
 

Title: Enhanced motor noise in an autism subtype with poor motor skills 
  
Authors: Veronica Mandelli1,2, Isotta Landi2, Silvia Busti Ceccarelli3, Massimo Molteni3, 
Maria Nobile3, Alessandro D’Ausilio4,5, Luciano Fadiga4,5, Alessandro Crippa3* & Michael 
V. Lombardo2* 
  
Affiliations:  
  
1 Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy 
  
2 Laboratory for Autism and Neurodevelopmental Disorders, Center for Neuroscience 

and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy 
   

3 Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy 
 

4 Center for Translational Neurophysiology of Speech and Communication, Istituto 
Italiano di Tecnologia, Ferrara, Italy 

 
5 Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy 

 
 
* Equal senior author contributions  
 
Corresponding author: Michael V. Lombardo (michael.lombardo@iit.it) 
 
 
 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2023. ; https://doi.org/10.1101/2023.03.25.23287738doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2023.03.25.23287738
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
1 

Abstract 
 

Early motor difficulties are a common in many, but not all, autistic individuals. These 
difficulties tend to be highly present in individuals carrying rare genetic mutations with high 
penetrance for autism. Many of these rare genetic mechanisms also cause neurophysiological 
dysregulation of excitation-inhibition balance (E:I). A predicted downstream consequence of 
E:I imbalance in motor circuitry would translate behaviorally into enhanced ‘motor noise’ – 
that is, increased variability in execution of motor actions. Here we tested the hypothesis that 
autistic individuals with the most pronounced motor difficulties would be most affected by 
enhanced motor noise. Unsupervised data-driven clustering on a standardized test of motor 
skills (n=156, age = 3-16 years) identified the presence of two robust and highly stable autism 
motor subtypes described by relatively intact versus highly impaired motor skills. With motor 
kinematics data recorded during a simple reach-to-drop task, we observed that enhanced 
motor noise is a specific characteristic of the autism subtype with highly impaired motor 
skills. Autistic individuals with poor motor skills may be differentially affected by E:I 
imbalance within motor circuitry.  
 
 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 4, 2023. ; https://doi.org/10.1101/2023.03.25.23287738doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.25.23287738
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
2 

 
The core of the autism phenotype is centered around early developmental difficulties 

in the domains of social-communication (SC) and restricted repetitive behavior (RRB). 
Despite the core SC and RRB commonalities, autistic individuals markedly vary in the 
domain of motor development. It has been estimated that anywhere from 34-80% of autistic 
individuals show some form of motor impairment and/or delay1–5. Motor difficulties in 
autism are often associated with language delay6–8, cognitive impairment9–11, poorer 
developmental outcomes, and reduced life quality12–14. Because motor difficulties may affect 
such a large percentage of autistic individuals, a recent debate has emerged regarding whether 
these issues should be added to the diagnostic criteria1,15–18. However, within the motor 
domain, the way in which motor abilities are affected in autism is quite heterogeneous. These 
motor issues span delays in reaching early motor milestones to severe impairments in motor 
coordination that prevent the individuals from accomplishing daily life tasks 
autonomously13,19. Thus, a discussion regarding global motor impairment in autism is not 
sufficient and may not be helpful in the context of precision medicine and personalized 
intervention20,21. An early characterization of heterogeneous motor profiles in autistic 
individuals is needed and may help link to other latent profiles that extend into other key 
domains such as language, intellectual and adaptive functioning. 

 
Understanding motor issues in autism may also be key to honing in on biological 

mechanisms that affect some autistic individuals. At a genetic level, it is known that 
individuals with highly penetrant but rare protein truncating de novo mutations associated 
with autism also tend to show delays in the acquisition of early motor milestones such as age 
at walking22–27. Many of these rare highly penetrant mutations are known to converge on a 
final common pathway of dysregulated neurophysiological balance between excitatory and 
inhibitory (E:I) neuronal signaling in the brain28,29. Synaptic E:I imbalance can attenuate 
signal-to-noise ratio in neural circuitry and enhance neural noise30. A downstream 
consequence of higher neural noise in motor circuitry would lead to a behavioral prediction 
of enhanced motor noise - that is, increased variability when performing the same motor 
action repeatedly31. While variability is a ubiquitous and healthy feature of neuronal 
circuits31–33, enhanced neural and motor noise has been proposed to be more pronounced on-
average in autism34–37  

 
Here, we investigated the hypothesis of whether stratification of autism by early 

clinical motor profiles leads to enhanced precision in our ability to personalize explanations 
about enhanced motor noise to particular subsets of autistic cases with the most clear-cut 
atypicalities in the motor domain. As such, the current work is split into 3 objectives. First, 
we use an unbiased data-driven approach to identify whether there are discrete motor 
subtypes in autism, using early clinical profiles of motor behavior assessed with a 
standardized test of motor ability - the Movement Assessment Battery for Children - 2nd 
edition (MABC2). Second, we apply subtype labels to motor kinematics data from a simple 
reach-to-drop motor task38,39 and test whether enhanced motor noise is primarily a feature of 
only a subset of autistic cases with the most pronounced issues in the motor domain. Third, if 
enhanced motor noise due to dysregulated synaptic E:I balance in motor circuitry is a 
characteristic of autism or a specific autism motor subtype, we reasoned that genomic 
mechanisms linked to motor circuitry, autism, and developmental motor issues would 
converge on systems biological dysregulation of synaptic E:I mechanisms. Utilizing curated 
lists of genes linked to autism or developmental motor issues, alongside spatial gene 
expression patterning from the Allen Institute Human Brain Atlas (AHBA), we use gene 
expression decoding and enrichment analyses to test this hypothesis. 
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Methods 
 
Sample and dataset characteristics 
 

To test our first aim of stratifying autism by early clinical motor profiles, we compiled 
together several publicly available and in-house datasets which all use the Movement 
Assessment Battery for Children - 2nd edition (MABC2). The in-house dataset consisted of 
n=94 autistic and n=93 typically-developing (TD) children aged 3-12 years old (mean age = 
7.34; SD age = 2.4), collected at the Scientific Institute IRCCS Eugenio Medea (IRCCS-
MEDEA) in Italy (see Supplementary Methods for more details about the IRCCS-MEDEA 
dataset). Additionally, we identified another n=62 autistic, n=23 developmental coordination 
disorder (DCD), and n=56 TD children aged 8-16 years old (mean age = 11.2; SD age = 1.73) 
from the 3 datasets publicly available within National Institute of Mental Health Data 
Archive (NDA) in the USA (see Supplementary Methods for more details about the NDA 
dataset).   
 

To evaluate our second aim of whether motor noise was enhanced specifically within 
an autism motor subtype, we utilized motor kinematics data from the IRCCS-MEDEA 
dataset. Motor kinematic data at IRCCS-MEDEA was collected with an optoelectronic 
system while children performed a simple upper-limb motor task38,39. At IRCCS-MEDEA we 
also collected data regarding early developmental, cognitive skills, and autism core 
symptoms severity from each child’s clinical portfolio. All the clinical assessments, including 
the diagnosis of autism, were performed by expert child-psychiatrists at IRCCS-MEDEA. 
 
Measures 
 
Movement Assessment Battery for Children - 2nd edition (MABC2) 
 

To assess motor profiles in young children we used the Movement Assessment 
Battery for Children - 2nd edition (MABC2)40. MABC2 is a gold standard clinical test for the 
diagnosis of Developmental Coordination Disorder (DCD) in children aged 3 to 16 years old. 
However, it can be useful in assessing motor proficiency in a variety of developmental 
conditions, including autism. The MABC2 is composed by 3 subscales investigating specific 
aspects of motor coordination: the Manual Dexterity (MD) subscale, which refers to fine-
motor coordination tasks; the Ball Skills (BC) subscale that includes aiming and catching 
activities; and the Static and Dynamic Balance (SDB) subscales that tests balance abilities. 
To cover a wide age range, the MABC2 is divided into 3 modules (module 1: 3-6 years; 
module 2: 7-10 years, module 3: 11-16 years) that assess the very same skills using age-
appropriate tasks and activities. The advantages of using the MABC2 in autism is that the 
task’s instructions include a practical demonstration that can be followed by non-verbal 
autistic individuals. MABC2 has a high internal consistency (0.90) and an excellent test–
retest reliability (intraclass correlation coefficient = 0.9741) 
 
Kinematic Task - Data acquisition and preprocessing 
 

Motor kinematic data was collected during a simple reach-to-drop task previously 
described by Forti et al.,39 and Crippa et al.,38. The task required that the child reach to grasp 
a rubber ball placed in front of them, grasp it, and then drop it in a plastic container. Each 
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child was asked to repeat this set of actions 10 times using their dominant hand. Task 
instructions also included a practical demonstration of the task performed by the same 
experimenter for all the participants. For an exhaustive description of the experimental task 
refers to the Supplementary Methods. Each movement was recorded using an optoelectronic 
system (the SMART D from BTS Bioengineering - Garbagnate Milanese, Italy). Three-
dimensional kinematic data was collected by eight infrared-motion analysis cameras at 60 Hz 
(spatial accuracy: 0.2 mm), located four per side at 2.5 meters away from the participants. 
Passive markers (1 cm) were attached to the elbow, ulnar and radial surfaces of the 
participants’ wrists and to the hand dorsum on the fourth and fifth metacarpals (Fig. 1C). This 
resulted in a total of four body parts for kinematic trajectories to be recorded from. 
Subsequently, a dedicated software system (Smart Tracker, BTS Bioengineering - 
Garbagnate Milanese, Italy) was used to track and reconstruct the acquired movement by 
naming each single moving point recorded by the cameras in each time-frame. This allowed 
for frame-wise definition of a movement trajectory in 3-dimensional space coordinates (x, y, 
z). Data were then preprocessed in MATLAB (Mathworks - Natick, MA, USA) using a fifth-
order Butterworth (8-Hz) low-pass filter. A total of n=24 autistic and n=14 TD children were 
excluded from the following analysis as they did not complete all 10 trials of the task. 
 
Statistical analyses 
 

For our first aim to stratify autism by MABC2 profiles, we first combined the IRCCS-
MEDEA and NDA datasets to get the largest possible sample size for the stratification 
analysis. The final sample size was n=328 individuals aged 3 to 16 years old split into n=156 
autistic (n=29 females), n=23 DCD (n=9 females) and n=149 TD (n=35 females) children. 
Because data originated from multiple sites (e.g. IRCCS-MEDEA and 3 other NDA datasets), 
we first implemented a batch correction technique to project out variance attributed to the 
originating study ID, MABC2 module and sex (Fig 1A). This batch correction was 
implemented as a linear model with each MABC2 subscale or total standardized score as the 
dependent variable and the originating study ID, MABC2 module, sex, and diagnosis as 
independent variables. Isolating the beta coefficient for the independent variable the 
originating study ID, MABC2 module and sex, we used this to project those features related 
variance before any further downstream statistical analysis. For the subsequent stratification 
model analysis, only the autistic subjects were utilized. For full reproducible analyses for all 
results presented in this work, please see https://github.com/IIT-
LAND/motor_stratification_paper. 
 
Stratification modeling with unbiased data-driven stability-based relative clustering 
validation 
 

To identify robust, stable, and reproducible subtypes based on motor profiles from the 
MABC2, we used our stability-based relative clustering validation approach, called reval 
(https://github.com/IIT-LAND/reval_clustering)42. Preprocessed MABC2 data from autistic 
individuals was used as input for the reval analysis. A total of n=156 autistic individuals were 
first split into train and validation sets using a 70-30 split scheme, while also balancing for 
originating study ID, sex, and MABC2 module. Before being entered as input features for 
reval, the three MABC2 subscales were scaled to a mean of 0 and a standard deviation of 1 
(sklearn.preprocessing.StandardScaler) and then transformed using Uniform Manifold 
Approximation and Projection (UMAP) (n_neighbors = 30, min_dist = 0.0, n_components = 
2, random_state = 42, metric = Euclidean). Those steps were done by fitting the models on 
the train set and applying them to both train and validation sets. Clustering and classification 
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models were fit using k-means clustering and k-nearest neighbor classifier algorithms from 
the python scikit-learn library. To identify the optimal number of clusters via minimizing 
normalized stability, we used a 2-fold cross-validation scheme on the train dataset and 
searched through cluster solutions 2 through 10. The cross-validation scheme was repeated 
100 times to ensure robustness. The identified optimal number of clusters was then used for 
clustering on the validation set. A classifier was then trained on the train set and utilized to 
predict the labels on the validation set to test the reproducibility of the cluster solution in a 
held-out sample. The accuracy of the classifier on the validation set is called generalization 
accuracy and describes how well the classification model fit to the train dataset can identify 
similar labels in the independent validation set (Fig 1B) (see Supplementary Methods for 
more information about how reval constructs the stratification model). While stability-based 
relative clustering validation in reval tells us about the stability of clustering solutions, it does 
not test whether the actual solution is indicative of true clusters. Therefore, we followed up 
on the reval analysis by using the sigclust library in R to test whether the observed clustering 
solution significantly differs from the null hypothesis that the data originates from a single 
multivariate Gaussian distribution43. 

 
Testing subtypes for differences in non-motor domains 
 
 Autism motor subtypes were examined for a number of phenotypic differences on 
autism symptom severity, autistic traits, intelligence, and age at acquisition of developmental 
milestones such as walking and first words. For this analysis, only individuals from the 
IRCCS-MEDEA dataset were analyzed, since this was the only dataset that had presence of 
variables measuring these non-motor domains. To measure intelligence, we utilized 
combined standardized scores (mean 100, SD = 15) across measures such as the Griffiths 
Mental Development Scales44, Wechsler Preschool and Primary Scale of Intelligence- III 
(WPPSI-III), and Wechsler Intelligence Scale for Children 3rd and 4th edition45,46. Autism 
symptom severity was measured with the Autism Diagnostic Observation Scales- 2nd edition 
(ADOS-2)47,48 calibrated severity score (CSS), social affect calibrated severity score (SA), 
and restricted and repetitive behavior calibrated severity scores (RRB)49. Autistic traits were 
measured with the Social Responsiveness Scales (SRS-2)50. Age at achievement of early 
developmental milestones (i.e., age at independent walking, age at first words) were retrieved 
from the clinical history data collected by clinicians during initial examination. Hypothesis 
tests were conducted via Welch two-sample t-tests or Wilcoxon signed-rank tests when data 
significantly deviated from a Gaussian distribution (Supplementary Table 2). 
 
Motor kinematic analyses 
 

Motor noise was assessed via analysis of kinematic data from a simple reach-to-drop 
task from the IRCCS-MEDEA dataset. Here we defined motor noise as the degree of 
similarity in movement trajectories between repeated trials on this task31,51. To estimate 
similarity between the 10 repeat trials of the task, we utilized multivariate dynamic time 
warping (DTW) implemented with the dtw function in the dtw library in R (distance metric: 
Euclidean, step pattern: Symmetric2, begin and end: close). For each individual, DTW 
resulted in a 10x10 similarity matrix. We defined motor noise as the median distance between 
trials, computed as the median in this 10x10 DTW similarity matrix. Larger values on this 
measure indicate higher levels of motor noise due to higher dissimilarity in movement 
trajectories between the 10 repeat trials (Fig 1C). Given that the movements were already 
segmented so that data for each trial started and ended with the starting and ending of the 
movement, the DTW algorithm was forced to match the first and the last timeframe while 
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comparing trials. Moreover, to avoid any bias given by the velocity in performing the 
movement, the normalized distance output was used for the subsequent analysis which 
represents the difference in the trajectories normalized by the total duration of the movement. 
Hypothesis tests for group differences in motor noise (e.g., DTW normalized distance) were 
examined with ANOVA and post hoc Welch two-sample t-tests. 
 
Examining motor noise during feedforward and feedback phases of reaching 
 

It is well known in the literature that reaching actions can be characterized by two 
phases52–58: 1) a first feedforward phase defined by the first deceleration peak after the max 
peak velocity, and 2) a subsequent feedback phase preceding the grasping of the object (Fig 
4A). These phases are thought to be underpinned by distinct neurocomputational mechanisms 
and thus are important to separate and examine for differences between autism motor 
subtypes. Therefore, in addition to examining motor noise for the entire reach-to-drop action, 
we also examined motor noise for these specific phases of the reach action. All of the same 
methods used to estimate motor noise with multivariate dynamic time warping were used in 
these analyses. The primary difference is that the movement trajectories were segmented into 
feedforward and feedback phases via identifying the first deceleration peak after the max 
velocity peak for the reaching action. Because the two phases of the reach action can be 
thought of as a within-subject factor, we modeled between-group differences as potential 
group*phase interactions within a linear mixed effect model that treated group and phase as 
fixed effects and modeled random intercepts grouped by subject ID.  
 
Gene expression decoding and enrichment analyses 

 
The third aim of this work was to test whether genomic mechanisms linked 

specifically to motor circuitry, autism, and developmental motor issues would converge on 
systems biological dysregulation of synaptic E:I mechanisms. To achieve these goals, we first 
utilized gene expression decoding analysis to isolate genes that spatially express in patterns 
that are highly similar to topology of macroscale networks isolated in previous resting state 
functional connectivity studies. For motor circuitry, we use a resting state fMRI (rsfMRI) 
connectivity map of well-known motor circuitry that covers motor and premotor cortex as 
well as cerebellar motor areas (Fig 5A). In contrast to motor circuitry, we also utilized all 
other non-motor related macroscale rsfMRI network maps (Supplementary Figure 1) defined 
from previous work utilizing independent components analysis to identify major well-known 
rsfMRI networks59. These networks comprise a range of cortical, subcortical and cerebellar 
networks, but exclude motor circuitry. Gene expression decoding was implemented via 
Neurosynth60 to identify genes that are statistically similar in their expression profile in a 
consistent manner across all six donor brains within the Allen Institute Human Brain Atlas 
(AHBA)61. The analysis first utilizes a linear model to compute the similarity between the 
motor connectivity map and spatial patterns of gene expression for each of the six brains in 
the AHBA dataset. The slopes of these subject-specific linear models encode how similar 
each gene’s spatial expression pattern is with our motor circuit connectivity map. These 
slopes were then subjected to a one-sample t-test to identify genes whose spatial expression 
patterns are consistently of high similarity across the donor brains to the motor connectivity 
map. This analysis was run using the full patterning across cortical, subcortical, and 
cerebellar areas. The resulting list of genes was then thresholded for multiple comparisons 
and only the genes surviving FDR q<0.05 and which had a positive t-statistic value were 
considered further. 
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After identifying genes that spatially express in a highly similar manner to motor 
circuitry, we next used gene set enrichment analysis to test whether motor circuitry-relevant 
genes are enriched for genes known to be associated with autism or developmental motor 
issues. For the autism-associated gene lists, we utilized an array of gene lists from past autism 
genomics work such as genes from the expert curated SFARI Gene database (list labeled in 
Fig 5C-D as SFARI) (https://gene.sfari.org/; release 01-23-2023), rare de-novo protein 
truncating variants associated with autism (list labeled in Fig 5C-D as dnPTV)25, genes and 
co-expression modules differentially expressed in autism from motor (BA3/1/2/5) and 
premotor (BA4/6) regions (lists labeled in Fig 5C-D as Motor Up or Down Modules and 
Motor DE Up or Down Genes)62, and genes differentially expressed from neuronal and non-
neuronal cell types (lists labeled in Fig 5C-D as Excitatory, Inhibitory, Astrocyte, Microglia, 
Endothelial)63. For genes associated with developmental motor issues, we combined gene 
lists curated in the Monarch database (https://monarchinitiative.org)64 for the phenotypes of 
‘delayed ability to walk’ (HP:0031936), ‘delayed gross motor development’ (HP:0002194), 
‘hypotonia’ (HP:0001252), ‘motor delay’ (HP:0001270), and ‘poor gross motor coordination’ 
(HP:0007015). All enrichment tests computed with custom code written in R that computes 
enrichment odds ratios and p-values based on hypergeometric tests. The background total for 
these enrichment tests was set to 16,796, which is the total number of genes considered in 
prior work as robustly expressed in brain tissue62. Only tests that survived FDR q<0.05 were 
interpreted further as statistically significant enrichments.  

 
Genes that were identified as associated with autism and developmental motor issues 

were tested for overlap with genes highly expressed in either motor circuitry, cortical and 
subcortical networks, and a cerebellar network (Supplementary Figure 1). Overlapping 
autism- and developmental motor issue and motor circuitry genes were used in a protein-
protein interaction analysis, implemented in STRING (https://string-db.org/) with the default 
settings of the full STRING network, usage of all interaction sources, a minimum required 
interaction score of 0.4, and restricted to only the query proteins. Gene ontology molecular 
function and cellular compartment enrichment terms were identified from this analysis that 
showcased involvement of different synaptic compartments and ion channel molecular 
functions.  
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Figure 1: Overview of motor stratification and kinematic data analysis workflow. First, we 
combined the IRCCS-MEDEA and NDA datasets while doing initial preprocessing steps to 
remove confounding effects of originating study ID, MABC2 module, and sex (A). Panel B 
shows the workflow for stability-based relative clustering validation (reval) analyses that 
aimed to identify the optimal number of clusters (best k) that minimizes normalized stability 
in independent splits of the data (training and validation) and estimate the generalization 
accuracy of such optimal (best k) clustering solution. Panel C shows analysis workflow for 
how we estimated motor noise from kinematics data acquired during a simple reach-to-drop 
task. Here, 10 repeat trials were administered and we used multivariate dynamic time 
warping (DTW) to align and compare motor kinematic trajectories across the 10 repeat 
trials. Motor noise is operationalized as the median similarity across trials (DTW dist norm) 
whereby higher estimates are indicative of more motor noise (i.e., increased dissimilarity 
between repeat trials). Panel D shows how final hypothesis tests were done examining 
subtype differences in motor noise.  
 
 
Results 
 
Identification of autism motor subtypes with data-driven clustering 
 

Our primary goal of this work was to examine heterogeneity in early motor profiles in 
autism. However, before diving into analyses that examine such heterogeneity, it is important 
to first describe how autism can be characterized as a whole via a case-control analysis 
relative to both a TD group and also a non-autistic comparison group with significant motor 
impairment (DCD). Large group differences are apparent in MABC2 total standardized score 
(F = 148, p =2.01e-46), which can be described as lower scores in autism compared to TD 
(t(302.76) = -16.37, p =1.42e-43, Cohen’s d = 1.87), but no case-control differences when 
autism is compared to DCD (t(34.35) = 0.29, p = 0.77, Cohen’s d = 0.05) (Fig 2A). 
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These case-control analyses may indicate that very prominent motor impairments are 
a key characteristic of autism as a whole. However, before making this interpretation, it is 
important to analyze whether the autism group could be split into robust, stable, and 
reproducible subtypes. Evidence supporting the notion that autism can be split into subtypes 
may help refine the precision of our interpretations about motor skills for specific types of 
autistic individuals. To test this, we analyzed multivariate clinical motor profiles from the 
MABC2 for evidence of robust, stable, and reproducible autism subtypes with stability-based 
relative clustering validation (reval) analysis42. Our analysis revealed the existence of two 
autism motor subtypes with high generalization accuracy (89%) in independent data (Fig 2B). 
These subtypes showed evidence of separated clusters with tests against the null hypothesis 
that they originated from one multivariate Gaussian distribution (SigClust p =9.999e-05). The 
subtypes can be described as relatively ‘High’ (55%) versus ‘Low’ (44%) levels of motor 
proficiency, with subscales such as Manual Dexterity (MD) (Cohen’s d for the training set = 
1.55, validation set = 2.18) and Static and Dynamic Balance (SDB) (Cohen’s d for the 
training set = 2.06, validation set = 1.73) showing the largest differentiation between the 
subtypes (Fig 2C and 2D), whereas much less differentiation exists between subtypes in the 
Ball Skills (BS) subscale (Cohen’s d for the training set = 0.43, validation set = 0.54). 
Notably, the subtypes are identified with high generalization accuracy without visible 
evidence of hard cutoffs (Fig 2C-D). However, it is apparent when data is plotted with 
traditional MABC2 cutoffs for motor impairment that the relatively ‘Low’ subtype scores at 
or below this threshold, while the relatively ‘High’ subtype is largely above this cutoff for a 
majority of the autistic individuals (Fig 2C-D). With robust and stable subtype labels known, 
we can re-evaluate our model of group differences considering the autism subtypes along 
with TD and DCD. With the model comparison Akaike Information Criterion (AIC) statistic, 
this model is significantly better at explaining variance in total MABC2 standardized scores 
(ΔAIC = 137). We can also describe how the ‘Low’ and ‘High’ subtypes compare relative to 
the TD and DCD comparison groups. The ‘Low’ subtype is more than 3 SD below the TD 
group (t(209.02) = -26.98, p = 4.43e-70, Cohen’s d = 3.22), and is also more impaired than 
the DCD group, even though the effect size is much less pronounced (t(28.32) = -2.99, p = 
0.005, Cohen’s d = 0.89). In contrast, the ‘High’ group still shows lower on-average scores 
compared to TD (t(255.93) = -11.81, p = 2.19e-25 , Cohen’s d = 1.46), but they show higher 
scores than DCD (t(30.17)= 4.94, p = 2.69e-5, Cohen’s d = 1.3). This  indicates that the 
overall lack of case-control difference between autism and DCD described earlier was driven 
primarily because of the ‘Low’ autism subtype.   

 
We next tested for differences between the subtypes on skills outside of the motor 

domain. No significant difference exists in age between subtypes (Wilcoxon Z = 1270, p = 
0.2). Given literature showing that motor impairments tend to also be associated with other 
impairments in cognitive skills as well as achievement of early developmental milestones, we 
discovered that the relatively ‘Low’ motor skill autism subtype shows significantly lower 
scores in general cognitive ability (t(85.96) = 3.3, p = 0.001, Cohen’s d = 0.7) and age at 
independent walking (Wilcoxon Z = 417, p = 0.015, Cohen’s d = 0.67). However, no 
significant difference was apparent for age at first words (Wilcoxon Z = 343.5, p = 0.95). 
Similarly, no significant differences were apparent for ADOS measures of symptom severity 
or autistic traits measured by the SRS (Fig 3 and Supplementary Table 2).  
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Figure 2: Autism motor subtypes. Panel A plots the MABC2 total standardized score for 
typically-developing (TD; yellow-orange), autistic (blue), and Developmental Coordination 
Disorder (DCD; maroon) individuals. The horizontal solid black and red lines represent 
cutoffs for “at risk of having a motor impairment” (solid black line) and “have a motor 
impairment” (solid red line) according to the MABC2 manual. With stability-based relative 
clustering validation (reval) analyses, the optimal clustering solution identified was k=2, 
indicating two subtypes that could be identified with 89% accuracy in independent data. The 
two subtypes (Autism High, light blue; Autism Low, dark blue) are described with respect to 
total MABC2 score, and the MD, BS, and SDB subscales of the MABC2 in the Training (C) 
and Validation (D) sets.  
 

 
Figure 3: Characterization of autism motor subtypes by age, general cognitive level, early 
developmental milestones, and autistic traits and symptom severity. In this figure we 
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describe subtypes (Autism High, light blue; Autism Low, dark blue) in terms of age, general 
cognitive level, age at acquisition of early developmental milestones (age at independent 
walking and first words), and autistic trait and symptom severity as measured by the SRS-2 
and ADOS-2 respectively. The asterisk (*) indicates p<0.05. 
 
Autism motor subtypes are differentiated by motor noise 
 

So far, we have demonstrated that autism can be separated into at least two subtypes 
by clinical motor profiles. Our second aim of this work was to test whether such subtypes are 
highly differentiated in terms of motor noise. Using motor kinematics data from the IRCCS-
MEDEA dataset during a simple reach-to-drop task, we characterized motor noise as the 
degree of similarity between multivariate movement trajectories during 10 repeat executions 
of those actions. Higher levels of motor noise are indicated by higher DTW normalized 
distance. We find highly significant differences between groups in motor noise (F = 8.7, p = 
2.5e-4), driven by enhanced motor noise in the relatively ‘Low’ subtype compared to the 
relatively ‘High’ subtype (t(66.87) = -3.2, p = 0.002, Cohen’s d = 0.77) and compared to TD 
children (t(60.11) = -4.1, p = 1.33e-4, Cohen’s d = 0.85). In contrast there was no difference 
between the relatively ‘High’ subtype and TD children (t(71) = -0.4, p = 0.66, Cohen’s d = 
0.08)  (Fig 4B). This result reflects poorer precision, and thus higher variability, in repeat 
executions of the action that is specific to the relatively ‘Low’ subtype. Illustrative examples 
of this effect can be seen in Fig 4D-E, whereby it is visually evident that the individual in the 
‘High’ subtype shows very similar trajectories for each of the 10 repeat executions, while the 
example individual in the ‘Low’ subtype shows much more variable trajectories for each 
execution.  

 
Enhanced motor noise during the feedforward phase of reaching 
 

The reaching component of our task can be broken down into two functionally 
separable components - feedforward and feedback phases. The transition between these 
phases is demarcated by  the end-point (i.e., wrist) transport deceleration peak57. Therefore, 
we re-examined motor noise when the data is split into these two phases. Linear mixed effect 
modeling was able to identify a significant group*phase interaction (F =3.5, p = 0.03) which 
is indicative of group differences in motor noise that are dependent on the phase (feedforward 
or feedback). Follow-up tests showed that the autism subtypes are highly differentiated 
during the feedforward phase (t(61.87) = -3.56 , p = 7e-4, Cohen’s d = 0.87), but were not 
different during the feedback phase (t(58.05) = -1.55 , p = 0.12, Cohen’s d = 0.39) (Fig 4C). 
Examination of motor noise for the drop action also indicated that the ‘Low’ subtype showed 
more motor noise than the ‘High’ subtype (t(57.87) = -2.05, p = 0.045, Cohen’s d = 0.51) 
(Fig 4C). Comparing the autism subtypes to TD children, we observed a similar expression of 
motor noise in the relatively “High” subtypes in the both feedforward and feedback phase and 
in the drop action, while the motor noise of the relatively “Low” subtype is always higher 
with respect to TD children (Supplementary Table 4). Overall, these results demonstrate that 
enhanced motor noise is a specific characteristic of the relatively ‘Low’ motor skill autism 
subtype and that this effect could be most pronounced within neural circuitry that supports 
computations critical for feedforward processing. 
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Figure 4: Enhanced motor noise specific to the poor motor skill autism subtype. Panel A 
shows the reach-to-drop task, segmented into reach and drop actions, and with the reach 
action split into feedforward and feedback phases according to the deceleration peak. Panel 
B shows group differences (TD, yellow-orange; Autism High, light blue; Autism Low, dark 
blue) when motor noise is measured across the entire reach and drop actions, motor noise for 
each subject is operationalized as the median normalized distance between 10-trials 
movement trajectories computed with multivariate Dynamic Time Warping. Panel C shows 
group differences when the task is split into reach and drop actions and with the reach action 
split into feedforward and feedback phases. Panels D and E show example trajectories (one 
line per trial) in the original 3D space (X, Y, Z) for one body part (lateral wrist) for randomly 
selected ‘High’ and ‘Low’ autistic individuals, in order to visually show how motor noise can 
be understood as higher levels of variability across repeat motor actions. The asterisk (*) 
indicates p<0.05. 
 
Genomic mechanisms behind enhanced motor noise via synaptic E:I imbalance 
 

In the final set of analyses, we used genomics datasets and approaches to isolate 
candidate mechanisms that may underpin poor motor skills and enhanced motor noise via 
synaptic E:I imbalance. To test this hypothesis, we first isolated a subset of genes that 
spatially express in patterns that are highly similar to motor circuitry, via gene expression 
decoding analysis on an input map of whole-brain motor circuitry spanning motor and 
premotor cortex as well as cerebellar motor regions59 (Fig 5A-B; Supplementary Table 5). 
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These motor circuit genes are highly enriched with autism-associated genes - particularly, 
genes that harbor high-penetrant mutations linked to autism (e.g., SFARI, dnPTV), genes 
from autism-downregulated co-expression modules from motor and premotor cortex, and 
genes differentially expressed in autism within excitatory and inhibitory neuronal cell types 
(Fig 5C; Supplementary Table 6). This result suggests that a number of important autism-
associated genomic mechanisms can have prominent impact on motor circuitry. A very 
similar profile of autism-associated enrichment was observed with genes linked to 
developmental motor issues (Fig 5D; Supplementary Table 6), with the strongest enrichment 
for rare de-novo protein truncating (dnPTV) genes.  Genes that are both autism-associated 
and associated to developmental motor issues are significantly enriched with that are genes 
highly expressed in motor circuitry (OR = 1.64, p = 0.002). In contrast, no significant 
enrichment can be identified with a collection of all other genes highly expressed across a 
range of other cortical and subcortical (OR = 2.49, p = 0.44) or a cerebellum-only network 
(OR = 1.06, p = 0.99). These results suggest that genes associated to both autism and 
developmental motor issues overlap in a specific-manner with genes highly expressed in 
motor circuitry compared to the rest of the brain. With a protein-protein interaction analysis, 
we also identified that motor circuit-relevant genes that are also associated with autism and 
developmental motor issues strongly interact at the protein level (observed edges = 591, 
expected edges = 177, p < 1e-16), and is characterized by key synaptic E:I-relevant 
enrichments affecting glutamatergic and GABA-ergic synapses (e.g., GRIN2A, GRIN2B, 
GRIN1, GABRB2, GABRG2, GABRA1, GABRA5, NRXN1, SNAP25, DLG3) as well as ion 
channel activity (e.g., calcium channels, voltage-gated sodium and potassium channels; 
SCN2A, SCN1B, SCN8A, KCNQ2, KCNQ3, KCNQ5, KCNA1, KCNA2, KCNMA1, KCNJ11, 
KCNB1, KCNH1,  CACNA1B, CACNG2, HCN1) (Fig 5E). All together, these results 
highlight that genomic mechanisms highly expressed in motor circuitry and associated with 
autism and developmental motor issues can be described by a highly interacting set of 
proteins that prominently affects synaptic E:I balance.    
 

 
Figure 5: Genes associated with autism and developmental motor issues are specifically 
enriched for genes highly expressed within motor circuitry and highlight E:I imbalance 
mechanisms. Panel A shows cortical, subcortical and cerebellar motor circuitry isolated 
with resting state fMRI connectivity analysis (taken from the IC12 rsfMRI connectivity map 
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from Bertelsen et al., 2021). Gene expression decoding analysis was implemented on this 
motor circuit map to identify the subset of genes showing evidence for highly similar spatial 
expression patterns to this motor circuit. Examples are shown in panel B of 8 genes that show 
strong spatial expression similarity to motor circuitry and which are also autism-associated 
and linked to developmental motor issues. Genes linked to IC12 motor circuitry (C) or 
developmental motor issues (D) are enriched for similar profiles of autism-associated 
genomic mechanisms, as shown in panels C and D respectively. These plots show the 
enrichment odds ratio for each of the 12 autism-associated gene lists. The asterisk indicates 
significant enrichments that pass FDR q<0.05. Increasingly red color indicates increasing 
statistical significance of the enrichment test, as indicated by the -log10 p-value. Panel E 
shows a network plot of protein-protein interactions between genes that are associated with 
autism and developmental motor issues and are highly expressed specifically within motor 
circuitry (IC12). Colors for some nodes indicate involvement at the synapse, glutamatergic or 
GABA-ergic transmission, or with ion channel activity. 
 
Discussion 
 

In this work we aimed to study heterogeneity in early motor ability in autism. Past 
work has indicated that motor issues are a very prominent feature of autism and that it could 
be potentially important to consider adding this domain to the diagnostic criteria in the 
future1,16. Congruent with these ideas, if one were to simply use cut-off scores on the 
MABC2, we would find that a large majority of autistic individuals in our sample (74%) 
show medium to severe motor impairments, while only 26% possess motor skills in line with 
age-expected norms. However, this way of analyzing the data does not rigorously test 
whether autism is indeed a single group or a collection of different subtypes in the motor 
domain. Our work shows first and foremost that when considering motor ability in autism, 
the data do not conform to a single unitary group. Rather, autism can be split in an unbiased 
and data-driven manner into two subtypes – relatively ‘High’ versus ‘Low’ groups. These 
‘High’ versus ‘Low’ subtype labels are intended as descriptive terms referencing the scores 
of MABC2 test and are not meant to be interpreted in relation to functioning level of each 
subtype. While the autism group shows on-average lower standardized scores on the 
MABC2, this lower level of motor ability is clearly driven by the ‘Low’ subtype, which 
considerably drives down the overall average score of the autism group. However, even the 
relatively ‘High’ subtype identified here is still on-average lower than the TD group (Cohen’s 
d = 1.46). Nevertheless, this relatively ‘High’ group is still higher than a non-autistic group of 
individuals with very pronounced motor impairments (e.g., the DCD group; Cohen’s d = 1.3). 
Finally, the percentages of individuals in these two subtypes (Low = 44%; High = 55%) do 
not easily conform to the percentages seen when one uses standardized cutoff scores on the 
MABC2 (e.g., 74% vs 26%). This result illustrates the need to characterize autistic 
individuals not only by where they stand relative to TD norms, but also with regards to how 
they are grouped within the autism population65.  
 

After identifying heterogeneity in early motor skills in autism, we next found that the 
relatively ‘Low’ autism motor subtype could be characterized by enhanced motor noise 
during a simple reach-to-drop task where fine-grained motor kinematics were measured. 
Motor noise is defined as the degree of variability in repeat motor actions31 and is thought to 
be a downstream consequence of neural noise within motor circuitry30. The concept of neural 
noise can be linked to long-standing ideas in autism research such as the E:I imbalance 
theory28,29. It is known that many highly penetrant rare genetic mutations associated with 
autism also highly dysregulate E:I balance28,29 and these types of genetic mutations are often 
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associated with delays in acquiring early motor milestones22–27. Enhanced motor noise 
specific to the relatively ‘Low’ autism motor subtype may be revealing of very different 
neurobiological mechanisms linked to synaptic E:I imbalance in motor circuitry. Genomics 
analyses supported these inferences, as we identified a convergence of genes highly 
expressed within motor circuitry that are also associated with autism and developmental 
motor issues. Highlighting the specific importance of canonical motor circuitry, in other 
analyses we found no significant enrichment with genes highly expressed across many other 
non-motor related cortical and subcortical networks or a cerebellum-only network. Autism- 
and developmental motor issue genes that are highly expressed in motor circuitry also highly 
interact at the protein-level and are integrally involved with mechanisms of direct relevance 
to synaptic E:I balance (e.g., glutamatergic and GABA-ergic synapses, ion channel activity). 
These results point to the possible interpretation that atypical genomic mechanisms linked to 
autism and poor motor development act specifically on motor circuitry to disrupt synaptic E:I 
balance and could help to explain why enhanced motor noise is a key characteristic of the 
poor motor skill autism subtype. With regards to how these insights could help drive future 
work, we suggest that new work could utilize our motor stratification model to examine how 
these motor subtypes might be different with respect to biomarkers relevant to E:I imbalance 
in neuroimaging data66, particularly with respect to cortical motor circuitry. If E:I imbalance 
is a key neurobiological issue in the ‘Low’ motor subtype, it may be important to utilize our 
stratification model in clinical trials that target key E:I mechanisms 67–69 and their effects on 
motor circuitry. Other future work could examine how rare variant or polygenic genomic 
architecture may affect motor circuitry in a differential manner in phenotypically-defined 
autism subtypes where motor skills are the central differentiating factor. 

 
While motor noise highly differentiated the subtypes for trajectories analyzed across 

the entire reach-to-drop task, we also discovered that enhanced motor noise in the ‘Low’ 
subtype may be most pronounced for the feedforward phase of the initial reach action. This 
result is consistent with previous studies that provided evidence for alterations in the 
feedforward-based phase34,70,71. This result is also important with respect to the hypothesized 
different neurocomputational mechanisms that underlie feedforward versus feedback motor 
control. Motor control is based on the integration of feedforward action planning and 
feedback-based control processes. Feedforward processing derive from internal 
representations of the action that specify a relatively coarse motor output prior to its 
initiation, while feedback processes fine-tune the motor output on the fly, relying on sensory 
feedback and often applying corrective adjustments72. Action representations, as well as the 
neural machinery required to adapt them to incoming sensory information, are believed to 
rely on the cerebellum53,73,74. Altered cerebellar function during development might play a 
key role in contributing to both motor and non-motor alteration in autism75. Altered 
feedforward and feedback mechanisms are also associated with the severity of 
communication impairments in autism and could potentially reflect the respective 
contributions of the anterior and posterior cerebellum76. Reduced motor noise during the 
feedforward phase for the ‘High’ autism motor subtype suggests that this subgroup, rather 
than having better feedback-based correction abilities, are characterized by relatively more 
preserved representation of actions. 

 
 In contrast to the sharp differences between autism motor subtypes in terms of general 
cognitive ability, acquisition of early motor milestones, and motor noise, these subtypes were 
not highly differentiated in terms of age, autistic traits, or autism symptom severity. This lack 
of differentiation in autistic traits and core autism symptom severity is important because it 
potentially underscores the orthogonal nature of motor versus core diagnostic features of 
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autism (e.g., SC and RRB domains). An emerging literature is building indicating that the 
single diagnostic label of autism is not enough for understanding clinical and biologically 
important features within autistic individuals77,78. Rather than looking to core SC and RRB 
features, it seems that a constellation of related features that do not represent the core features 
of autism, such as motor, language, intellectual, and adaptive functioning, may better separate 
out important clinical and biological distinctions within the autism population. Supporting 
this statement, there is evidence showing that motor difficulties in autism tend to highly co-
occur with language delay6–8, cognitive impairment9–11, poorer developmental outcomes, and 
reduced life quality12,14. Similarly, individuals with very poor early language outcome tend to 
also have extensive issues in motor, non-verbal cognitive ability, and adaptive functioning, 
and also have very different structural and functional neural mechanisms underpinning their 
difficulties79–82. A theoretical advance forward for the field would be to put together these 
findings under a model that supports the fact that a primary split in the autism population 
should be between individuals with very pronounced issues in this constellation of non-core 
features in motor, language, intellectual, and adaptive functioning. We have proposed such a 
theory and have provided initial evidence in support of this subtyping model65. The current 
work identifying 2 discrete subtypes in the motor domain and which have differences 
extending into other domains like general cognitive ability alongside potential differences in 
underlying neural mechanisms matches the predictions of our model and provides further 
empirical support for it.   
 
 In conclusion, we have shown evidence that autism can be split into two subtypes 
based on early clinical motor profiles measured by the MABC2. These subtypes show other 
differences in general cognitive ability, acquisition of early motor milestones, and motor 
noise. However, they are not different with regards to autistic symptomatology. Our findings 
fit with general findings that autism can be stratified into robust/stable and discrete subtypes 
and that such subtypes including motor issues may be very relevant to the larger scope of 
subtypes that share issues across language, intellectual, and adaptive functioning but are 
likely orthogonal to issues within the core autism domains of SC and RRB. 
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Supplementary Figure 1: All rsfMRI networks analyzed in gene expression decoding 
analyses. These networks were isolated from a group independent components analysis (ICA) 
previously reported in our work59. The three panels in this figure reflect the networks that 
were analyzed as a set in the gene expression decoding analysis and subsequent enrichment 
analysis. First, a gene expression decoding analysis was done for each IC map. Then the 
subsequent genes surviving multiple comparison correction at FDR q<0.05 were selected 
and used in an enrichment analysis to test for significant overlap with a gene set associated 
with both autism and developmental motor issues. Panel A shows the primary component 
reflecting motor circuitry (IC12). Panel B shows the cerebellar network (IC20). Panel C 
shows all other non-motor related cortical and subcortical networks. Since there are many 
ICs in this collection of other non-motor related cortical and subcortical networks, we first 
concatenated together all genes from the gene expression decoding analyses of each IC map, 
and then ran the final enrichment test on this large concatenated list of genes from all of 
these networks combined.  
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