi-controlled, or free-living conditions. 

Specifically, WalkRec participants walked in settings of their choice without specific instructions; e.g. indoor and 

outdoor walking along flat surfaces, climbing stairs, etc. (free-living), while PedEval participants performed three 

prescribed walking tasks: (1) a two-lap stroll along a designated path (controlled), (2) a scavenger hunt across four 

rooms (semi-controlled), and (3) a toy-assembling assignment using pieces distributed across a dozen bins located 
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around a room (semi-controlled). In PedEval, step counts were visually assessed and manually annotated by a 

research team member, while in WalkRec, the ground truth annotation was further augmented by recordings from 

a separate smartphone placed on each participant’s ankle. 

 

The manual validation dataset was collected either by Android-based smartphones or a wearable accelerometer 

(SHIMMER3) placed around the waist (PedEval) or at various unspecified locations across the body (WalkRec). 

Each dataset was collected with a different sampling frequency (WalkRec 15 Hz, PedEval 100 Hz), and only PedEval 

provided a measurement range (±4 g). 

Wearable validation 

The wearable validation dataset was collected from patients with advanced gynecologic cancers receiving 

outpatient chemotherapy as part of the Helping Our Patients Excel (HOPE) study. The HOPE study aimed to assess 

the feasibility, acceptability, and perceived effectiveness of a mobile health intervention that used commercial 

wearable activity trackers and Beiwe, a digital phenotyping research platform, to collect accelerometer data, 

smartphone sensor data and patient-reported outcomes. Patients were recruited from the outpatient gynecological 

oncology clinic at the Dana-Farber Cancer Institute in Boston, MA. The inclusion and exclusion criteria for study 

participation are described elsewhere (39). 

 

The dataset included 45 female patients with recurrent gynecologic cancers, including ovarian (n=34), uterine 

(n=5), cervical (n=5) and vulvar (n=1) cancers. Patients were asked to wear the Fitbit Charge 2 (Fitbit, San 

Francisco, CA) on their nondominant wrist during all waking hours for a period of six months in a free-living 

setting. Each Fitbit was linked to the Fitabase analytics system (Small Steps Laboratories, San Diego, CA), which 

enabled the investigators to remotely monitor and export several metrics of patients’ physical activity, including 

minute-level step counts. 

 

At baseline, patients were also asked to install Beiwe, the front-end component of the open-source, high-

throughput digital phenotyping platform designed and maintained by members of the Harvard T.H. Chan School of 

Public Health (40). Among other passive data streams, Beiwe collected raw accelerometer data with the default 

sampling rate (typically 10 Hz on most phones) using a sampling scheme that alternated between on-cycles and 

off-cycles, corresponding to time intervals when the sensor actively collected data and was dormant, respectively. 

The smartphone’s accelerometer was configured to follow a 10-second on-cycle and 20-second off-cycle. The 

sample scheme was identical on all participants’ smartphones. 
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Data preprocessing 

Because each dataset had different data collection parameters, we preprocessed datasets to standardize the inputs 

in our algorithm. First, we verified if the acceleration data were provided in gravitational units (g); data provided 

in SI units were converted using the standard definition 1 g = 9.80665 m/s2. Second, we used linear interpolation 

to impose a uniform sampling frequency of 10 Hz across tri-axial accelerometer data. Third, we transformed the 

tri-axial accelerometer signals into sensor orientation-invariant vector magnitude. 

Statistical Analysis 

The available accelerometer data were processed using the walking recognition and step counting algorithm with 

default tuning parameters, as previously described (29). Depending on the validation approach, the resulting one-

second step counts were then aggregated into step counts for the entire walking bout or specified time fragment. 

For the internal and manual validations, step counts were calculated as a sum of all step counts in each walking 

bout and for each sensor location. 

 

Additional analyses were required for the wearable validation. Here, steps counts were first aggregated on a 

minute level, the smallest time resolution available to export from Fitabase. Because the Beiwe sampling scheme 

follows on- and off-cycles, we adjusted the observed smartphone-based step counts by a proportional recovery 

based on the ratio between the duration of data collection (20 s) and non-collection (40 s) in each one-minute 

window by multiplying them by 3. Further, due to lack of information on both wearable and smartphone wear-

time, but also a potential time-lag between measurements between the two devices, we removed minutes with 0 

steps recorded by either method. Finally, to allow for a direct comparison, we summed the smartphone-based step 

counts for each day of observation. 

 

Each validation procedure considered a different ground truth step count for comparison. In the internal validation 

sample, we compared step counts estimated from various body locations for the entire walking bout. For example, 

if the dataset included data from three sensors located on the thigh, waist, and arm, we compared step counts 

between the thigh and waist, thigh and arm, and waist and arm. In the manual validation sample, we compared 

step counts estimated from the available sensor location to a visually assessed ground truth for the entire walking 

bout. In the wearable validation sample, we compared daily number of steps estimated from the smartphone to 

step counts provided by Fitbit. This procedure was performed using two days of observations for each patient. The 

first day was identified as the first full day of observations for each patient. Given that some patients recorded very 

few steps on that day (possibly due to limited wear-time), we also compared step counts from the first day and a 

day with at least 1000 observed steps on the smartphone to allow for a more in-depth assessment of the algorithm, 
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We created Bland-Altman plots for each dataset and all of the datasets were combined within each validation 

scheme. Mean bias and limits of agreement (LoA) were calculated to describe the level of agreement between step 

counts. Mean bias was calculated as the mean difference between two methods of measurement, while LoA were 

calculated as the mean difference ± 1.96 standard deviation (SD). Participant demographics, body measures, and 

step count statistics were reported as a range and mean ± SD, whenever available. 

 

Step counts were calculated in Python using previously published open-source method (31). Statistical analysis 

and visualization were prepared in MATLAB (R2022a; MathWorks, Natick, MA). 

Results 

Internal validation 

The aggregated internal validation dataset consisted of data from healthy 103 participants (66 males, representing 

64% of the dataset) between 16 and 62 years of age (25.2±7.1). All datasets, except for PARUSS provided data on 

participants’ height and weight, which ranged between 151 and 196 cm (173.8±8.5), and 47 and 112 kg 

(72.2±14.7), respectively. Participants’ body mass index (BMI) ranged between 17 and 35 kg/m2 (23.8±4.1). 

 

In this validation, step counts were aggregated separately for each walking bout across different body locations, 

including the thigh (n=83 bouts), waist (n=102), chest (n=51), and arm (n=25). Cumulatively, we examined 232 

sensor body location pairs: thigh vs. waist (n=83), thigh vs. chest (n=32), thigh vs. arm (n=25), waist vs. chest 

(n=51), waist vs. arm (n=25), and chest vs. arm (n=15). 

 

On average, in the aggregated internal validation dataset participants performed a mean of 751.7±581.2 steps per 

walking bout. Mean step counts varied by the dataset; e.g., participants’ mean step counts were 501.5±127.2 in 

DaLiAc, 337.5±14.6 steps in PARUSS, 1007.2±79.6 steps in RealWorld, 14.6±1.7 steps in SFDLA, and 1408.7±561.5 

steps in SPADES. 

 

Figure 2a displays the Bland-Altman plots for the aggregated internal validation dataset. Comparisons between 

individual studies are provided in Supplementary Figure 1a-e. Across the aggregated dataset, the mean bias was 

equal to -7.2 steps (LoA -47.6, 33.3) or -0.5 %. The largest relative overestimation observed was between the waist 

and chest in SFDLA, and equaled 1.2 steps (LoA -4.3, 6.8) or 8.5 % of the total steps. The largest underestimation 

was observed between the thigh and waist in SPADES, and equaled -28.7 steps (LoA -107.1, 49.7) or -2.0 % of the 

total steps. 
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Manual validation 

The manual validation of our method included 107 healthy participants. Demographic and anthropometric 

measurements were only available in PedEval. This dataset combined 30 participants, 15 of whom were males, 

whose ages ranged between 19 and 27 years of age (21.9±52.4) whose heights ranged between 152 and 193 cm 

(171.0±10.8), and weights ranged between 43 and 136 kg (70.5±17.6). Participants’ BMIs ranged between 17 and 

37 kg/m2 (23.8±3.7). 

 

We estimated the step count bias based upon 167 comparisons, including 77 comparisons from the WalkRec 

dataset and 90 from the PedEval dataset (30 per task). Participants’ mean step count in the aggregated manual 

validation dataset was 367.4±359.4 steps according to the ground truth (Figure 2b). WalkRec participants’ means 

steps were 126.8±59.2 steps, while PedEval participants’ steps varied by activity and were 1025.0±171.3 steps in 

task 1, 648.5±126.3 steps in task 2, and 179.2±22.7 steps in task 3 (Supplementary Figure 1f-g). The 

corresponding estimations calculated using our method were a mean of 119.8±62.2 steps for WalkRec, and 

1027.5±175.0 steps for task 1, 641.1±137.3 steps for task 2, and 210.8±18.7 steps for task 3. The mean bias across 

the aggregated dataset, was -0.4 steps (LoA -75.2, 74.3) or 0.1 %.  The largest relative overestimation was +8.8 

steps (LoA -32.1, 49.7) or 6.9 % within the WalkRec dataset.  The largest underestimation was -32.3 steps (LoA, -

80.4, 15.8) or -18 %, observed in task 3 in the PedEval dataset.  

Wearable validation 

Our wearable validation included data from 45 female patients advanced gynecological cancers. Their ages ranged 

between 24 and 79 years of age (61.5±11.8). Their heights ranged between 148 and 172 cm (159.9±6.1), weights 

ranged between 48 and 107 kg (67.8±13.0), and BMIs ranged between 19 and 43 kg/m2 (23.8±3.7). 

 

Our Bland-Altman analysis included over 81 observations of daily step counts (Figure 1c), involving 45 days that 

constituted the first full day of observation (Supplementary Figure 1g) and 36 first days with at least 1000 steps 

estimated from a smartphone (Supplementary Figure 1h). Nine participants did not have any days with more 

than 1000 steps observed, likely due to limited smartphone wear-time. In the aggregated dataset, the algorithm 

estimated a mean daily step count of 1998.2±2350.3 steps, which included a mean daily step count of 

1371.3±2343.1 steps observed during the first day and 2816.7±2123.6 steps during the first day with at least 1000 

steps observed. Comparisons with data from the Fitbit were similar, including a mean daily step count of 

1931.2±2338.4 across participants, a mean daily step count of 1316.4±2320.2 steps during the first day, and a 

mean daily step count of 2733.7±2136.9 steps during the first day with at least 1000 steps observed, respectively. 

The aggregated estimation bias of the smartphone versus the Fitbit was -67.1 steps (LoA -603.8, 469.7) or 0.3 %, 
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with an underestimation of -54.9 steps (LoA -485.3, 375.6) or -0.2 % during the first day, and -83.0 steps (LoA -

738.5, 572.6) or -0.5 % during the first day with at least 1000 steps. 

Discussion 

The limitations of wearable devices, particularly commercial activity trackers, have motivated public health 

researchers to seek alternative means to quantify human activities. While commercial wearable activity trackers 

are limited by proprietary summaries of the data, often provided at a daily or hourly level, smartphones offer an 

opportunity to access raw sub-second level data which can be used to generate reproducible and interpretable 

digital biomarkers, such as step counts, with research software. Moreover, smartphones are typically carried close 

to the center of the body, which produces less noisy inertial sensor data compared with the locations that many 

available wearables are worn (i.e., on the wrist), which provides more accurate estimations of whole-body motion 

(18,19,41–44). 

 

In this paper, we validated the performance of step counting using a previously published open-source walking 

recognition method for body-worn devices that contain an accelerometer (29). This method leverages the 

observation that regardless of sensor location on the body, during walking activity the predominant component of 

the accelerometer signal transformed to the frequency domain, i.e., step frequency, remains the same, enabling the 

calculation of the number of steps a person performed in a given time fragment. In our previous study, we 

validated this approach for walking recognition using data from 1240 subjects gathered in 20 publicly available 

datasets, and demonstrated that our method estimates walking periods with high sensitivity and specificity: the 

average sensitivity ranged between 0.92 and 0.97 across various body locations, and the average specificity was 

largely above 0.95 for common daily activities (household activities, using motorized transportation, cycling, 

running, desk work, sedentary periods, eating, drinking). Importantly, the method’s performance was not sensitive 

to different demographics and metrological factors for individual subjects or studies, including participants’ ages, 

sexes, heights, weights, BMIs, sensor body locations, and measurement environments. 

 

In this study, we further extend this work by validating the performance of step counting method using data 

collected from 255 subjects in eight independent studies with three goals in mind: (1) to assess the concordance of 

step counts across various body locations, (2) to compare the method’s estimates with observed step counts, and 

(3) to compare the method’s estimates with indications of commercial activity tracker (Fitbit Charge 2). The first 

comparison, an internal validation, demonstrated very high agreement between step counts measured from 

smartphones locate at most of the places where smartphones are typical worn, i.e., thigh, waist, chest, and arm. 

This result suggests that our method can be used to assess steps without restricting where participants wear their 
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smartphones, which may reduce participant burden during data collection and help improve long-term study 

adherence. 

 

Our manual validation on uninterrupted walking revealed almost perfect agreement between the step counts 

estimated with our method and those denoted by a visual observer. In this case, the absolute difference observed 

between the two measures was consistently below 1 % (Supplementary Figure 1g), which is similar to the results 

achieved with deep learning methods validated on this dataset in the past (45,46). These results reinforce the 

utility of using this method in controlled conditions, e.g., to evaluate participants’ functional capacity using a 6-

minute walk test, and indicates that the method provides highly accurate estimation of step counts across various 

sensor locations during regular flat walking. 

 

The mean step counting bias was also low for semi-controlled walking tasks recorded in PedEval, free-living tasks 

recorded in WalkRec, and for both scenarios within the wearable validation (first day, first day with at least 1000 

steps). In these instances, however, the analysis revealed wider limits of agreement, which may result from a more 

complex structure of the underlying data which involved walking only few steps at a time as well as sudden 

changes in walking direction and altitude (e.g., stair climbing) (47). As discussed previously (29), in walking signals 

with such characteristics the step frequency tends to be modulated by it sub- and higher harmonics which might be 

identified as dominant in the wavelet decomposition outcome, and mislead our method. 

 

Even more challenging data were analyzed in the wearable validation cohort. Here, the data were collected at 

unspecified locations (including novel locations, e.g., a bag or backpack), and included data representing various 

activities of daily living, such as grocery shopping, riding in a car, and doing dishes which might artificially inflate 

the estimated step counts by either method. This is a likely reason why the comparisons had wider discrepancies, 

even after removing minutes with 0 steps recorded by either device. Nevertheless, the estimated bias remained 

low, which indicates that our validated method provides reliable step count estimates across populations and 

conditions. 

 

Our analysis has several limitations that should be addressed in future studies. First, due to the lack of available 

datasets, our method was not validated in individuals with walking impairments or those requiring walking aids, 

such as cane or walkers. Similarly, this method has not been validated in children and many elders, although the 

mean age of participants in our wearable validation set was 61.5 years and 10% were above 74 years of age. 

Further research is needed to understand the frequency-domain gait characteristics in the presence of limping, as 

well as the potential overlap between the step frequency of walking activity in children and that of running activity 
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in adults (48,49). The latter might be particularly important in studies that differentiate steps performed during 

leisure and exertional activities. Second, the wearable validation was performed with the use of a proprietary 

activity tracker (Fitbit Charge 2). Although this device has demonstrated reliable step counts during naturalistic 

gait performed in laboratory conditions (50,51), its accuracy in free-living conditions is inconclusive, and it is 

presumably dependent on the characteristics of the studied population (20,52,53). Importantly, the selected 

activity tracker was placed on the wrist, a body location that can be activated by many repetitive movements (e.g., 

gesticulating) while the rest of the body is still, hence it is more likely to overestimate steps compared to locations 

closer to the body mass center. To improve comparisons with our method, in wearable validation we removed data 

instances when either method indicated 0 steps. Finally, the estimation of step counts in free-living studies must 

account for non-wear time of smartphones (e.g., while the phone is charging or sitting on a table). Unlike many 

wearables that are attached to the body (e.g., wristbands), smartphones can be easily set aside, sometimes for 

prolonged periods of time. Such situations introduce considerable discrepancy between the estimated and actual 

number of steps a person performs during the day and should be reported, ideally with confidence intervals.  

 

In conclusion, we performed a three-way validation of a robust, reproducible, and scalable method for step 

counting using smartphones and other wearable activity trackers. This validation demonstrates that our approach 

provides reliable step counts across sensor locations and populations, including healthy adults and those with 

incurable cancers. The method performed well in multiple environments, including indoors, outdoors, and in day-

to-day life across settings. This method is a promising strategy for studying human gait with personal smartphones 

which does not require active patient participation or the introduction of new devices. 
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Tables and figures 

Table 1. Demographics, body measures, and health status of participants involved in datasets included in this 

study. Age, height, weight, and BMI are provided as range (mean±SD), when available. 

Validation 

scheme 

Dataset N Sex Age Height Weight BMI Health 

status 

   N 

male 

years 

 

 

 

cm kg kg/m2  

         

Internal         

 DaLiAc        

  19 11 18-55 

(26.5±7.7) 

158-196 

(177.0±11.1) 

54-108 

(75.2±14.2) 

17-34 

(23.9±3.7) 

Healthy 

 PARUSS        

  10 10 25-30 N/A N/A N/A Healthy 

 RealWorld        

  15 8 16-62 

(31.9±12.4) 

163-183 

(173.1±6.9) 

48-95 

(74.1±13.8) 

18-35 

(24.7±4.4) 

Healthy 

 SFDLA        

  17 10 19-27 

(21.9±2.0) 

157-184 

(171.6±7.8) 

47-92 

(65.0±13.9) 

17-31 

(21.9±3.7) 

Healthy 

 SPADES        

  42 27 18-30 

(23.5±3.1) 

151-180 

(174.2±8.5) 

51-112 

(73.8±15.0) 

18-35 

(24.7±4.1) 

Healthy 

Manual         

 WalkRec        

  77 N/A N/A N/A N/A N/A Healthy 

 PedEval        

  30 15 19-27 

(21.9±52.4) 

152-193 

(171.0±10.8) 

43-136 

(70.5±17.6) 

17-37 

(23.8±3.7) 

Healthy 

Wearable         
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 HOPE        

  45 0 24-79 

(61.5±11.8) 

148-172 

(159.9±6.1) 

48-107 

(67.8±13.0) 

19-43 

(26.5±4.9) 

Patients 

with 

advanced 

cancer 
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Table 2. Walking conditions in the datasets included in this study. 

Validation 

scheme 

Dataset Measurement 

conditions 

Activity description 

    

Internal    

 DaLiAc   

  Controlled University campus 

 PARUSS   

  Controlled University building 

 RealWorld   

  Controlled Paved (parking lot) and unpaved (forest) surfaces outdoors 

 SFDLA   

  Controlled University building 

 SPADES   

  Controlled University building 

Manual    

 WalkRec   

  Free-living Natural conditions, freely or following some basic premises 

 PedEval   

  Controlled (1) 

and semi-

controlled (2 and 

3) 

1. Two laps around a designated gym path at normal walking 

pace 

2. Scavenger hunt locating four objects in four rooms 

throughout a building 

3. Building a small Lego toy by assembling pieces distributed 

among 12 bins around a room; pattern simulated preparing a 

meal in a kitchen 

Wearable    

 HOPE   

  Free-living Natural conditions 
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Table 3. Measurement parameters for the datasets included in this study. 

Validation 

scheme 

Dataset Sensing device Sensor 

location 

Measurement 

range 

Sampling 

frequency 

    g Hz 

      

Internal      

 DaLiAc     

  Wearable accelerometer: 

SHIMMER 

Waist, chest ±6 204.8 

 PARUSS     

  Smartphone: Samsung 

Galaxy S2 

Thigh, waist, 

arm 

N/A 50 

 RealWorld     

  Smartphone: Samsung 

Galaxy S4 

Thigh, waist, 

chest, arm 

N/A 50 

 SFDLA     

  Wearable accelerometer: 

Xsens MTw 

Thigh, waist, 

chest 

±12 25 

 SPADES     

  Wearable accelerometer: 

ActiGraph GT9X 

Thigh, waist ±8 80 

Manual      

 WalkRec     

  Smartphone: BQ Aquaris 

M5 

Unspecified N/A 100 

 PedEval     

  Wearable accelerometer: 

SHIMMER3 

Waist ±4 15 

Wearable      

 HOPE     

  Smartphone: various 

Android- and iOS-based 

Unspecified Various Various 
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Figure 1. The step counting algorithm. The original signal (a.) is projected onto the time-frequency space (b.) using 

wavelet transformation, which shows the relative weights of different frequencies over time (brighter color 

indicates higher weight). This scalogram is then split into non-overlapping one-second windows (c.).  

The temporal step frequency (cadence) is estimated as a frequency with maximum average wavelet coefficient 

inside each window (d.). The total number of steps in a signal is calculated as a rounded sum of all one-second 

counts in that signal (e.).
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Figure 2. Bland-Altman plots with comparison of step counts in three validation approaches: internal (a.), manual 

(b.), and wearable (c.). The horizontal axis indicates a mean step count from the two body locations (a.), estimated 

steps and manually counted ground truth (b.), and estimated steps and step counts obtained from Fitbit (c.). The 

vertical axis indicates a difference between step counts from the two methods. Blue solid lines indicate mean bias 

while dashed red lines indicate ±95% limits of agreement calculated as ±1.96 of standard deviations of the 

differences between the two methods. 
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