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KEY POINTS  

Question: Is cardiorespiratory fitness associated with subsequent risk of cancer diagnosis? 

Findings: In a prospective cohort study of 73,000 cancer-free participants who completed a 

submaximal fitness test, we report that higher fitness levels were associated with lower risks of 

endometrial, colorectal, and breast cancer. Using two-sample Mendelian randomization methods 

we also found an inverse association with breast cancer. Associations were attenuated following 

adjustment for adiposity.  

Meaning:  Higher fitness may be associated with reduced risk of certain cancer sites. Aiming to 

increase fitness, including via changes in body composition, may be an effective strategy for 

cancer prevention. The role of adiposity in mediating the relationship between fitness and cancer 

risk is not fully understood, and further research is needed to explore this complex relationship.  
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ABSTRACT 

Importance: The association of cardiorespiratory fitness with cancer risk is not clear.  

Objective: To investigate whether fitness is associated with the risk of diagnosis of common 

cancers. 

Design, setting, and participants: In observational analyses, we used multivariable-adjusted 

Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals 

(CIs) for risk of cancer in a subset of UK Biobank participants who completed a submaximal 

fitness test in 2009-12 (N=72,572). In secondary analyses, we used a two-sample Mendelian 

randomization (MR) framework, with genetically predicted fitness as an instrumental variable 

derived from UK Biobank study participants and genetic cancer data from international 

consortia. Odds ratios (ORs) were estimated using the inverse-variance weighted method. 

Relationships between fitness and cancer may be partially mediated by adiposity, and therefore 

associations were estimated with and without adjustment for adiposity. 

Exposures: Estimated maximal cardiorespiratory fitness (ml O2⋅min-1⋅kg-1 total-body mass and 

ml O2⋅min-1⋅kg-1 fat-free mass). 

Main outcomes and measures: Diagnosis of lung, colon, rectal, endometrial, female breast, and 

prostate cancer. MR analyses additionally included pancreatic and renal cancers. 

Results: After a median of 11 years of follow-up, 4,290 cancers of interest were diagnosed. A 

3.5 ml O2⋅min-1⋅kg-1 total-body mass increase in fitness (approximately 0.5 standard deviation 
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(SD)) was associated with lower risks of endometrial (HR=0.81, 95% CI 0.73-0.89), colorectal 

(0.94, 0.90-0.99), and breast cancer (0.96, 0.92-0.99). In MR analyses, higher levels of 

genetically predicted fitness were associated with a lower risk of breast cancer (OR per 

genetically predicted 0.5 SD increase in ml O2⋅min-1⋅kg-1 fat-free mass=0.92, 95% CI 0.86-0.98), 

including estrogen receptor (ER)+ (0.91, 0.84-0.99) and ER- (0.88, 0.80-0.97) subtypes. After 

adjusting for body fat, both the observational and genetic associations were attenuated.  

Conclusions and relevance: Higher fitness levels may reduce risks of endometrial, colorectal, 

and breast cancer, though relationships with adiposity are complex and may mediate these 

relationships. Aiming to increase fitness, including via changes in body composition, may be an 

effective strategy for cancer prevention.   
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INTRODUCTION 

Until recently epidemiological studies have largely focused on the role of physical 

activity behaviours with cancer risk1. Cardiorespiratory fitness (referred to here as ‘fitness’) is 

distinct from physical activity as it describes the capacity of the circulatory and respiratory 

systems to supply oxygen to skeletal muscle during prolonged physical activity2,3. Fitness is 

generally objectively measured and has a stronger genetic component than habitual physical 

activity2–4.  

Higher fitness is associated with good cardiometabolic health, including lower visceral 

adipose tissue, inflammation and insulin sensitivity, and may therefore reduce the risk of 

cancer5–8. Previous studies report that people with higher fitness have lower risks of all-cause 

mortality, cancer mortality and cardiovascular disease5,9–11, but the relationship between fitness 

and incident cancers are less clear. Some studies have reported inverse associations between 

fitness and lung and colorectal cancers 12–15, while for prostate cancer associations have been 

reported to be null or positive13–18. Only one prior study has investigated associations between 

fitness and female-specific incident cancers, and did not find evidence of a relationship14.  

A limitation of observational epidemiological studies includes the possibility of residual 

confounding and reverse causation. Mendelian randomization (MR) uses germline genetic 

variants as proxies of biological traits to generate instrumental variables and estimate their 

associations with disease risk. Because germline genetic variants are fixed and randomly 

allocated at conception, this technique may be less likely to be affected by biases and 
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confounding factors (such as preclinical disease and smoking history). This is the first study to 

use MR methods to investigate fitness and cancer risk.  

 We aimed to assess the associations of measured fitness and risk of common cancers 

(lung, colon, rectal, endometrial, female breast, and prostate cancer) using observational methods 

in the UK Biobank. In secondary analyses, we used a two-sample MR framework, using 

genetically predicted fitness, as instrumental variable derived from UK Biobank19 and genetic 

case control data from consortia for those same sites, plus pancreatic cancer and renal cell 

carcinoma for which observational analyses in the UK Biobank are underpowered. By 

integrating evidence from both observational epidemiology and MR approaches, we aim to 

strengthen the basis for causal inference20. As excess adiposity may act as a mediator, we 

examined associations between fitness and cancer with and without adjustment for adiposity. 

METHODS 

UK Biobank study population 

The UK Biobank study is a population-based prospective cohort study of 502,625 adults 

aged 40 to 69 years. A description of the study protocol is available online21. Participants were 

registered with the UK National Health Service and lived within 40 km of a UK Biobank 

assessment centre in England, Wales, and Scotland. Baseline data were collected between 2006 

and 2010. A repeat-measures substudy was conducted between 2012 and 2013. The study was 

approved by the North West Multicentre Research Ethics Committee. Participants provided 

written informed consent. 
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UK Biobank cardiorespiratory fitness assessment 

An individualised submaximal cycle ergometer test was implemented in 2009 and offered 

to 75,087 participants during baseline data collection, 17,109 participants during the repeat 

assessment study, and 2,877 participants at both timepoints; 97,950 tests were offered in total. 

For those participants who were offered a test at both timepoints, the earliest fitness test 

completed by the participant was used to maximise follow-up duration. Participant baseline data 

were collected on the same day as their exercise test. The test was individualized to each 

participant's exercise capacity and risk level for engaging in exercise. Participants with lower 

exercise capacity or higher risk for exercise-related complications were offered a test with lower 

work rates, while those with higher exercise capacity or lower risk were offered a test with 

higher work rates. A description of the exercise test individualisation process and maximal 

oxygen consumption (VO2 max; ml O2⋅min-1⋅kg-1) estimation process is provided in 

supplemental methods; the test protocol is available online.22 VO2 max was estimated in two 

ways: scaled by total-body mass (VO2maxtbm [3.5 ml O2⋅min-1⋅kg-1 total-body mass=1 MET]) and 

scaled by fat-free mass (VO2maxffm).23,24 VO2maxffm represents the ability of skeletal muscle to  use 

oxygen during maximal exercise, whereas VO2maxtbm is more representative of aerobic 

performance capacity.25 

Genetic instrument for cardiorespiratory fitness 

Full details of the fitness genome-wide association study (GWAS) are available 

elsewhere.19 In brief, single nucleotide polymorphisms (SNPs) associated with fitness were 

identified from a GWAS based on UK Biobank participants of European ancestry who 
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participated in the fitness test (N included=69,416).  Fitness was estimated using the same 

framework method described above, scaled by fat-free mass and using resting heart rate data 

from the full cohort, excluding those taking beta-blockers (N included=452,941) (P<5 x 10-8 

significance threshold).  

The Radial plot method was used to select eligible resting heart-rate associated genetic 

variants for fitness by removing heterogeneous outliers for the genetic variants, of which 149 

were also nominally significant in the fitness GWAS (p<0.05)26. The genetic instrument for 

fitness included 14 fitness and 149 fitness and resting heart rate variants with prioritisation given 

to the variants identified in the fitness GWAS. In total, 160 independent (r²> 0.01) genetic 

variants were included in our instrument for fitness.19 

Cancer ascertainment 

Observational analysis 

Both cancer registration data and Hospital Episode Statistics (HES) were used to identify 

participants with incident cancer (see Supplemental Methods for cancer site definitions). Cancer 

registration data were provided via record linkage to national cancer and death registries, until 

the following censoring dates: 31 July 2019 in England and Wales and 31 October 2015 in 

Scotland. Cancers occurring after the registry censoring dates were identified using HES data, 

until the following censoring dates: 30 September 2021 in England, 31 July 2021 in Scotland and 

28 February 2018 in Wales. 
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Of the 84,792 fitness tests analysed after preliminary exclusions (i.e. participant 

withdrawal of data, “high risk” for exercise; see Supplementary Figure 1), we retained a 

preliminary analytic sample of 79,347 participants after additionally excluding 3,209 participants 

for missing data, 1,017 due to test data quality, 1,219 with missing weight, fat-free mass, or heart 

rate, and 44 for whom fitness estimation could not be applied. We then excluded 5,180 

participants with prevalent cancer at baseline and 1,551 participants diagnosed with cancer 

within two years of follow-up. The final analytic sample was 72,572 participants. Health and 

sociodemographic characteristics were described across age-adjusted and sex-specific fitness 

tertiles27. 

Genetic cancer data 

Risk estimates may be biased when instrumental variables and outcomes are identified 

from the same sample28. We therefore used independent GWAS data from international 

consortia. This includes breast (including estrogen receptor (ER)+ and ER- subtypes)29,30, 

prostate (including aggressive disease)31, endometrial32, ovarian33, lung (including for never 

smokers)34, and colorectal cancer (including colon, rectal, male colorectal and female colorectal, 

distal colon and proximal colon)35,36. We also included pancreatic cancer and renal cell 

carcinoma37–40. Included sites and subtypes were chosen based on data availability. Further 

information for the genetic case control studies for each cancer site are available from 

Supplementary Table 1. 
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Statistical analysis 

Observational analysis 

Cox regression models with age as the underlying timescale were used to estimate hazard 

ratios (HRs) and 95% confidence intervals (CIs) per 3.5 ml⋅O2⋅min−1⋅kg−1 total-body mass and 

5.0 ml⋅O2⋅min−1⋅kg−1 fat-free mass for risk of cancer diagnosis. Models were progressively 

adjusted for possible confounding factors (see Supplemental Methods). Adiposity may partially 

mediate and confound the relationship between fitness and cancer risk (Supplementary Figure 2). 

Therefore, we evaluated the role of adiposity in fitness-to-cancer associations both with and 

without adjustment for either BMI (for models with VO2max scaled by total-body mass) or fat 

mass (for models with VO2max scaled by fat-free mass).  

We have shown previously that repeat assessments of the UK Biobank fitness test will 

elicit moderately stable fitness estimates (regression dilution ratio=0.79, standard error=0.01)42. 

This source of measurement error will influence the strength of observed health associations. 

Therefore, in a sensitivity analysis, we also provide regression dilution calibrated estimates of 

fitness-to-cancer associations using established statistical techniques43. The shape of dose-

response relationships between fitness and risk of cancer diagnosis was investigated using cubic 

spline regression models. Each model used two knots placed at the 33rd and 67th percentile of the 

fitness distribution. Reference values were set to the mean fitness value for each specific analysis 

(see Supplementary Figures 3 and 4). 
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Sensitivity analysis 

Subgroup analyses for colorectal cancer were examined by sex, and associations for 

fitness and lung cancer were re-examined after restricting the analysis to never-smokers only. 

Subgroups were chosen a priori on the basis of data availability and previous evidence for 

heterogeneity in the associations1. We also included a minimally adjusted model to investigate 

the influence of mediators and/or confounders. 

Mendelian randomization 

The MR estimation for fitness and cancer was conducted using the inverse-variance 

weighted (IVW) method44. We additionally calculated the I2
GX  statistic to assess measurement 

error in SNP-exposure associations31, the F-statistic to examine the strength of the genetic 

instrument45, Cochran’s Q statistic for heterogeneity between the MR estimates for each SNP 46, 

and PhenoScanner was used to assess pleiotropy of the genetic instruments47. As sensitivity 

analyses, we used the MR residual sum and outlier (MR-PRESSO) and leave-one out analyses to 

investigate the role of SNP outliers48. To assess pleiotropy, we used the weighted median and 

contamination mixture methods49.  

To explore relationships between body fat and fitness, we conducted a bi-directional MR 

of genetically predicted fitness on fat mass and vice versa using our genetic instrument for 

fitness and an instrument for total fat mass based on a GWAS of UK Biobank participants 

(N=330,762 participants of European ancestry), derived from bioelectrical impedance 

measurements at study baseline50. We also conducted multivariable MR (MVMR) analyses to 
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assess the effect of fitness on cancer risk, after accounting for genetically predicted fat mass and 

height44.  

Statistical software 

Observational analyses were performed using Stata version 16.1 (Stata Corporation, 

College Station, TX, USA). MR analyses were performed using the TwoSampleMR and 

MendelianRandomisation R packages51,52 and figures were plotted in R version 3.6.3. All tests of 

significance were two-sided, and P-values <0.05 were considered statistically significant. Results 

are presented in accordance with the STROBE checklist. 

RESULTS 

Observational analysis 

After a median of 11 years of follow-up, 1,586 prostate cancers, 1,093 breast cancers, 

811 colorectal cancers, 480 lung cancers, 184 endometrial cancers, and 136 ovarian cancers were 

diagnosed.  Participant characteristics by age-adjusted and sex-specific fitness tertiles are 

provided in Table 1 for fitness scaled by total-body mass and Supplementary Table 2 for fitness 

scaled by fat-free mass. Fitness was higher in men compared to women, and those in the middle 

and higher fitness tertiles had better measures of adiposity, socioeconomic status, and 

cardiometabolic health than those in the lower fitness tertile. 

Observational analysis results are summarised in Figure 1. In analyses without BMI 

adjustment, each 3.5 ml O2⋅min-1⋅kg-1 total-body mass increase (equivalent to 1 metabolic 
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equivalent of task [MET]) in fitness was associated with a 19% reduction in endometrial cancer, 

6% reduction in colorectal cancer, and 4% reduction in breast cancer. After BMI adjustment, 

associations were attenuated but remained directionally consistent. Where associations were 

detected, relationships generally appeared to be linear but with uncertainty for some cancers at 

the tails of the fitness distribution (Supplementary Figures 3 and 4). When fitness was expressed 

per kg fat-free mass, associations with cancers were not significant. Results adjusted for 

regression dilution are shown in Supplementary Figure 5; unadjusted and adjusted results were 

generally similar, and the statistical significance of associations were unchanged. 

There was evidence of heterogeneity in the associations of fitness and colorectal cancers 

by sex; the relationship was inverse for men and null for women (Figure 2 and Supplementary 

Figure 4). Minimally adjusted models are available from Supplementary Table 3. 

Mendelian randomization analyses 

Higher levels of genetically predicted fitness were associated with a lower risk of breast 

cancer (OR per 5.0 ml O2⋅min-1⋅kg-1 fat-free mass=0.92, 95% CI 0.86-0.98; P=0.02), including 

ER+ (0.91, 0.84-0.99; P=0.02) and ER- (0.88, 0.80-0.97; P=0.01) subtypes, but was not 

significantly associated with any other cancer site (Figure 3). There was also no evidence of an 

association with colorectal cancer after stratification by sex and site (Supplementary Tables 4 

and 5). There was significant heterogeneity in the MR estimates for the SNPs for each cancer site 

(Cochran's Q P<0.05), except for associations with lung cancer for never smokers (P=0.13), 

aggressive prostate cancer (P=0.17) and renal cancer (P=0.09).  
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In MR sensitivity analyses, the relationships between fitness and breast cancer were 

directionally consistent in comparison with the primary MR analysis (Supplementary Table 6). 

There was evidence of an inverse association between fitness and lung cancer using the weighted 

median method (0.85, 0.74-0.98; P=0.02) and a positive association with pancreatic cancer using 

the contamination mixture method (1.09, 1.03-1.14; P=0.03), but no other relationship was 

statistically significance (Supplementary Table 6). Radial plots also did not indicate any strong 

influence of outliers on the MR results (Supplementary Figure 6). The likelihood of bias due to 

weak instruments was low (F-statistic > 10 for all SNPs). There was evidence of moderate levels 

of measurement error (I2
GX=0.52-0.65), indicating reduced reliability of Egger results, therefore 

we do not include Egger estimates53. Using PhenoScanner, 742 traits were linked to SNPs for 

fitness (P<5 x 10-8), particularly pulse rate (Supplementary Figure 7).  

The bi-directional MR analysis indicated that genetically instrumented fat mass had a 

strong inverse association with fitness (OR per 0.5 SD increase=0.61, 0.52-0.71; P<0.001), but a 

weaker inverse relationship of fitness with fat mass (OR per 5 ml O2⋅min-1⋅kg-1 fat-free 

mass=0.96, 0.92-1.01; P=0.08). In MVMR analyses, associations with breast cancer were 

attenuated after adjustment for fat-free mass and height. While associations with lung cancer 

became statistically significant (0.90, 0.84-0.96; P=0.002), but genetic associations were null for 

never smokers (Table 2).  

DISCUSSION 

 This study used both observational and MR methods to examine the relationship between 

cardiorespiratory fitness and incident cancer risk, providing the first evidence that higher fitness 
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levels may reduce risks of breast cancer. In observational analysis only, we report additional 

inverse associations between VO2max scaled to total body mass and risks of colorectal and 

endometrial cancer. However, associations with all three cancer sites were attenuated after 

accounting for adiposity. Observational associations between cancer and VO2max scaled to fat-

free mass were not statistically significant.   

Previous observational analyses have reported inverse associations between fitness and 

colorectal and lung cancer, whereas we report that these relationships are null after accounting 

for adiposity12–15. Our results may differ from these previous studies due to differences in 

population sampling, fitness assessment, and fitness estimation approaches. For example, cycle 

ergometer-based fitness estimates may differ from treadmill-based estimates due to differences 

in load bearing and motion artefact15,16,18. The UK Biobank fitness test was also relatively light 

intensity, which enabled more participants to be assessed. Thus, our analysis likely characterizes 

a wider variety of lower-fitness individuals than previous studies which used more strenuous 

tests. Previous estimates using UK Biobank data had shorter duration of follow-up (median 5 

years) and used fewer exercise test data, which will reduce the precision of risk estimates.  

Previous MR studies based on up to five SNPs have reported inverse associations 

between genetically predicted physical activity levels and risks of breast, colorectal and 

aggressive prostate cancer54,55. However, current estimates suggest that GWAS significant 

polymorphisms explain a very limited proportion of phenotypic physical activity (e.g. 0.06% for 

overall physical activity)56. The small number of SNPs increase the influence of possibly invalid 

variants within the instrument, and the instrument has a bidirectional association with BMI56. 

Fitness is a trait that reflects both input from genetics and physical activity behaviours. The 
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genetic instrument for fitness used in the present study likely encompasses both past and current 

levels as well as the capacity to participate in physical activity2,3. This instrument explains 1.2% 

of the variation in observed fitness levels, increasing the reliability of risk estimates. Future work 

examining the relative importance of the different constituents of genetic fitness may help to 

clarify whether the null relationships that we report for fitness on colorectal and aggressive 

prostate cancer risk are indicative of the greater relative importance of physical activity 

behaviours or are partially reflective of the methodological limitations discussed above.  

The role of adiposity in fitness is complex and not fully understood. Higher adiposity is 

associated with impaired physical performance, relating reduced muscle oxygen uptake, lower 

cardiac efficiency, neuromuscular dysfunction, and increased cancer risk57–61. Higher levels of 

physical activity are important for weight maintenance and increasing fitness, and higher fitness 

may reduce some of the harmful cardiometabolic effects of obesity62. Differences between the 

associations of fitness and cancer by scaling are likely driven by the different components of 

fitness, as VO2maxtbm has a strong inverse correlation with body size and adiposity25. However, 

the complex interplay of adiposity, fitness and cancer might mean that accounting for adiposity 

for models of cardiorespiratory fitness could lead to an over-adjustment of risk estimates, but 

these relationships are difficult to disentangle. Relationships between fitness and all-cause, 

cancer, and cardiovascular mortality outcomes has stronger evidence for independence of 

associations with adiposity10,41,62,63. Future work with longer durations of follow-up will improve 

power to investigate whether there are differential risk associations by BMI classification.   

These analyses have several strengths. This study is the first to use genetically 

instrumented fitness to evaluate possible causal relationships between fitness and cancer risk. 
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The UK Biobank is the largest sample currently available with estimates of maximal 

cardiorespiratory fitness data, maximising power to assess associations across a broad range of 

cancer sites, the majority of which have not been previously investigated. Our independently 

validated novel framework to estimate fitness harmonised the UK Biobank test protocols and 

calibrated these data to a maximal exercise test to estimate VO₂max. This estimation framework 

also incorporated multiple heart rate measurements to reduce measurement error, with high 

temporal agreement (regression dilution ratio=0.79) over approximately a 2.8 year period for 

greater precision in risk estimates42. Further, the baseline assessment collected data across a wide 

range of lifestyle, medical and anthropometric factors, enabling thorough adjustment for possible 

confounders.  

Our study has limitations. This analysis is not a randomised controlled trial and therefore 

we are not able to fully assess causality. Although MR may share some common design 

characteristics, we cannot exclude the possibility of genetic confounding or horizontal 

pleiotropy64. The genetic instrument for VO2maxtbm was not available for comparison with our 

observational analysis. The genetic instrument also included resting heart rate information; 

therefore, our results may be partially driven by genetic associations with resting heart rate. 

Given the strong a priori evidence and mechanistic plausibility of associations between fitness 

and cancer risk we have not included correction for multiple testing16–18, however we cannot 

exclude the possibility of chance findings. The UK Biobank participants are predominantly of 

White European ancestry and are healthier than the underlying sampling population, therefore 

risk estimates may not be generalizable to some other populations, including “high-risk” 

participants who did not undergo the fitness assessment. The fitness test was also submaximal, 
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which may increase measurement error, and previous studies have noted larger magnitudes of 

associations with health outcomes using maximal fitness tests11,15. 

In summary, we provide evidence that higher fitness levels may reduce risks of 

endometrial, colorectal, and breast cancer. The role of adiposity in mediating the relationship 

between fitness and cancer risk is not fully understood, and further research is needed to explore 

this complex relationship. Aiming to increase fitness, including via changes in body 

composition, may be an effective strategy to reduce risk of some cancer sites.   
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DATA SHARING STATEMENT 

The UK Biobank is an open-access resource and bona fide researchers can apply to use the UK 

Biobank dataset by registering and applying at http://ukbiobank.ac.uk/register-apply/. Further 

information is available from the corresponding author upon request. For genetic cancer data, 

summary GWAS statistics are publicly available for breast 

(https://bcac.ccge.medschl.cam.ac.uk/), endometrial 

(https://www.ebi.ac.uk/gwas/studies/GCST006464), ovarian 

(https://ocac.ccge.medschl.cam.ac.uk) and prostate (overall only) (http://practical.icr.ac.uk/). 

Data for renal cell carcinoma and pancreatic cancer were accessed via dbGaP; Study Accession: 

phs000206.v3.p2 and phs000648.v1.p1; project reference 9314 

(https://www.ncbi.nlm.nih.gov/gap/). Summary genetic data for aggressive prostate cancer 

(http://practical.icr.ac.uk/), lung cancer (https://ilcco.iarc.fr/) and colorectal cancer 

(https://research.fredhutch.org/peters/en/genetics-and-epidemiology-of-colorectal-cancer-

consortium.html) are not currently publicly available but may be made available upon 

application, see respective websites for details. 
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DATA ACCESS, RESPONSIBILITY AND ANALYSIS 

TIG had full access to all the UK Biobank fitness data in the study and carried out the 

observational analysis. ELW had full access to all the genetic data in the study and carried out 

the MR analysis. They take responsibility for the integrity of the data and the accuracy of the 

data analysis. 
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Figure 1: Associations of cardiorespiratory respiratory fitness and incident cancer risk 

without and with body fat adjustment 

      HR per 3.5 ml O2⋅min-1⋅kg-1 total-body mass 

 

HR per 5.0 ml O2⋅min-1⋅kg-1 fat-free mass 
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HRs and 95% CIs estimated using Cox regression models adjusted for age, sex, self-reported 

racial/ethnic group, Townsend index of deprivation, education, employment status, smoking 

status, alcohol consumption, red and processed meat consumption, fish consumption, fruit and 

vegetable consumption, salt consumption, diabetes status, hypertension, medication use (beta 

blockers, calcium channel blockers, ACE inhibitors, diuretics, bronchodilators, lipid-lowering 

agents, iron deficiency agents, non-steroidal anti-inflammatory drugs, metformin). Female 

reproductive cancers (breast, endometrial, and ovarian) were additionally adjusted for age at 

menarche, age at menopause, parity, hormone replacement therapy usage, and oral 

contraceptives. Associations with and without adjustment for either continuous BMI (for models 

with VO2max scaled by total-body mass) or fat mass (for models with VO2max scaled by fat-free 

mass). 

Abbreviations: ACE=Angiotensin-converting enzyme; BMI=body mass index; CI=confidence 

interval; HR=hazard ratio. 
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Figure 2: Sex-stratified associations of cardiorespiratory respiratory fitness and incident 

cancer risk without and with body fat adjustment 

HR per 3.5 ml O2⋅min-1⋅kg-1 total-body mass 

 

 

HR per 5.0 ml O2⋅min-1⋅kg-1 fat-free mass 
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HRs and 95% CIs estimated using Cox regression models adjusted for age, sex, self-reported 

racial/ethnic group, Townsend index of deprivation, education, employment status, smoking 

status, alcohol consumption, red and processed meat consumption, fish consumption, fruit and 

vegetable consumption, salt consumption, diabetes status, hypertension, medication use (beta 

blockers, calcium channel blockers, ACE inhibitors, diuretics, bronchodilators, lipid-lowering 

agents, iron deficiency agents, non-steroidal anti-inflammatory drugs, metformin). Associations 

with and without adjustment for either continuous BMI (for models with VO2max scaled by 

total-body mass) or fat mass (for models with VO2max scaled by fat-free mass). 

Abbreviations: ACE=Angiotensin-converting enzyme; BMI=body mass index; CI=confidence 

interval; HR=hazard ratio. 
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Figure 3: Associations of genetically predicted cardiorespiratory respiratory fitness and 

cancer risk 

HR per 5.0 ml O2⋅min-1⋅kg-1 fat-free mass 

Associations were estimated using the inverse variance weighted method.  

Abbreviations: CI=confidence interval; ER=estrogen receptor; OR=odds ratio. 
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Table 1:  Participant characteristics by age-adjusted and sex-specific cardiorespiratory 

fitness (VO2max per kg total-body mass) tertiles 

  
Women 

   
Men 

 

 
Lower fitness Mid fitness Higher fitness 

 
Lower fitness Mid fitness Higher fitness 

N 12791 12790 12786 
 
11404 11402 11399 

Age (y) 57 ± 8 57 ± 8 57 ± 8 
 
58 ± 8 58 ± 8 58 ± 8 

Height (m) 1.63 ± 0.06 1.63 ± 0.06 1.63 ± 0.06 
 
1.76 ± 0.07 1.76 ± 0.07 1.76 ± 0.07 

Total-body mass (kg) 79.6 ± 14.8 69.5 ± 10.0 62.6 ± 8.2 
 
94.4 ± 14.2 84.6 ± 10.6 77.3 ± 9.8 

Fat-free mass (kg) 46.5 ± 5.4 44.0 ± 4.2 42.6 ± 3.9 
 
66.9 ± 7.8 63.2 ± 6.9 60.6 ± 6.5 

BMI (kg⋅m-2) 30.1 ± 5.3 26.2 ± 3.5 23.5 ± 2.8 
 
30.3 ± 4.1 27.3 ± 2.9 25.1 ± 2.7 

VO2maxtbm(ml⋅min-1⋅kg-1) 19.7 ± 3.2 25.1 ± 1.9 31.4 ± 4.7 
 
26.0 ± 2.9 31.7 ± 2.0 38.4 ± 4.2 

VO2maxffm (ml⋅min-1⋅kg-1) 33.4 ± 5.8 39.5 ± 3.8 45.8 ± 6.2 
 
36.5 ± 4.0 42.4 ± 3.1 48.8 ± 4.8 

Red meat consumption 0.8 ± 0.5 0.8 ± 0.5 0.7 ± 0.5 
 
1.1 ± 0.6 1.0 ± 0.6 0.9 ± 0.6 

Fish consumption 
       

   Never 10.7% (1363) 9.1% (1161) 8.3% (1060) 
 
11.8% (1343) 11.1% (1265) 8.8% (1006) 

   At most 1 per week 33.0% (4226) 32.2% (4114) 31.4% (4013) 
 
36.4% (4148) 33.9% (3868) 32.3% (3687) 

   2 or more per week 55.6% (7116) 58.1% (7431) 60.0% (7674) 
 
50.8% (5794) 54.4% (6202) 58.3% (6646) 

   Missing 0.7% (86) 0.7% (84) 0.3% (39) 
 
1.0% (119) 0.6% (67) 0.5% (60) 

Fruit & vegetable consumption 
       

   Never 17.4% (2232) 15.4% (1974) 12.8% (1639) 
 
24.9% (2834) 23.8% (2713) 19.3% (2199) 

   At most 1 per week 29.0% (3707) 28.5% (3643) 26.2% (3355) 
 
33.5% (3816) 32.1% (3663) 31.8% (3626) 

   2 or more per week 53.2% (6804) 55.9% (7144) 60.8% (7772) 
 
41.2% (4697) 43.8% (4998) 48.7% (5549) 

   Missing 0.4% (48) 0.2% (29) 0.2% (20) 
 
0.5% (57) 0.2% (28) 0.2% (25) 

Salt addition to meals 
       

   Never/rarely 58.0% (7418) 58.3% (7455) 59.0% (7547) 
 
52.8% (6022) 56.1% (6395) 60.2% (6864) 

   Sometimes 26.9% (3443) 27.4% (3510) 27.3% (3489) 
 
29.3% (3343) 27.9% (3186) 25.7% (2930) 

   Usually/always 14.8% (1892) 14.1% (1800) 13.6% (1733) 
 
17.5% (1994) 15.8% (1806) 13.9% (1588) 

   Missing 0.3% (38) 0.2% (25) 0.1% (17) 
 
0.4% (45) 0.1% (15) 0.1% (17) 

Alcohol consumption 
       

   Never or previous 11.3% (1439) 8.2% (1055) 6.4% (812) 
 
6.9% (785) 5.7% (648) 5.3% (599) 

   At most 2 per week 59.5% (7615) 52.8% (6755) 47.1% (6021) 
 
46.4% (5286) 41.6% (4743) 39.0% (4442) 

   3 or more per week 28.9% (3697) 38.7% (4947) 46.4% (5930) 
 
46.3% (5282) 52.5% (5990) 55.6% (6340) 

   Missing 0.3% (40) 0.3% (33) 0.2% (23) 
 
0.4% (51) 0.2% (21) 0.2% (18) 

Smoking status 
       

   Never 63.7% (8147) 61.5% (7869) 59.7% (7635) 
 
48.3% (5511) 51.5% (5869) 55.5% (6326) 

   Previous 29.0% (3704) 31.2% (3987) 32.6% (4173) 
 
40.6% (4625) 38.2% (4357) 34.4% (3917) 

   Current 6.7% (858) 6.9% (879) 7.3% (932) 
 
10.3% (1180) 9.8% (1121) 9.7% (1105) 

   Missing 0.6% (82) 0.4% (55) 0.4% (46) 
 
0.8% (88) 0.5% (55) 0.4% (51) 

Townsend deprivation index -1.0 ± 3.0 -1.4 ± 2.8 -1.5 ± 2.8 
 
-1.0 ± 3.1 -1.4 ± 2.9 -1.5 ± 2.9 

Education 
       

   No qualification 14.4% (1841) 11.0% (1413) 8.3% (1059) 
 
14.8% (1684) 12.1% (1378) 9.4% (1072) 

   Any other qualification 53.8% (6885) 51.4% (6577) 46.3% (5925) 
 
52.0% (5929) 48.9% (5579) 42.6% (4857) 

   Degree level or above 30.4% (3887) 36.6% (4678) 44.8% (5724) 
 
31.7% (3618) 38.0% (4336) 47.3% (5391) 

   Missing 1.4% (178) 1.0% (122) 0.6% (78) 
 
1.5% (173) 1.0% (109) 0.7% (79) 

Employment 
       

   Unemployed 9.9% (1265) 7.9% (1011) 8.3% (1061) 
 
7.9% (903) 5.7% (651) 4.9% (557) 

   Employed 52.8% (6752) 55.9% (7147) 57.5% (7355) 
 
56.7% (6467) 60.3% (6873) 61.3% (6992) 

   Retired 36.6% (4684) 35.7% (4572) 33.8% (4320) 
 
34.5% (3939) 33.4% (3813) 33.3% (3794) 

   Missing 0.7% (90) 0.5% (60) 0.4% (50) 
 
0.8% (95) 0.6% (65) 0.5% (56) 

Race 
       

   Asian or Asian British 3.3% (425) 2.4% (303) 1.6% (201) 
 
3.5% (400) 3.6% (413) 2.4% (269) 

   Black or Black British 5.2% (670) 2.2% (281) 0.9% (117) 
 
3.5% (398) 2.2% (254) 1.2% (138) 

   Mixed 1.0% (126) 0.9% (112) 0.9% (117) 
 
0.7% (78) 0.7% (75) 0.7% (80) 

   Other 1.9% (243) 1.9% (240) 1.8% (234) 
 
1.6% (180) 1.5% (174) 1.6% (180) 

   White 87.8% (11235) 92.1% (11784) 94.3% (12062) 
 
89.9% (10251) 91.3% (10415) 93.6% (10673) 

   Missing 0.7% (92) 0.5% (70) 0.4% (55) 
 
0.9% (97) 0.6% (71) 0.5% (59) 

Hypertension 
       

   Not hypertensive 39.9% (5109) 56.2% (7193) 67.6% (8647) 
 
26.2% (2987) 41.3% (4707) 55.4% (6316) 

   Hypertensive 60.1% (7682) 43.8% (5597) 32.4% (4139) 
 
73.8% (8417) 58.7% (6695) 44.6% (5083) 

Diabetes 
       

   Not diabetic 93.3% (11940) 97.3% (12446) 98.6% (12603) 
 
87.5% (9980) 94.7% (10801) 97.1% (11067) 

   Diabetic 6.3% (805) 2.5% (316) 1.3% (167) 
 
12.1% (1376) 5.1% (586) 2.8% (316) 

   Missing 0.4% (46) 0.2% (28) 0.1% (16) 
 
0.4% (48) 0.1% (15) 0.1% (16) 

Colorectal cancer 1.0% (133) 0.9% (112) 0.8% (98) 
 
1.5% (169) 1.5% (173) 1.1% (126) 

   Colon 0.8% (103) 0.7% (93) 0.6% (74) 
 
1.0% (119) 1.1% (122) 0.8% (87) 

   Rectal 0.4% (45) 0.3% (35) 0.3% (41) 
 
0.7% (85) 0.7% (78) 0.6% (64) 

Lung cancer 0.6% (77) 0.6% (71) 0.6% (82) 
 
0.9% (103) 0.7% (76) 0.6% (71) 

Breast cancer 3.2% (410) 2.8% (352) 2.6% (331) 
    

Endometrial cancer 0.7% (93) 0.4% (54) 0.3% (37) 
    

Ovarian cancer 0.3% (44) 0.3% (36) 0.4% (56) 
    

Prostate cancer 
    

4.2% (481) 5.1% (579) 4.6% (526) 
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Table 2:  Genetic associations of cardiorespiratory respiratory fitness and cancer risk after 

accounting for fat mass and height 

Cancer site 

OR per 5.0 ml O2⋅min-1⋅kg-1 

fat-free mass (95% CI) 

 

P-value 

Breast 0.98 (0.93, 1.03)  0.39 

  ER - 0.95 (0.89, 1.02)  0.14 

  ER + 0.97 (0.92, 1.03)  0.36 

Lung 0.90 (0.84, 0.96)  0.002 

  Never smokers 0.98 (0.82, 1.17)  0.83 

Endometrial 0.97 (0.89, 1.06)  0.24 

Renal cell carcinoma 0.86 (0.73, 1.01)  0.07 

Ovarian 1.00 (0.92, 1.08)  0.99 

Prostate 1.01 (0.95, 1.08)  0.66 

  Aggressive 1.01 (0.93, 1.10)  0.80 

Pancreatic 1.04 (0.92, 1.17)  0.54 

Colorectal 1.03 (0.97, 1.10)  0.29 

  Colon 1.00 (0.94, 1.07)  0.94 

  Rectal 1.04 (0.96, 1.13)  0.31 

Risk estimates based on multivariable Mendelian randomization. Risk 

estimates p<0.05 are in bold. Abbreviations: CI=confidence interval; 

ER=estrogen receptor; OR=odds ratio. 
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