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Abstract 

Background: Depressive symptoms lead to a serious public health burden and are considerably 

affected by the environment. Land use, describing the urban living environment, has an impact on 

mental health, but complex relationship assessment is rare. 

Objectives: We aimed to examine the complicated association between urban land use and 

depressive symptoms among young adults with differential land use environments, by applying 

multiple models, as an exposome study.  

Methods: We included 1804 individual twins from the FinnTwin12 cohort, living in urban areas in 

2012. There were 8 types of land use exposures in 3 buffer radii. The depressive symptoms were 

assessed through General Behavior Inventory (GBI) in young adulthood (mean age: 24.1). First, K-

means clustering was performed to distinguish participants with differential land use environments. 

Then, linear elastic net penalized regression and eXtreme Gradient Boosting (XGBoost) were used 

to reduce dimensions or prioritize for importance and examine the linear and nonlinear relationships.  

Results: Two clusters were identified with notable differences in the percentage of high-density 

residential, low-density residential, and natural land use. One is more typical of city centers, and 

another of suburban areas. A heterogeneous pattern in results was detected from the linear elastic 

net penalized regression model among the overall sample and the two separated clusters. 

Agricultural residential land use in a 100 m buffer contributed to GBI most (coefficient: 0.097) in 

the “suburban” cluster among 11 selected exposures. In the “city center” cluster, none of the land 

use exposures was associated with GBI. From the XGBoost models, we observed that ranks of the 

importance of land use exposures on GBI and their nonlinear relationships are also heterogeneous in 

the two clusters. 

Discussion: As a hypothesis-generating study, we found heterogeneous linear and nonlinear 

relationships between urban land use environment and depressive symptoms under different 

contexts in pluralistic exposome analyses.  
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Introduction  

Depressive symptoms are very common and reflect a chronic, complex, and multifactorial mental 

health condition. The burden of depressive symptoms is growing especially among younger people. 

A national survey in the U.S. showed that there is a large rise in the incidence of major depressive 

episodes among young adults.1 A recent survey in Spain suggested that 23.6% of college students 

experienced depressive symptoms2, while the prevalence was 28.4% among Chinese university 

students by a systematic review.3 The COVID-19 pandemic induced a negative mental health 

impact and increased the prevalence of depressive symptoms among young adults.4,5 Moreover, 

depressive symptoms have been associated with a higher odd of risk behavior such as substance use 

and self-harm, which resulted in further psychological and physical health problems.6 Several twin 

studies across countries have identified the major role of environmental influences on mental health, 

including depressive symptoms among young adults, inspiring etiological consideration of people’s 

various environments.7,8 

Land use involves the transformation of undeveloped areas into a sound and vital residential and 

living environment. Urban planners consider multiple concepts such as suitability, competitiveness, 

need diversity, or resource scarcity to evaluate land use.9 Furthermore, in the “One Earth” 

perspective, land use is closely connected to biodiversity and agriculture, which are reciprocally 

related to people.10 Thereby, advancing liveable initiatives and shaping diverse land use is able to 

promote healthy lifestyles, urban amenities, and nature conservation, ultimately leading to a better 

Earth.11,12 Some studies have addressed the relationship between land use and mental health/status. 

Miles et al. assessed the association between land use diversity, via Herfindahl–Hirschman Index, 

and depressive symptoms among Miami residents in US., but there was no salient result.13 An 

Italian study also found that land use mix, calculated via the Shannon diversity index, was not 

significantly associated with prescriptions of antidepressants.14 Nevertheless, land use mix, 

measured by the entropy model, was demonstrated to be correlated with life satisfaction at 

residences and workplaces in Beijing, China.15 Existing indices have some limitations, such as 

insensitiveness to capture the land use interaction.16 Inconsistent evidence reflects the complexity of 

the land use effect, which demands further sophisticated analysis.  

The urban exposome describes the totality of environmental exposure that people experience on a 

daily basis in cities as an important component in the external exposome, and over 75% of the 

European population lives in urban areas. As a part of the urban exposome, studies on land use also 

encounter difficulties such as high-dimensionailty and pleiotropy.17 Instead of conventional 

regression models with a single index, interpretable and robust multi-exposure models are 
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recommended. Ohanyan and colleagues have built some machine learning models, illustrated their 

characteristics, and applied them to a study on the urban exposome and type-2 diabetes.18,19 

However, this type of research is rarely used on mental health. To fulfill the current research gap, 

we conducted this exposome study with three objectives: a) to cluster participants who shared a 

similar pattern of urban land use; b) to assess both the linear and non-linear relationships between 

urban land use and depressive symptoms in young adulthood; and c) to observe the possible 

differences in these relationships between clusters.  

Methods 

Study participants 

The participants were from the FinnTwin12 cohort, which is a population-based prospective cohort 

among all Finnish twins born between 1983 and 1987, and their parents. At baseline, 5522 twins 

were invited and 5184 twins replied to our questionnaire (age 11–12, wave one), and they compose 

the overall cohort. All twins were invited to participate in the first follow-up survey with 92% 

retention at age 14 (wave two). Moreover, at age 14, 1035 families were invited to take part in an 

intensive substudy with psychiatric interviews, some biological samples, and additional 

questionnaires, and of 1854 twins participated in these interviews. They were also invited to a 

second intensive survey as young adults, with a participation rate of 73% (n=1347 individual twins), 

and completed the detailed young adulthood questionnaires and interviews (part of wave four). In 

addition, all of the twins in the overall cohort completed general age 17 questionnaires (wave three) 

and twins from the non-intensive study completed young adult questionnaires (wave four) with 75% 

and 66% retention, respectively. In this study, we included twins who participated in wave four. An 

updated review of this cohort was published recently.20  

Measures 

Depressive symptoms  

In this study, the short-version General Behavior Inventory (GBI) was used to evaluate depressive 

symptoms among twins in young adulthood.21 It is a self-reported inventory designed to identify 

mood-related behaviors, which is composed of 10 questions with a 4-point Likert scale from 0 

(never) to 3 (very often) to query the occurrence of depressive symptoms.22 The total score ranges 

from 0 to 30, and a higher score implies more depressive symptoms occurred. To validate the GBI, 

we compared it to a Diagnostic and Statistical Manual of Mental Disorders-IV diagnosis of major 

depressive disorder (MDD) assessed by the Semi-Structured Assessment for the Genetics of 
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Alcoholis (SSAGA) m interview from the intensive study.23 In a logistic regression model, the GBI 

score in young adulthood strongly predicted MDD, with the area under the receiver operating 

characteristic curve (AUC) of 0.8328 (among twins included in this study’s analysis).  

Land use 

The EUREF-FIN geocodes of twins from birth to 2021 were derived from the Digital and 

Population Data Services Agency, Finland. We used geocodes in 2012 to merge the land use 

exposures to twins, derived from Urban Altas 2012. Urban Altas is a part of land monitoring 

services to provide reliable, inter-comparable, high-resolution land use maps in the European Union 

and European Free Trade Association countries from 2006 to 2016, which covered nearly 700 

larger functional urban areas in 2012.24 Land use exposures included the percentage of 8 types of 

land use (high-density residential, low-density residential, industrial and commercial, infrastructure, 

urban green, agricultural, natural, and water) within an area of 100, 300, and 500 m radius buffer 

zones for each geocode in urban Finland (totally 24 exposures).  

Additionally, we also calculated the land use mix index within different buffers, which described 

the diversity of land uses through Shannon’s Evenness Index. The equation is defined as follows:25 

���� ��� 	
� 
���� � � � �� � ln ��

�

���

� / ln � 

��  is the percentage of each type of land use in zone 
; � is the number of land use types. It ranges 

from 0 to 1, and a higher value indicates a more balanced distribution of land between the different 

types of land use.  

Covariates 

Seven covariates were defined a priori: sex (male, female), zygosity (monozygotic (MZ), dizygotic 

(DZ), unknown), parental education (limited, intermediate, high), smoking (never, former, 

occasional, current), work status (full-time, part-time, irregular, not working), secondary level 

school (vocational, senior high school, none), and age. The latter four variables came from the 

young adulthood survey (mean age at response based on the difference of date of response and data 

of birth: 24.07 years). Parental education was based on maternal and paternal reports, while 

zygosity was based on DNA polymorphisms and/or a validated zygosity questionnaire.26 

Analysis 

Preparation and description 
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We only included the twins who have available land use exposures in 2012 in urban areas (as 

defined above), indicating that they lived in the urban areas in Finland, and provided GBI 

assessment in young adulthood, in order to have a larger sample size and have the two 

measurements be as close as possible on the time scale. A total of 1804 individual twins (589 twin 

pairs and 626 individual twins) were included and the mean age in providing GBI assessment was 

24.07 years (around 2007-2011). Due to the skewness of the GBI score, we add one to the GBI 

score and log-transformed it for the following analysis. A correlation matrix was drawn between 

land use exposures. Then, we proposed a two-stage exposome approach to assess the relationship 

between land use exposures and depressive symptoms.  

Stage 1: unsupervised clustering 

To group twin individuals who have similar land use in an exploratory way, we used unsupervised 

K-means clustering. The K-means clustering method employs a non-hierarchical partitional 

algorithm. It calculated the total within-cluster variation as the sum of the squared Euclidean 

distance between each sample and the corresponding K-number random-assigned centroid in each 

cluster (�). ��� is the ith observation belonging to cluster (�= 1, 2, …., K) and �� is the number of 

observations in cluster �. The overall within-cluster variation is defined as follows:27 

� � ���� � 1��

� ���

��

���

�
���

���

�

���

  
The process will stop when a convergence criterion is met (smallest overall within-cluster 

variation).27 It is one of the simplest and fastest clustering methods, and is also able to handle 

outliers or inappropriate variables.28,29 Only the 24 land use exposures were included in the 

clustering algorithm. We used the Silhouette method to estimate the optimal number of pre-

specified cluster30, and two clusters were identified (Supplemental Figure 1). The R package 

“Factoextra” was used.29 

Stage 2: Exposome pluralistic analysis 

We split the twin participants into training and testing subsets. In full twin pairs, we performed a 

1:1 random split within the pair. The remaining individual twins all went to the training subset. The 

training sample size was 1215 and the testing sample size was 589, and the size in each cluster 

varied (Supplemental Table 1). By the splitting process, we do not need to consider the statistical 

effect of complex sampling cluster effects by twin pair status as all individuals in both samples are 
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unrelated. We chose two types of models and adjusted covariates to evaluate the risk estimation of 

24 land use exposures (j).  

First, the linear elastic net penalized regression model was applied for feature selection, which uses 

a hybrid of the lasso and ridge penalized methods, to fit the generalized linear model.31 This model 

considered multicollinearity by removing any degeneracies and outlying behavior and assessed the 

linear relationship.32 A typical linear regression model based on N participants with the combined 

penalized term is defined as follows (cited from Fridman at el.32):  

min
��,�

� 12� � !� � "
 � ��
�"#�

�

���

$ % � &'1 � (2 ) "
� $ (*"*+�

��

� 

!�  is the dependent response and ��  is the independent factor at observation i. %  is a positive 

regularization parameter. "
 and " are scalar and p-vector coefficients, respectively. We set the (, 

ranging from 0.1 to 1.0, as a tuning parameter, for the penalty. We fixed the covariates in the 

models as unpenalized variables to fully adjust them. The final models were selected by 10-fold 

cross-validation to determine the optimal degree of penalization.31 Stata package “elasticnet” was 

used. 

Further, to assess the non-linearity relationship, the supervised machine learning model –– eXtreme 

Gradient Boosting (XGBoost) was used. It is a tree-based gradient boosting technique, utilizing the 

weights of trees, which is good in predicting and less susceptible to overfitting.33,34 The objective 

function of XGBoost starts with two parts: a loss function and a regularization term, and we aim to 

obtain the optimal output value (Ovalue) to minimize the function, defined as follows: 

� , !� , .�
��� $ /�����# $ 01 $ 12

�

���

%/�����
�  

.�
��� is the previous prediciton of tree t at observation i. 1 is the number of leaf nodes in a tree, and 0 and % are the definable penalty factors to avoid overfitting. Then, we rewrite the loss function 

according to the 2nd Taylor Approximation: 

, !� , ��
��� $ /�����# 2 , !, .�# $ 3 ��.�
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, !, .�# is the loss function of the previous prediction, and its first and second derivative is labeled 

as 7 and 8, respectively. The optimum output value could then be derived with 9 and : (sum of 7 

and 8) as: 

/�����  � � 12 � 9
�

: $ %
�

��

$ 01 

The detailed mathematical model and algorithm are described in previous literature.35 This model is 

able to characterize the interaction and nonlinearity.18 The tuning hyperparameters were calibrated 

by parallelizable Bayesian optimization based on 7 initialization evaluations and 30 epochs (50 

epochs for Cluster 2), using the R package “ParBayesianOptimization”.36,37 We ran training 

XGboost models with 3000 rounds at first, then the optimal number of rounds (n) was selected by 

mean-squared error (MSE) as the following equation:  

;<=� > 0.99 B 120  ;<=��� $ C $ ;<=����#  
The Final XGBoost analysis was conducted with all hyperparameters using the R package 

“xgboost”.33 Covariates were included in the model. Finally, we used the Shapley (SHAP) value to 

interpret and visualize the results from the XGboost machine learning model with higher 

transparency by the R package “shapr”.38,39 

Models were performed among overall participants and in two clusters. We used root-mean-squared 

error (RMSE) to measure model performance in the training and testing subsets, which is a 

weighted measure calculated between forecast and observed values. 

Post-hoc analysis 

We conducted a post-hoc linear regression between the land use mix index and log-transformed 

GBI score, which aims to compare with our novel findings. Covariates were adjusted for and the 

cluster effect of sampling based on families of twin pairs was controlled by the robust standard error. 

A p-value less than 0.05 is considered statistically significant and 95% confidence intervals (CI) are 

reported.  

Results 

K-means clustering and descriptive statistics  

Figure 1 depicts the distribution of each land use category overall and in the two clusters. Cluster 2 

had a higher percentage of high-density residential land use, while Cluster 1 had a higher 
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percentage of low-density residential land use regardless of the buffer radii of the twins’ location.  

Supplemental Figure 2 shows the twins’ location in the greater Helsinki areas (as an example), and 

twins from Cluster 2 lived in more urbanized areas (often close to city or town centers), while twins 

from Cluster 1 were more suburban. Variable names and details are shown in Supplemental Table 2. 

We also calculated the simple ratios of means between the two clusters and found low-density 

residential, agricultural residential, and natural land use in a 100 m buffer have notably “relative” 

differences between the two clusters (ratio>10). According to the correlation matrix based on the 

training subset (Supplemental Figure 3), the same land use with different radii of the buffer zone is 

highly correlated. High-density and low-density residential land use are negatively correlated. 

Table 1 shows the distribution of characteristics overall and in the two clusters. Overall, the 

majority of twins are female (58.7%), dizygotic (61.3%), and reported never smoking (55.1%) in 

the young adulthood questionnaire. Additionally, 48.8% and 47.7% of twins reported that they were 

in full-time work and had attended senior high school, respectively. The majority (51.1%) of twins’ 

parents had limited education levels (less than high-school). Unsupervised K-means clustering did 

not take into account these demographics covariates. We observed significant differences in 

smoking, working status, secondary level school, and parental education between the two clusters 

by Chi-squared test or univariable linear regression accounting for twin sampling. There were more 

twins who currently smorked, worked full time, and attended vocational schools in Cluster 1 

(suburban) than in Cluster 2 (city center), but parents in Cluster 2 had a lower percentage of 

receiving limited education.  

Linear elastic net regression model 

After full adjustment (Table 2), within the sample of all twins, six land use exposures: low-density 

residential land use in a 100 m buffer, natural land use in a 100 m buffer, high-density residential 

land use in a 300 m buffer, infrastructures land use in a 300 m buffer, natural land use in a 300 m 

buffer, and high-density residential land use in a 500 m buffer were significant enough to be 

captured by the linear elastic net regression model in assessing their relationship with GBI. The 

number of selected land use exposures increased to 11 in Cluster 1 model (suburban), while 

surprisingly there were no land use exposures remaining in Cluster 2 (city center) model. The 

pattern of coefficients including the effect size and direction was relatively heterogeneous. The 

coefficients for low-density residential land use in a 100 m buffer were the same (coefficient: -0.011) 

between the overall and Cluster 1 models. Additionally, infrastructure land use in a 300 m buffer 

and high-density residential land use in a 500 m buffer were captured by both the overall and 

Cluster 1 models, but the effect size or direction are quite heterogeneous. Agricultural residential 
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land use in a 100 m buffer contributed to GBI to the largest degree in Cluster 1 model (coefficient: 

0.097). The GBI was linearly correlated with none land use exposures in Cluster 2.   

XGBoost model 

We listed the top 10 most important factors with SHAP values in each XGBoost model (Figure 2). 

For example, the top 10 in the overall models are natural land use in a 100 m buffer, commercial 

and industrial land use in a 300 m buffer, low-density residential land use in a 300 m buffer, low-

density residential land use in a 500 m buffer, natural land use in a 500 m buffer, high-density 

residential land use in a 500 m buffer, urban green land use in a 500 m buffer, and commercial and 

industrial land use in a 500 m buffer (in order). Covariates were not listed and are not shown in the 

figure. The curve of SHAP values suggested non-linear attribution of each land use exposure on 

GBI. Industrial and commercial use in a 300 m buffer and low-density residential land use in a 500 

m buffer were the most important land use exposures in Cluster 1 (suburban) and Cluster 2 (city 

center) models, respectively.  

For nature land use in a 100 m buffer in the overall model, there was an obvious decline of SHAP 

value between 0 and ~10%. Then, the value increased when its percentage passed ~10% and, after 

the percentage was greater than ~22%, the curve was relatively flat. A similar pattern was also 

observed in the plot of industrial and commercial land use in a 300 m buffer in Cluster 1 model. 

However, the curve of low-density residential land use in a 500 m buffer was always relatively flat 

in Cluster 2 model.  

Model performance and comparison 

The standard deviations (SD) of the log-transformed GBI score were 0.8825, 0.8851, and 0.8774 

among the overall, Cluster 1’s and Cluster 2’s twins. The training and testing RMSE are shown in 

Table 3, there are no major differences between the two types of models and clusters, and they are 

mostly lower than the SDs of the log-transformed GBI score, implying good model performance. 

Post-hoc linear regression 

The results of linear regression in the overall and the two separated cluster models are presented in 

Supplemental Table 3. In crude Cluster 1 (suburban) model, a higher land use mix index within a 

300 m buffer was significantly associated with higher log-transformed GBI scores (beta: 0.51, 95% 

CI: 0.02, 1.01). After adjustment, there was no significant association.  

Discussion 
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Based on 1804 twins from the FinnTwin12 study with information on residential geocodes linked to 

land use characteristics, we identified two clusters with notable differences in the percentage of 

high-density residential, low-density residential, and natural land use. By two types of models, both 

linear and non-linear relationships between land use and depressive symptoms were discovered to 

exist. In the linear elastic net penalized regression model among overall twins and Cluster 1 

(suburban)’s twins, there was a heterogeneous pattern in selected subsets, effect sizes, and effect 

directions. In the Cluster 1 model, the agricultural residential land use in a 100 m buffer was 

associated with depressive symptoms with the largest relative effect size. In contrast, no land use 

exposures were significant enough to be attributed to depressive symptoms in Cluster 2, which was 

typical of city or town centers. Between the overall, Cluster 1, and Cluster 2 XGBoost models, the 

ranks of land use exposures’ importance on depressive symptoms were also heterogeneous and the 

most important were natural land use in a 100 m buffer, commercial and industrial land use in a 300 

m buffer, and low-density residential in a 500 buffer, respectively. As a hypothesis-generating study 

from the Equal-life project, elements such as population heterogeneity, environmental interaction, 

and characteristics of the effect (such as linearity) should be more considered in future analyses 

between land use, as well as the broad urban exposome, and depressive symptoms. 

First, the clustering analysis revealed a specific pattern in urbanization, and twins from Clusters 1 

and 2 mostly lived in the “suburbs” and “city or town centers”, respectively. The land use exposures 

appear to less important to depressive symptoms among people living in the city or town centers. 

The possible mechanisms may be through differential healthcare service access, social needs, 

transportation connectedness, or neighborhood environment.14,40,41 For example, living in the 

suburbs usually requires longer house-to-job distances, which has been found to be associated with 

poorer mental health.40 The longer job commutes implied more need for transportation facilities, 

and, similar to our linear elastic net regression model, the higher percentage of infrastructure land 

use was related to less depressive symptoms in Cluster 1 (suburban). Nevertheless, Pelgrims et al. 

detected no significant association, after fully adjustment, between green surrounding, street 

corridor and canyon effect, and depressive disorder among participants living in the highly 

urbanized Brussels, Belgium.42 We did not intend to distinguish people with an arbitrary binary 

classification, instead, we promote the hypothesis that the relationship between land use and 

depressive symptoms exists in the specific land use context. 

More broadly, many land use exposures, that signaled urbanization, were either selected by the 

penalized model or ranked in the top 10 most important in XGBoost, suggesting its effect on 

depressive symptoms. A 2020 review found the protective effect of urbanization on depression in 
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three Chinese studies, while four other countries’ studies had opposite findings due to different 

geographic regions and income levels.43 An increasing trend in depression prevalence among young 

adults and those who lived in rural areas with low population density was observed in a longitudinal 

Germany nationwide survey.44 However, Morozov indicated that urbanization adversely affected 

mental health via several factors including noise and visual aggressiveness of the environment in 

Russia.45 Our conventional analysis with the land use mix index indicated null results, and previous 

literature also shows inconsistent findings13–15, which increases the interest in deeper assessment. 

There may be conjunct or nonadditive relationships within land use or broad urban living 

environments. For instance, the urban heat island, with a higher regional temperature in urban areas 

than in surrounding rural areas, has been shown to be differentially influenced by many land use 

factors, in which expansion of built-up area increased but water areas reduced the regional 

temperature46, and moreover the urban heat island increases the risk of depression.43   

Including multiple land use exposures in a single analysis platform allows us to disentangle the 

individual effects and assess the complex relationships. The linear elastic net penalized regression 

models selected a subset of the most influential land use exposures, exerted combined effects, and 

avoided the risk of multicollinearity and overfitting.47 Because we aim to reveal the relationship 

instead of prediction, we did not refill the land use exposures to the normal regression model and 

the interpretation of effect size was weakened. Lenters et al. have applied this approach to prenatal 

chemical exposures to solve the interconnected effects of mixtures.31 We also observed the 

nonlinear relationship via the interpretable SHAP visualization from XGBoost, but, like Ohanyan 

and colleagues’ studies, we did not straightforwardly assess the interaction due to modest effect 

sizes and other factors.18,48 Previous applications of this machine learning method improved the 

prediction of air quality and enhanced the forecast of air quality in China.34,49 Ma et al. also 

compared the prediction accuracy between XGBoost and Lasso penalized regression models49, 

while, in our study, we wished to observe the intricate effects instead of comparing accuracy, so we 

used RMSE, not AUC, to evaluate model performance. Another Chinese study also explored the 

nonlinear effect between the built and social environments and bus use among the older adults.35 

The utility of multiple machine learning algorithms provides a preliminary sketch of the 

labyrinthine relationship between urban land use and depression symptoms. 

Clustering analysis focused on multiple land use exposures and facilitates the segmentation of 

residents for tailored epidemiological assessment of the effect of land use on depressive symptoms 

and customizes further improvement and intervention. The differential pattern of urban land use 

environment was very obvious in our findings. Methodologically, clustering analysis has gained 
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increasing attention in the field of exposure science. Tognola and colleagues clustered children in 

France by exposure to extremely low-frequency magnetic fields50, and another study developed a 

novel workflow in clustering with multiple features including specific and general external 

exposomes and identified sub-populations in type-2 diabetes patients.51
 Moreover, wildlife 

necropsy data has also been clustered for syndromic surveillance of any new zoonotic outbreak52, 

which engaged the health interaction between humans and animals and is an example of the 

application of this method in “One Earth”. 

There are some limitations in our studies. First, the information on depression symptoms was 

obtained before 2012, so the potential causality and direction are unable to be confirmed due to 

temporality. Second, compared to previous similar studies, the sample size is relatively small. 

Although the two machine learning methods are able to shrink the overfitting due to the small 

sample size, we still need to be cautious about the findings. This study is a pilot study for 

exploration, and further follow-up studies are welcome to strengthen the evidence. 

Conclusion 

This study is the first, to our knowledge, to investigate the complex relationship between multiple 

urban land use exposures and depressive symptoms in young adulthood. The pluralistic multi-model 

inferences selected or prioritized the more important urban land use exposures to depressive 

symptoms and revealed the linear and nonlinear relationships, which advances the conventional 

assessment with a single index. Clustering analysis showed a notably heterogeneous pattern in this 

relationship between participants with different land use environments, implying the effects are 

under a specific context. Due to sample size, model characteristics, and temporality, our finding 

interpretation is cautious at present, and more efforts are warranted to corroborate.  
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Table 1: Characteristics of all included twins overall and in the two clusters. The p-values are for 

differences between Clusters 1 and 2 by Chi-squared test or univariable linear regression accounting 

for twin sampling. 

Characteristic  
n (%) / mean ± SD 

p-value Overall 
(individual twin n=1804) 

Cluster 1 
(individual twin n=736) 

Cluster 2 
(individual twin n=1068) 

Sex  
  

0.16 

Male 745 (41.3) 289 (39.3) 456 (42.7) 
 

 Female 1059 (58.7) 447 (60.7) 612 (57.3) 
 

Zygosity    0.92 

Monozygotic 615 (34.1) 252 (34.2) 363 (34.0) 
 

 Dizygotic 1105 (61.3) 448 (60.9) 657 (61.5) 
 

Unknown 84 (4.7) 36 (4.9) 48 (4.5)  
Smoking     

Never 994 (55.1) 405 (55) 589 (55.2) 0.03 

Former 191 (10.6) 78 (10.6) 113 (10.6)  
Occasional 205 (11.4) 66 (9.0) 139 (13.0) 

 
Current 414 (23.0) 187 (25.4) 227 (21.3) 

 
Work    <0.0001 

Full-time work 880 (48.8) 409 (55.6) 471 (44.1) 
 

Part-time work 280 (15.5) 94 (12.8) 186 (17.4) 
 

Irregular work 239 (13.3) 76 (10.3) 163 (15.3)  
Not working 405 (22.5) 157 (21.3) 248 (23.2) 

 
Secondary level school     

<0.0001 

Vocational 486 (26.9) 262 (35.6) 224 (21.0)  
Senior high school 1222 (67.7) 439 (59.7) 783 (73.3) 

 
None 96 (5.3) 35 (4.8) 61 (5.7) 

 
Parental education    

<0.0001 

Limited 922 (51.1) 429 (58.3) 493 (46.2) 
 

Intermediate 410 (22.7) 155 (21.1) 255 (23.9) 
 

High 472 (26.2) 152 (20.7) 320 (30.0) 
 

Age 24.07 (1.7) 24.15 (1.7) 24.01 (1.7) 0.10 

GBI in young adulthood 4.42 (4.7) 4.05 (4.4) 4.67 (4.8) 0.01 
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Table 2: Multiple-exposure elastic net penalized regression for associations between land use and 

GBI. The remaining coefficients were significant enough to be selected. 

Land use (Buffer radius) 
unit: % 

Log-transformed GBI score 
Adjusted elastic net coefficient a 

Overall  Cluster 1  Cluster 2 

High-density residential (100 m) 
 

0.089 
 

Low-density residential (100 m) -0.011 -0.011  
Commercial and industrial (100 m) 

   
Infrastructures (100 m) 

   
Urban green (100 m)    

Agricultural residential (100 m) 
 

0.097 
 

Natural (100 m) -0.020 
  

Water (100 m)    
High-density residential (300 m) 0.013 

  
Low-density residential (300 m) 

   
Commercial and industrial (300 m)  0.084  

Infrastructures (300 m) 0.003 -0.031 
 

Urban green (300 m) 
 

0.081 
 

Agricultural residential (300 m)    
Natural (300 m) -0.009 

  
Water (300 m) 

   
High-density residential (500 m) 0.002 0.046  
Low-density residential (500 m) 

 
0.035 

 
Commercial and industrial (500 m) 

   
Infrastructures (500 m)  -0.012  
Urban green (500 m) 

   
Agricultural residential (500 m) 

 
-0.067 

 
Natural (500 m)    
Water (500 m) 

 
0.020 

 

Model feature 
(10-fold CV selection) 

α=0.10, λ=0.25, 
Out-of-sample R2=0.09, 

CV prediction error=0.73 

α=1.00, λ=0.01, 
Out-of-sample R2=0.06, 

CV prediction error=0.74 

α=1.00, λ=0.04, 
Out-of-sample R2=0.10, 

CV prediction error=0.70 
a Adjusted for sex, zygosity, smoking, work status, secondary level school, parental education, and 

age when twins provided the GBI assessment in young adulthood.   
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Table 3: Model performance via root-mean-squared error (RMSE) for linear elastic net penalized 

regression and XGBoost models 

Model accuracy Training RMSE Testing RMSE 

Linear elastic net 
penalized regression  

Overall 0.840 0.817 

Cluster 1 0.825 0.817 

Cluster 2 0.835 0.782 

XGBoost 

Overall 0.833 0.891 

Cluster 1 0.734 0.879 

Cluster 2 0.804 0.891 
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Figure 1: Histogram of the percentage of land use exposures among overall twins and in the two 

clusters 

Figure 2: Shapley (SHAP) plots illustration of the top 10 most influential exposures in the overall 

(A), Cluster 1 (B), and Cluster 2 (C) XGBoost models. Covariates were included in the models but 

suppressed in plots to highlight land use exposures.  
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