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Abstract

Outbreaks of emerging and zoonotic infections represent a substantial threat to human
health and well-being. These outbreaks tend to be characterised by highly stochastic
transmission dynamics with intense variation in transmission potential between cases.
The negative binomial distribution is commonly used as a model for transmission in the
early stages of an epidemic as it has a natural interpretation as the convolution of a
Poisson contact process and a gamma-distributed infectivity. In this study we expand
upon the negative binomial model by introducing a beta-Poisson mixture model in
which infectious individuals make contacts at the points of a Poisson process and then
transmit infection along these contacts with a beta-distributed probability. We show
that the negative binomial distribution is a limit case of this model, as is the
zero-inflated Poisson distribution obtained by combining a Poisson-distributed contact
process with an additional failure probability. We assess the beta-Poisson models
applicability by fitting it to secondary case distributions (the distribution of the number
of subsequent cases generated by a single case) estimated from outbreaks covering a
range of pathogens and geographical settings. We find that while the beta-Poisson
mixture can achieve a closer to fit to data than the negative binomial distribution, it is
consistently outperformed by the negative binomial in terms of Akaike Information
Criterion, making it a suboptimal choice on parsimonious grounds. The beta-Poisson
performs similarly to the negative binomial model in its ability to capture features of
the secondary case distribution such as overdispersion, prevalence of superspreaders,
and the probability of a case generating zero subsequent cases. Despite this possible
shortcoming, the beta-Poisson distribution may still be of interest in the context of
intervention modelling since its structure allows for the simulation of measures which
change contact structures while leaving individual-level infectivity unchanged, and
vice-versa.

Introduction 1

Infections at the human-animal interface are often associated with high levels of 2

morbidity and mortality, making them a subject of substantial interest to mathematical 3

modellers and other infectious disease researchers [1]. These infections often have low 4

reproductive ratios, meaning that their behaviour is characterised by “stuttering” 5

outbreaks, with each case infecting only a small number of contacts and local extinctions 6

occurring frequently [1–3]. These dynamics are also characteristic of outbreaks of 7

infections such as measles and mumps in populations which are mostly vaccinated and 8
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where the infection is close to eradication [1, 2]. Stuttering outbreaks with low numbers 9

of cases permit more complete observation than larger epidemics and pandemics, 10

allowing public health workers and researchers to identify individual transmission events 11

and estimate a transmission chain, the network obtained by drawing an edge from each 12

case back to its infector. The topology of this network characterises the epidemic, with 13

its mean giving the basic (in the case of a novel infection with no preexisting immunity) 14

or effective (in the close-to-eradication setting) reproductive ratio [2]. 15

The key to interpreting transmission chain behaviour from a mathematical 16

perspective is the theory of branching processes. Branching process models provide a 17

rigorous description of an outbreak’s early behaviour in the stages before the underlying 18

susceptible population becomes depleted [4] and are a well-established item in the 19

inventory of mathematical methods available to epidemiologists [1, 3, 5–10]. A branching 20

process model can be formulated from transmission chain data by using the degree 21

distribution of the transmission network as the branching process’s offspring 22

distribution, the distribution of the number of cases generated by each case. We refer to 23

these cases as secondary cases. In some cases rather than a fully described transmission 24

chain we may just know the number of secondary cases assigned to each case in the 25

outbreak, and we will refer to such data as secondary case data. Results from the theory 26

of branching processes can be used to calculate useful quantities like the outbreak size 27

distribution and probability that an outbreak goes extinct [11]. One of the major 28

benefits of branching process models over more typical compartmental models is that 29

they are not tied to the combination of a Poisson contact process and exponential 30

infectious period which underlies most compartmental modelling. Although models for 31

infections with non-exponential infectious periods can be simulated and analysed, they 32

are in general non-Markovian and call for sophisticated mathematical techniques [12]. 33

In particular, branching processes whose offspring distribution is the same at every 34

generation, known as Galton-Watson processes, are always Markovian since the number 35

of cases in a given generation depends only on the number in the last generation and 36

are easily simulated on this generation-by-generation basis by drawing successive 37

random numbers from the offspring distribution. 38

While some studies use the empirical transmission chain degree distribution as an 39

offspring distribution [8, 13], it is more common to use a parametric model. Commonly 40

used offspring distributions include the Poisson [5], geometric [14], and negative 41

binomial [2, 3, 9, 15] distributions. The geometric and negative binomial models are both 42

examples of mixed Poisson distributions [16]. These are Poisson distributions where the 43

Poisson parameter is allowed to vary according to some continuous mixing distribution - 44

in the case of the geometric and negative binomial, an exponential and a gamma 45

distribution respectively. The branching process model with geometric offspring 46

distribution specifically captures the early behaviour of the homogeneous stochastic SIR 47

model, where the exponentially-distributed infectious period and Poisson process 48

contact behaviour combine to give an exponential-Poisson mixture. Mixed Poisson 49

distributions are always overdispersed, meaning their variance is larger than their mean, 50

in contrast to the (unmixed) Poisson, whose mean and variance are equal [16]. 51

The negative binomial model’s overdispersion gives it the capacity to model 52

superspreading events, where the number of secondary cases generated by a single case 53

is substantially more than the mean. Lloyd-Smith et al. developed a more formal 54

definition, where a superspreading event for an infection with effective reproductive 55

ratio R is a transmission event in the upper nth percentile (in their study they take 56

n = 99) of the Poisson distribution with mean R [2]. Examples of superspreading have 57

been recorded in novel coronavirus outbreaks [17,18], and in the close-to-eradication 58

setting in measles [19]. 59

Another approach to modelling overdispersed count data is to use zero inflation. 60
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Zero inflated distributions specifically model count data with more zeros than would be 61

expected under ordinary modelling assumptions [20, 21]. This is a natural interpretation 62

to consider since transmission chains often contain a high proportion of individuals who 63

do not produce any subsequent cases. In this context zero inflation can be interpreted 64

as modelling situations in which infectious cases are unable to engage in ordinary 65

contact behaviour either because of hospitilisation and effective control measures, or 66

simply because they are too unwell. 67

In this article we introduce an approach which models the number of secondary 68

cases produced by an infectious individual as a beta-Poisson mixture, a Poisson 69

distribution whose mean is scaled by a beta-distributed random variable. Early 70

formulations of the beta-Poisson distribution date back to the 1960’s [22], and in 71

infectious disease modelling contexts it is sometimes used as a dose-response 72

model [23,24]. However, it is not typically used as a person-to-person transmission 73

model, despite a natural and intuitive interpretation as the combination of a social 74

contact formation process and a transmission process across those contacts. Under this 75

interpretation, each case is assigned a transmission probability drawn from a beta 76

distribution, and makes a Poisson-distributed number of contacts during their infectious 77

period. The beta-distributed transmission probability tells us the probability that a 78

given social contact results in a successful transmission event. The distribution of 79

transmission probability is intended to capture individual-level differences in contact 80

behaviour (for instance, the high frequency of physical touch-based contacts made by 81

children relative to adults [25]) and physiological response (such as age-dependent 82

effects in COVID-19 symptomaticity [26]). We will assess the effectiveness of the 83

beta-Poisson mixture as a transmission model by fitting it to eight sets of secondary 84

case data and compare its performance with the Poisson, geometric, negative binomial, 85

and zero-inflated Poisson (ZIP) distributions. 86

Results 87

Code for replicating the following analysis is available at 88

github.com/JBHilton/beta-poisson-epidemics. 89

The beta-Poisson model has three parameters: the mean number of secondary cases 90

λ, a measure of overdispersion Φ, and the mean number of contacts N made over an 91

individual’s infectious period. Mechanistically, it describes the following transmission 92

process: each infectious individual draws a transmission probability p from a beta 93

distribution with parameters α1 = λΦ and α2 = (N − λ)Φ, draws a number of contacts 94

from a Poisson distribution with mean N , and infects each of these contacts with 95

probability p. The total number of contacts generated by an individual with infection 96

probability p is therefore Poisson with mean pN . This is a generalisation of more 97

standard definitions of the beta-Poisson distribution [22–24], where the Poisson 98

parameter itself is p, equivalent to the specific case N = 1 in our model. 99

In the Methods section we demonstrate that four other common choices of secondary 100

case distribution (Poisson, geometric, negative binomial, and zero-inflated Poisson) [2] 101

can be considered special limiting cases of the beta-Poisson. In the limit N →∞, the 102

beta-Poisson distribution is equivalent to the negative binomial distribution with mean 103

λ and overdispersion θ = Φ−1. Because the negative binomial distribution has the 104

Poisson and geometric as special cases (overdispersion θ = 0 and θ = λ respectively) 105

these special cases are inherited by the beta-Poisson. The zero-inflated Poisson 106

distribution is a convex combination of a Poisson distribution with mean λ̃ and a point 107

probability mass at zero with convexity parameter σ, so that the probability of 108

obtaining zero is given by σ plus the probability of drawing zero under the Poisson 109

distribution, and the probability of obtaining x > 0 is given by the Poisson probability 110
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of obtaining x multiplied by (1− σ). The natural epidemiological interpretation of this 111

distribution is that individuals either generate a Poisson number of secondary cases 112

with probability 1− σ, or are prevented from making contacts due to either illness or a 113

planned intervention and do not generate secondary cases with probability σ. This is 114

analogous to our beta-Poisson distribution in the limit Φ→ 0 (i.e. α1 + α2 → 0). In 115

this limit the underlying beta distribution tends to a two-point distribution with 116

probability α2/(α1 + α2) at zero and probability α1/(α1 + α2) at one, so that the beta 117

draw tends towards the choice in the ZIP distribution between generating zero cases or 118

generating a Poisson-distributed number of case. The ZIP limit of the beta-Poisson 119

distribution will have Poisson parameter λ̃ = N and zero inflation parameter 120

σ = 1− λ/N . A visual comparison of the mechanisms underlying the different offspring 121

distribution models is provided in Fig 1. To establish whether or not the beta-Poisson 122

offers a meaningful improvement over these limiting distributions, we will fit all five 123

models to transmission chain data and compare their fitting behaviour. 124

For the Poisson and geometric models λ̂, the MLE of λ, is given by the sample mean. 125

We calculate confidence intervals for these model fits using a grid calculation. For the 126

negative binomial model we find λ̂ by calculating the sample mean and calculate the 127

MLE of θ by finding the maximum of its log likelihood function numerically using the 128

scipy.optimize package in Python [27]. Confidence intervals for both parameters are 129

estimated by performing 10,000 bootstrap samples. For the zero-inflated Poisson model, 130

the MLEs of λ and σ are calculated using scipy.optimize, with the confidence intervals 131

estimated using a grid calculation. In this case λ is not the mean of the overall 132

distribution but the mean of the Poisson component of the distribution. For the 133

beta-Poisson distribution, λ̂ is given by the sample mean. In the Methods section we 134

demonstrate that the contact parameter N has to be at least as large as λ for the 135

beta-Poisson distribution to be well-defined. Based on this restriction and the fact that 136

the model is valid when N =∞, we define ν = N−1 so that we can fit ν over the 137

interval [0, 1/λ̂). MLEs of Φ and ν are calculated using scipy.optimize. Confidence 138

intervals on all three parameters are calculated by performing 10, 000 bootstrap samples. 139

For each bootstrap sample we also calculate the probability of a case generating zero 140

cases, the overdispersion, and the probability of generating a number of offspring in the 141

upper 99th percentile of the fitted Poisson distribution (i.e. the proportion of cases who 142

are superspreaders according to the definition used by Lloyd-Smith et al. [2]) under each 143

fitted distribution. 144

We fit each candidate model to eight sets of reconstructed secondary case data. Each 145

of the datasets lists the number of cases in an outbreak which are inferred to have 146

generated x secondary cases, for x running from zero up to the maximum number of 147

secondary cases to be traced back to any one individual. Pneumonic plague, mpox (also 148

known as monkeypox), and norovirus are each represented by single datasets. There are 149

two sets of data from Ebola outbreaks and three from outbreaks of infections caused by 150

novel coronaviruses: two of MERS and one of SARS. These datasets include examples 151

of several different transmission routes: pneumonic plague and the two coronaviruses 152

are spread through airborne transmission, norovirus mostly transmits through fecal-oral 153

contact, and both Ebola and mpox are able to spread both through airborne 154

transmission and through contact with bodily fluids (which itself includes fecal-oral 155

contact). 156

The plague data is taken from a 2004 paper on pneumonic plague by Gani and 157

Leach and combines data from several outbreaks [28]. This mixture of sources is clearly 158

problematic since it can obscure differences between outbreaks caused by antigenic shift 159

or simply socioeconomic disparities between the underlying populations (the data 160

stretches across three continents and ninety years). Gani and Leach themselves find 161

that a geometric distribution gives a good fit to the data, suggesting comparatively 162
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Poisson

Negative binomial

ZIP

Beta-Poisson

1-𝜎

p

Fig 1. Mechanistic comparison of the different offspring distribution models. Under a
Poisson model, each infectious individual generates a number of secondary cases, drawn
from a Poisson distribution which is the same for all infectious individuals. Under a
negative binomial model, each infectious individual is assigned an innate infectivity,
drawn from a gamma distribution, which defines a Poisson distribution from which they
draw their secondary cases. Under the zero-inflated Poisson model, each infectious
individual either generates no secondary cases with probability σ, or else with
probability 1− σ generates a Poisson-distributed number of secondary cases, with the
same Poisson parameter for all infectious individuals. Finally, under the beta-Poisson
distribution each infectious individual is assigned their own infection probability p from
a beta distribution, makes a Poisson-distributed number of contacts, and then infects
each of these contacts with probability p.
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homogeneous spreading behaviour despite the range of sources. The mpox data is taken 163

from a 1987 paper by Jezek et al. which reported on a mpox surveillance programme in 164

what is now the Democratic Republic of Congo [13]. The first Ebola dataset is from a 165

paper by Fasina et al. which constructs the transmission tree of a local outbreak in 166

Nigeria during 2014 [29]. This outbreak was initiated by a single hospitalised patient to 167

whom twelve subsequent cases were traced, suggesting a possible superspreading event. 168

The other Ebola dataset is from a paper by Faye et al. which inferred transmission 169

chains from line list data from the 2014 Ebola outbreak [30]. The line list data included 170

all of the 193 confirmed probable and confirmed cases of Ebola in Guinea up to the time 171

of the study, with 79% of these cases being assigned to transmission chains. The data is 172

thus incomplete, but still provides us with a large sample of transmission behaviour in 173

the epidemic. The SARS dataset is based on a transmission tree constructed by the 174

Centre for Disease Control based on data from a SARS outbreak in Singapore, and 175

contains clear evidence of superspreading behaviour [31]. The first of the two 176

MERS-CoV datasets is from an outbreak of MERS which took place across three 177

hospitals in South Korea in 2015, with each within-hospital outbreak initiated by the 178

same index case who was moved between hospitals [32]. The data is extremely 179

overdispersed, with most cases producing no subsequent cases but the index case 180

producing over 80 subsequent cases. The other MERS-CoV dataset is from an outbreak 181

in Saudi Arabia and is significantly less overdispersed [18]. The norovirus dataset was 182

derived from a transmission tree constructed in a paper by Heijne et al. based on an 183

outbreak in a psychiatric hospital in the Netherlands [33]. This dataset has a 184

sub-geometric level of overdispersion. 185

The eight datasets are listed in Table 1; secondary case numbers which did not 186

appear in any of the datasets are not listed. Each column has a bold entry marking the 187

first element to appear after the 99th percentile of the Poisson distribution with mean 188

R, where R is the mean of the corresponding dataset, so that that entry (if nonzero) 189

and any below it record the number of superspreading events. All of the datasets 190

contain at least one superspreading event by this definition. 191

Secondary
cases

Plague Mpox Ebola,
Nigeria
2014

Ebola,
Guinea
2014

SARS,
Singa-
pore
2003

MERS,
South
Korea
2015

MERS,
Saudi
Arabia
2015

Norovirus,
Nether-
lands 2012

0 16 163 15 109 162 146 13 22
1 10 32 2 16 19 10 5 13
2 7 10 1 9 8 4 4 6
3 2 2 1 5 7 1 1 3
4 3 0 0 5 0 0 0 1
5 1 1 0 2 0 1 0 1
6 1 0 0 0 0 1 0 0
7 0 0 0 0 1 0 1 0
8 0 0 0 1 0 0 0 0
9 0 0 0 3 0 0 0 0
12 0 0 1 0 1 0 0 0
14 0 0 0 1 0 0 0 0
17 0 0 0 1 0 0 0 0
21 0 0 0 0 1 0 0 0
23 0 0 0 0 1 1 0 0
38 0 0 0 0 0 1 0 0
40 0 0 0 0 1 0 0 0
81 0 0 0 0 0 1 0 0
Total 53 63 19 145 159 174 23 43

Table 1. Frequency of secondary case numbers by dataset. Entries in bold denote the
superspreading boundary in each dataset.

The MLEs of the beta-Poisson model parameters fitted to each dataset are listed in 192
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Dataset Poisson Geometric Neg. bin. ZIP Beta-Poisson
Plague 136.84 129.1 130.62 131.89 132.24
Mpox 309.1 295.9 296.63 298.02 298.63
Ebola, Nigeria 2014 86.89 56.04 47.45 58.47 49.41
Ebola, Guinea 2014 602.41 413.56 358.39 416.11 360.37
SARS, Singapore 2003 902.35 496.15 357.47 579.32 359.47
MERS, South Korea 2015 1230.77 473.15 224.66 618.44 226.66
MERS, Saudi Arabia 2015 76.14 67.13 68.89 71.84 70.89
Norovirus, Netherlands 2012 128.8 125.28 126.57 127.25 128.46

Table 2. Akaike information criterion at MLE by model and dataset. The underlined
entry of each row is the minimal value of AIC attained for that dataset.

Dataset λ Φ ν
Plague 1.32 (0.88, 1.82) 0.58 (0.0, 7.88) 0.25 (0.0, 0.51)
Mpox 0.3 (0.22, 0.4) 1.93 (0.0, 9.31) 0.0 (0.0, 1.68)
Ebola, Nigeria 2014 0.95 (0.15, 2.3) 0.12 (0.0, 10.22) 0.05 (0.0, 6.67)
Ebola, Guinea 2014 0.95 (0.61, 1.36) 0.18 (0.1, 0.34) 0.01 (0.0, 0.14)
SARS, Singapore 2003 0.79 (0.36, 1.38) 0.12 (0.05, 0.42) 0.0 (0.0, 0.0)
MERS, South Korea 2015 1.05 (0.2, 2.31) 0.04 (0.01, 0.4) 0.0 (0.0, 0.02)
MERS, Saudi Arabia 2015 0.96 (0.42, 1.62) 0.75 (0.0, 12.41) 0.0 (0.0, 1.64)
Norovirus, Netherlands 2012 0.93 (0.61, 1.28) 1.07 (0.0, 16.52) 0.31 (0.0, 1.18)

Table 3. Maximum likelihood estimates of beta-Poisson model parameters by dataset,
95% confidence intervals in parentheses.

Table 3 and plotted in Fig 2. MLEs and confidence intervals for the negative binomial 193

and ZIP models are provided for reference in Section 7 of S1 Appendix. The AIC 194

achieved by each model fitted to each dataset is listed in Table 2, and the log likelihood 195

ratios obtained by comparing the maximum likelihood attained by the beta-Poisson to 196

those obtained by each of the other models are listed in Table 4. In Section 8 of 197

Appendix S1 we perform a sensitivity analysis on the beta-Poisson model by exploring 198

the likelihood surface of the model parameters around each MLE. As a generalisation of 199

all the other models under consideration, the beta-Poisson will always be able to obtain 200

the highest likelihood; if another distribution appeared to offer a higher maximum 201

likelihood, we could simply parameterise the beta-Poisson to match that specific case. 202

Despite this, Table 2 reveals that is never the optimal choice in terms of AIC, with the 203

improvement in likelihood never substantial to justify the addition of an extra parameter 204

relative to the negative binomial distribution. For secondary case distributions with low 205

levels of overdispersion (plague, mpox, norovirus, MERS in Saudi Arabia, see Table 5 206

and Fig 4), the geometric distribution attains the smallest AIC, although in all of these 207

cases a comparison between the geometric and beta-Poisson models using the likelihood 208

ratio test at any reasonable confidence level will lead us to reject the geometric model. 209

In the other four cases (the two Ebola datasets, SARS, and MERS in South Korea), the 210

negative binomial model is optimal in terms of AIC, and the likelihood ratio between 211

the beta-Poisson and negative binomial models is close to 1. In the case of SARS and 212

the South Korean MERS outbreak, the beta-Poisson model fits very decisively to its 213

negative binomial extreme. Both these datasets include one or more dramatic 214

superspreading events where a single individual is responsible for a substantial 215

proportion of the observed cases, and in these cases the homogeneous contact behaviour 216

assumed by the beta-Poisson model away from its negative binomial limit will struggle 217

to capture this type of event, which require that the individual responsible have an 218

unusually high number of social contacts during their infectious period. 219

The lower portions of the empirical secondary case distributions and model 220
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Dataset Poisson Geometric Neg. bin. ZIP
Plague 0.01 0.65 0.83 0.44
Mpox 0.0 0.53 1.0 0.5
Ebola, Nigeria 2014 0.0 0.0 0.98 0.0
Ebola, Guinea 2014 0.0 0.0 0.99 0.0
SARS, Singapore 2003 0.0 0.0 1.0 0.0
MERS, South Korea 2015 0.0 0.0 1.0 0.0
MERS, Saudi Arabia 2015 0.01 0.89 1.0 0.23
Norovirus, Netherlands 2012 0.11 0.66 0.95 0.68

Table 4. Likelihood ratios of beta-Poisson to negative binomial and ZIP models under
each dataset.

Dataset Observed Geometric Neg. bin. ZIP Beta-Poisson
Plague 0.79 1.32 (0.88, 1.83) 0.92 (0.12, 1.98) 0.54 (0.06, 1.1) 0.81 (0.12, 1.46)
Mpox 0.52 0.3 (0.22, 0.4) 0.52 (0.1, 1.05) 0.41 (0.11, 0.76) 0.52 (0.1, 0.99)
Ebola, Nigeria 2014 6.42 0.95 (0.15, 2.3) 6.89 (0.0, 24.55) 2.76 (0.0, 7.08) 5.64 (0.0, 9.78)
Ebola, Guinea 2014 5.07 0.95 (0.61, 1.36) 5.26 (2.66, 8.77) 2.29 (1.44, 3.25) 5.0 (2.3, 8.21)
SARS, Singapore 2003 16.3 0.79 (0.36, 1.38) 8.5 (2.07, 18.87) 3.21 (1.25, 5.51) 8.5 (2.01, 18.47)
MERS, South Korea 2015 47.55 1.05 (0.2, 2.31) 28.18 (1.91, 77.98) 7.65 (1.24, 16.54) 28.18 (1.77, 68.3)
MERS, Saudi Arabia 2015 1.48 0.96 (0.42, 1.67) 1.33 (0.0, 4.0) 0.76 (0.0, 1.82) 1.33 (0.0, 3.05)
Norovirus, Netherlands 2012 0.51 0.93 (0.61, 1.3) 0.56 (0.0, 1.39) 0.37 (0.0, 0.86) 0.52 (0.0, 1.11)

Table 5. Overdispersion of each maximum likelihood distribution, 95% confidence
intervals in parentheses.

distributions with fitted MLE parameters are plotted in Fig 3. For the mpox data, 221

Singapore SARS data, and both sets of MERS data the maximum likelihood 222

distribution is identical for the negative binomial and beta-Poisson distributions, and so 223

only the fitted negative binomial is shown. In those cases where the beta-Poisson does 224

not fit to its negative binomial limit, the fitted beta-Poisson distribution does not 225

appear to differ dramatically from the fitted negative binomial in its description of the 226

transmission potential of low-progeny cases. Figure 4 and Table 5 suggests that where it 227

fits to a distinct distribution the beta-Poisson performs similarly to the negative 228

binomial in its ability to capture the level of overdispersion in the data, although with 229

slightly narrower 95% confidence intervals. The overdispersion in the secondary case 230

datasets is driven both by superspreading events and by an abundance of cases 231

producing zero secondary cases. Figure 5 and Table 6 reveal that the beta-Poisson and 232

negative binomial models both predict similar proportions of superspreaders when fitted 233

to each dataset, and that in general these proportions are not necessarily close to those 234

observed in the data. Figure 6 and Table 7 demonstrate that both of these models fit 235

closely to the observed proportion of zero-progeny cases, as does the ZIP distribution. 236

Discussion 237

The beta-Poisson distribution will by definition consistently achieve a closer fit to 238

transmission chain data than the more commonly used distributions which we have 239

considered here, but our results demonstrate these models outperform it equally 240

consistently on grounds of parsimony. This suggests that the topology of transmission 241

chains is simple enough to be summarised in just two parameters. For transmission 242

chains with low levels of overdispersion the parameter Φ appears to be unidentifiable, 243

whereas when overdispersion is high a good fit can be achieved using a negative 244

binomial model. Although the contact rates fitted in the two Ebola examples were large 245

but clearly not infinite, the negative binomial model still outperformed the beta-Poisson 246

in terms of AIC. Despite this lack of improvement over the negative binomial, the 247

explicit contact parameter in the beta-Poisson model introduces a capacity for explicitly 248
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Dataset Boundary Observed Geometric Neg. bin. ZIP Beta-Poisson
Plague 5 0.05 0.03 (0.02, 0.06) 0.03 (0.01, 0.06) 0.01 (0.0, 0.04) 0.02 (0.01, 0.06)
Mpox 2 0.06 0.01 (0.01, 0.02) 0.02 (0.0, 0.03) 0.02 (0.0, 0.03) 0.02 (0.0, 0.03)
Ebola, Nigeria 2014 4 0.05 0.03 (0.0, 0.07) 0.07 (0.0, 0.1) 0.08 (0.0, 0.16) 0.07 (0.0, 0.15)
Ebola, Guinea 2014 4 0.09 0.03 (0.02, 0.05) 0.06 (0.05, 0.09) 0.07 (0.04, 0.12) 0.06 (0.05, 0.09)
SARS, Singapore 2003 3 0.06 0.04 (0.01, 0.05) 0.07 (0.04, 0.08) 0.11 (0.04, 0.15) 0.07 (0.04, 0.08)
MERS, South Korea 2015 4 0.03 0.04 (0.01, 0.07) 0.05 (0.02, 0.07) 0.11 (0.03, 0.15) 0.05 (0.03, 0.07)
MERS, Saudi Arabia 2015 4 0.04 0.03 (0.01, 0.06) 0.04 (0.0, 0.07) 0.02 (0.0, 0.06) 0.04 (0.0, 0.08)
Norovirus, Netherlands 2012 4 0.04 0.03 (0.02, 0.05) 0.02 (0.0, 0.04) 0.01 (0.0, 0.03) 0.01 (0.0, 0.04)

Table 6. Superspreading boundary (99th percentile of fitted Poisson distribution) and
proportion of cases above this boundary for each maximum likelihood distribution, 95%
confidence intervals in parentheses.

Dataset Poisson Observed Geometric Neg. bin. ZIP Beta-Poisson
Plague 0.4 0.27 (0.16, 0.42) 0.43 (0.35, 0.53) 0.39 (0.25, 0.54) 0.4 (0.25, 0.55) 0.4 (0.25, 0.55)
Mpox 0.78 0.74 (0.67, 0.81) 0.77 (0.71, 0.82) 0.78 (0.72, 0.84) 0.78 (0.73, 0.84) 0.78 (0.72, 0.84)
Ebola, Nigeria 2014 0.75 0.39 (0.1, 0.86) 0.51 (0.3, 0.87) 0.75 (0.55, 0.9) 0.75 (0.55, 0.9) 0.76 (0.56, 0.91)
Ebola, Guinea 2014 0.72 0.39 (0.26, 0.54) 0.51 (0.42, 0.62) 0.72 (0.65, 0.79) 0.72 (0.64, 0.79) 0.72 (0.65, 0.79)
SARS, Singapore 2003 0.81 0.45 (0.25, 0.7) 0.56 (0.42, 0.74) 0.81 (0.76, 0.86) 0.81 (0.75, 0.86) 0.81 (0.76, 0.86)
MERS, South Korea 2015 0.88 0.35 (0.1, 0.82) 0.49 (0.3, 0.83) 0.88 (0.83, 0.93) 0.88 (0.83, 0.93) 0.88 (0.83, 0.93)
MERS, Saudi Arabia 2015 0.54 0.38 (0.19, 0.66) 0.51 (0.37, 0.71) 0.54 (0.35, 0.74) 0.54 (0.33, 0.75) 0.54 (0.35, 0.74)
Norovirus, Netherlands 2012 0.48 0.39 (0.27, 0.54) 0.52 (0.43, 0.62) 0.48 (0.34, 0.62) 0.48 (0.34, 0.63) 0.48 (0.34, 0.62)

Table 7. Probabliity of a case generating zero secondary cases under each maximum
likelihood distribution, 95% confidence intervals in parentheses.

modelling non-pharmaceutical interventions which act to reduce the number of contacts 249

during an individual’s infectious period. A limitation of the beta-Poisson model is that 250

this number of contacts is limited to Poisson behaviour. In reality it may be the social 251

variation in number of contacts (suggesting a Negative binomial distribution on number 252

of contacts) and this may be a natural additional model complexity to consider in 253

future research. However, the model fitting shown here suggests that additional 254

parametric structure is unlikely to be supported by available data. Like the negative 255

binomial distribution, the beta-Poisson distribution is able to capture the high 256

proportion of cases in infectious disease outbreaks which do not generate any secondary 257

cases, but it does not appear to offer a substantial improvement in the ability to 258

quantify the superspreading events which characterise many outbreaks. 259

In the Supplementary Information we demonstrate that the beta-Poisson model’s 260

outbreak size probability formula is extremely cumbersome. In the absence of detailed 261

transmission chain data branching process models are often parameterised using the 262

total number of cases in an epidemic or set of epidemics [2, 14], and this cumbersome 263

formula makes the relevant likelihood calculations substantially more computationally 264

intensive than those associated with other commonly used models. The presence of an 265

explicit contact parameter also introduces complexities in dealing with outbreak size 266

data, since there is no a priori reason to think that this N will stay fixed across 267

disparate population settings. This means that any dataset which include the sizes of 268

outbreaks in multiple distinct settings will potentially include samples from 269

distributions with different underlying parameters, which is particularly problematic in 270

situations where data is combined from multiple countries and over long time intervals. 271

Although the limitations introduced by population specific parameters are obvious in 272

the beta-Poisson model, the same concerns are relevant to any branching process model, 273

and indeed to many other classes of epidemiological model. In the Poisson, geometric, 274

and negative binomial models, the parameters λ and θ encode a combination of 275

physiological and social factors. Whereas we expect physiological factors to be broadly 276

disease specific, these social factors are by no means consistent from population to 277

population. This means that the same care needs to be taken in using outbreak size 278

data to parameterise these models as is required for the beta-Poisson model. 279

Population-specific parameters also need to be taken into account when simulating 280

outbreaks. This has obvious repercussions in modelling infections on an international 281
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basis, with pandemic diseases by definition moving across population boundaries. 282

Slightly less obvious is the implications for using data from very specific and 283

unrepresentative social environments such as hospitals. This is a particularly important 284

consideration since transmission chain data often comes from these types of settings. Of 285

the example datasets we studied here, the Nigerian Ebola [29], South Korean 286

MERS [18], Saudi Arabian MERS, and Dutch norovirus [33] datasets all come from 287

sources which mention hospital-based transmission. Although our focus here has been 288

on branching process models, compartmental models also include population-specific 289

parameters, with the transmission rate in the standard SIR model subsuming 290

physiological processes and contact behaviours into a single parameter. In fact, the 291

basic reproductive ratio R0, while often quoted as a disease-specific quantity, is also 292

population-specific. Even though this is not a particularly novel point (the tables of 293

basic reproductive ratios in Anderson and May’s textbook is careful to list locations 294

along with pathogens [34]), it is still an important one which is highlighted by the 295

beta-Poisson model’s explicit inclusion of a social contact parameter. 296

Thinking carefully about population-specific and disease-specific parameters leads us 297

to the natural question of whether, in its (α1, α2, N) formulation, the beta-Poisson 298

model actually disentangles its underlying social and physiological processes. Such a 299

decoupling would allow us to fit the parameters to outbreak data from a given 300

population setting and then simulate outbreaks in different populations by changing N 301

whilst keeping α1 and α2 constant. At first glance, one might consider it valid to label 302

N a social parameter and α1 and α2 physiological parameters, with the beta-distributed 303

transmission probability p a function of a given case’s physiological response to the 304

infection. However, this transmission probability and the distribution is is drawn from 305

can potentially encode information about contact behaviour as well as physiological 306

shedding behaviour. For instance, while children are known to shed greater quantities of 307

influenza virus than adults [35], contact survey also suggests that a higher proportion of 308

their contacts are physical than those of adults [25], with both of these factors being 309

relevant to transmission probabilities. This suggests that although the Poisson 310

parameter N relates only to social behaviours, the beta distributed transmission 311

probability incorporates both physiological and social factors. In fact, even if the beta 312

distribution only summarised the physiological responses of a given population, any beta 313

distribution parameterised to outbreak data is still specific to the outbreak’s underlying 314

population, which may be an unrepresentative subset of some larger population of 315

interest. To see why this is the case, consider a dataset drawn from an outbreak 316

confined to a single hospital ward. Since children and adults are usually assigned to 317

separate wards, a beta-Poisson distribution parameterised using data from an adult 318

ward will contain no information about the shedding behaviour of children, which as we 319

have mentioned already can differ from that of adults. For example, the South Korean 320

MERS dataset, collated from three hospital wards, contains only one case in a person 321

under 18 [32]. As with the considerations surrounding the social contact parameter, this 322

problem is clearly present in other types of model, but is made more obvious by the 323

mechanistic structure of our model. The idea that outbreak data can be specific to an 324

underlying population suggests that some conception of “representativeness” needs to 325

be taken into account when making predictions using parameterised models. 326

Methods 327

The model description and log-likelihood formula in this section is sufficient to 328

reproduce the results presented in this paper. To make our account of the beta-Poisson 329

model more complete, in Appendix S1 we outline moment calculations (Section 1), the 330

probability generating function (Section 2), the branching process extinction probability 331
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(Section 3), the minor outbreak size distribution (Section 4), the distribution of attack 332

rates in a major outbreak (Section 5), and likelihood calculations using outbreak size 333

data (Section 6). 334

Model description 335

The beta-Poisson model describes the person-to-person spread of a pathogen in a 336

population where contact behaviour is homogeneous but transmission behaviour varies 337

from person to person. During their infectious period an infectious individual contacts 338

at the points of a Poisson process, so that their total contacts during this time follow 339

Poisson distribution with mean N . For each case a transmission probability p is chosen 340

from a beta distribution with parameters (α1, α2), and each of their contacts results in 341

a new infection with this probability. This variation in infection probability captures an 342

individual-level variability in infectiousness, which has been suggested as a possible 343

driver of superspreading in Ebola [15]. Given p, the transmission process is a Poisson 344

process with intensity pN , and so the total number of infections generated during an 345

individual’s infectious period is Poisson distributed with mean pN . With this in mind, 346

we can integrate with respect to p to obtain the probability density function of the 347

beta-Poisson distribution: 348

P (x : α1, α2, N) =

1∫
0

e−pN
pα1−1(1− p)α2−1

B(α1, α2)

(pN)x

Γ(x+ 1)
dp

=
Nx

B(α1, α2)Γ(x+ 1)

1∫
0

e−pNpx+α1−1(1− p)α2−1dp

=
Nx

Γ(x+ 1)

Γ(x+ α1)Γ(α1 + α2)

Γ(α1)Γ(x+ α1 + α2)
M(x+ α1, x+ α1 + α2,−N),

(1)

where M(a, b, x) is the confluent hypergeometric function. We will use several 349

properties of this function when required but will not discuss its properties in detail. 350

For more information see, for example, Abramowitz and Stegun [36]. Using the identity 351

B(α1 + 1, α2)

B(α1, α2)
=

α1

α1 + α2
, (2)

the mean λ of the distribution is given by 352

λ =
∑
x

xP (x;α1, α2, N)

=

1∫
0

e−pN
pα1−1(1− p)α2−1

B(α1, α2)

∑
x

x
(pN)x

Γ(x+ 1)
dp

=

1∫
0

e−pN
pα1−1(1− p)α2−1

B(α1, α2)
pNepNdp

=
N

B(α1, α2)

1∫
0

pα1(1− p)α2−1dp

= N
B(α1 + 1, α2)

B(α1, α2)

=
α1N

α1 + α2
.

(3)
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From this is is immediately clear that λ ≤ N . The notation λ is chosen by analogy with 353

the standard notation for the mean of the (unmixed) Poisson distribution, and in our 354

epidemiological application λ is the basic or effective reproductive ratio (depending on 355

context). The beta distribution parameters α1 and α2 lack an intuitive interpretation in 356

terms of transmission behaviour, but by making the substitution Φ = α1+α2

N we can 357

express the distribution in terms of λ, Φ, and N : 358

P (x;λ,Φ, N) =
Nx

Γ(x+ 1)

Γ(x+ Φλ)Γ(ΦN)

Γ(Φλ)Γ(x+ ΦN)
M(x+ Φλ, x+ ΦN,−N). (4)

When its first two arguments are equal, the confluent hypergeometric function is given 359

by the exponential of its third argument, and so the beta-Poisson distribution reduces 360

to the (unmixed) Poisson distribution when λ = N . 361

In the limit N →∞, the beta-Poisson distribution is equivalent to the negative
binomial distribution with parameters λ and θ = Φ−1. To see this, we first note that

lim
n→∞

nBeta(k, n) = Gamma(k, 1)

and that
Gamma(α, 1) = β−1Gamma(α, β).

From the definition of the beta-Poisson distribution, a beta-Poisson random variable is 362

drawn from a Poisson distribution with mean Np where p ∼ Beta(λΦ, (N − λ)Φ). From 363

the identities stated above it follows that 364

lim
N→∞

NBeta(λΦ, (N − λ)Φ) = Φ−1Gamma(λΦ, 1) + λΦ lim
N→∞

Beta(λΦ, (N − λ)Φ)

= Gamma(λΦ,Φ−1) + λΦ lim
N→∞

Beta(λΦ, (N − λ)Φ).

(5)
It follows that the beta-Poisson distribution can be expressed as the sum of a 365

Gamma-Poisson mixture with Gamma parameters λ
θ and θ = Φ−1 and a beta-Poisson 366

mixture with parameters λΦ and (N − λ)Φ, with the latter term scaled by a factor of 367

λΦ. This Poisson-beta mixture is slightly different to the beta-Poisson model we are 368

considering in this study, since our model applies a scaling of N to the beta-distributed 369

random variable before feeding it into the Poisson distribution. The rth moment of a 370

beta distribution with parameters (α1, α2) is given by the product 371

r−1∏
j=0

(α1 + j)

α1 + α2 + j
,

and so in the limit N →∞, all of the moments of the distribution Beta(λΦ, (N − λ)Φ) 372

will tend to zero. In Section 1 of Appendix S1 we show that because the rth moment of 373

a mixed Poisson distribution is given by a weighted sum of the first r moments of its 374

mixing distribution [16], the moments of the beta-Poisson mixture will also tend to zero 375

as N tends to infinity. Thus, as N →∞, this beta-Poisson mixture will tend to a point 376

mass at zero. This leaves us with only the Gamma-Poisson mixture term of our sum, 377

which is precisely the negative binomial distribution with parameters (λ, θ). 378
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The variance of the beta-Poisson distribution is given by 379

σ2 =
∑
x

(x− λ)2P (x;α1, α2, N)

=

1∫
0

e−pN
pα1−1(1− p)α2−1

B(α1, α2)

∑
x

(x− λ)2 (pN)x

Γ(x+ 1)
dp

=

1∫
0

e−pN
pα1−1(1− p)α2−1

B(α1, α2)
eNp(Np+N2p2 − 2Npλ+ λ2)dp

= λ2

1∫
0

pα1−1(1− p)α2−1

B(α1, α2)
dp+N(1− 2λ)

1∫
0

pα1(1− p)α2−1

B(α1, α2)
dp+N2

1∫
0

pα1+1(1− p)α2−1

B(α1, α2)
dp

= λ2 +N(1− 2λ)
α1

α1 + α2
+N2B(α1 + 2, α2)

B(α1, α2)

= λ2 + (1− 2λ)λ+N2 α1 + 1

α1 + α2 + 1

B(α1 + 1, α2)

B(α1, α2)

= λ− λ2 +N2 λΦ + 1

α1 + α2 + 1

α1

α1 + α2

= λ− λ2 +Nλ
λΦ + 1

α1 + α2 + 1

= λ(1− λ+N
λΦ + 1

α1 + α2 + 1
)

= λ(1− λ+N
λΦ + 1

NΦ + 1
)

= λ(1 +
N(λΦ + 1)− λ(NΦ + 1)

NΦ + 1
)

= λ(1 +
N − λ
NΦ + 1

).

(6)
The variance-to-mean ratio ε is given by 380

ε = 1 +
N − λ
NΦ + 1

= 1 +
1− λ

N

Φ + 1
N

.

(7)

In the limit N →∞, ε = 1 + 1
Φ , in keeping with our interpretation of Φ as the 381

reciprocal of the overdispersion parameter θ from the negative binomial distribution. 382

When λ = N the variance-to-mean ratio is 1, in keeping with our earlier statement that 383

this is the (unmixed) Poisson distribution. 384
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We can express the standard beta distribution parameters as follows: 385

α1 = λΦ

= λ(
1− λ

N

ε− 1
− 1

N
)

=
λ

N
(
N − λ
ε− 1

− 1),

α2 = (N − λ)Φ

=
N − λ
λ

λ

N
(
N − λ
ε− 1

− 1)

= (1− λ

N
)(
N − λ
ε− 1

− 1).

(8)

Since both these quantities are strictly positive and N ≥ λ, we see that 386

N − λ ≥ ε− 1 ≥ 0. The condition that ε ≥ 1 means the distribution is overdispersed 387

relative to the Poisson parameter except when λ = N , i.e. α2 = 0. In this scenario the 388

beta mean is 1 and so all of the binomial transmission trials are successful, meaning our 389

transmission distribution is precisely the Poisson distribution with mean N . We also 390

have an upper bound on the variance, σ2 ≤ (1 +N − λ)λ. 391

Likelihood calculations using secondary case data 392

The log-likelihood of parameters (λ,Φ, N) given the secondary case data (x1, ..., xK) is 393

given by 394

logL =
K∑
i=1

xi logN− log Γ(xi + 1) + log Γ(ΦN) + log Γ(xi + Φλ)−

log Γ(xi + ΦN)− log Γ(Φλ) + logM(xi + Φλ, xi + ΦN,−N).
(9)

The confluent hypergeometric function is not differentiable with respect to its first two 395

arguments, meaning we can not find maximum likelihood estimates analytically. 396

However, the branching process structure of our model means that the MLE of λ is the 397

sample mean of the secondary case data [11]. This reduces the calculation of an MLE to 398

a two-dimensional problem which can be solved numerically. 399
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Appendix to A beta-Poisson model for infectious disease
transmission

1 Moment calculations

The moments of the beta-Poisson distribution are relatively easy to calculate. For a
mixed Poisson process with rate Y (where Y is some random variable), the rth moment
E[Xr] is given by

E[Xr] =
r∑
j=1

S(r, j)E[Y r], (10)

where S(r, j) denotes the Stirling numbers of the second kind [16]. In our model,
Y = Np, so E[Y r] = NrE[pr]. Using identity 3 from the main text, we find that

E[pr] =

∫ 1

0

pα1+r−1(1− p)α2−1

B(α1, α2
dp

=
B(α1 + r, α2)

B(α1, α2)

=
α

(r)
1

(α1 + α2)(r)

=
(λΦ)(r)

(NΦ)(r)
,

(11)

where we have applied Equation 3 from the main text repeatedly to write the ratio of
beta functions in terms of the Pochhamer function defined by

x(r) =
r−1∏
i=0

(x+ i). (12)

It follows that the rth moment of the beta-Poisson distribution is given by the formula

E[xr] =

r∑
j=1

S(r, j)Nr (λΦ)(r)

(NΦ)(r)
(13)

Using the fact that S(2, 1) = S(2, 2) = 1 (see, for example, Abramowitz and
Stegun [36]), for r = 2 we find

E[x2] = N
λΦ

NΦ
+N2 λΦ(λΦ + 1)

NΦ(NΦ + 1)

= λ(1 +
N(λΦ + 1)

NΦ + 1
),

(14)

and so

σ2 = λ(1 +
N(λΦ + 1)

NΦ + 1
)− λ2

= λ(1 +
N(λΦ + 1)

NΦ + 1
− λ)

= λ(1 +
N(λΦ + 1)− λ(NΦ + 1)

NΦ + 1
)

= λ(1 +
N − λ
NΦ + 1

),

(15)
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in agreement with the expression we found through direct calculation in the Methods
section of the main text.

Alongside the mean and variance, another moment which may be of interest in the
context of outbreak modelling is kurtosis. This can be interpreted as measuring a
distribution’s “tailedness”, which is of interest since superspreading events by definition
belong to the tail of the offspring distribution. The kurtosis is given by

Kurt[X] =
E[(x− E[x])4]

σ4
. (16)

Using Equation 10, the calculation of kurtosis is as follows (we multiply by σ4 for
notational convenience, since nothing particularly cancels out):

σ4Kurt = E[x4 − 4λx3 + 6λ2x2 − 4λ3x+ λ4]

= E[x4]− 4λE[x3] + 6λ2E[x2]− 4λ3E[x] + λ4.
(17)

Using Equation 10 and substituting in the required Stirling numbers, we get the
following four equations for the moments of x:

E[x] =NE[p]

E[x2] =NE[p] + N2E[p2]

E[x3] =NE[p] + 3N2E[p2] + N3E[p3]

E[x4] =NE[p] + 7N2E[p2] + 6N3E[p3] +N4E[p4].

(18)

Substituting these expressions into Equation 17, we get

σ4Kurt = NE[p] + 7N2E[p2] + 6N3E[p3] +N4E[p4]

− 4NλE[p]− 12N2λE[p2]− 4N3λE[p3]

+6Nλ2E[p] + 6N2λ2E[p2]

−4Nλ3E[p]

+λ4

= N4E[p4] + (6− 4λ)N3E[p3] + (6λ2 − 12λ+ 7)N2E[p2]

−(4λ3 − 6λ2 + 4λ− 1)NE[p] + λ4.

(19)

Since NE[p] = λ, the last two terms add together to give

−(4λ3 − 6λ2 + 4λ− 1)λ+ λ4 = −λ(3λ3 − 6λ2 + 4λ− 1)

= −λ(λ− 1)(3λ2 − 3λ+ 1).
(20)

Substituting this and Equation 11 into Equation 19, we get

σ4Kurt = N4 λΦ(4)

NΦ(4)
+ (6− 4λ)N3 λΦ(3)

NΦ(3)
+ (6λ2 − 12λ+ 7)N2 λΦ(2)

NΦ(2)

−λ(λ− 1)(3λ2 − 3λ+ 1).

(21)

We leave the Pochhammer symbols as is, since the formula is unlikely to clean up any
more than this. Since σ2 is linear in λ, it follows that the kurtosis will end up being
quadratic in λ.

2 Generating function

The beta-Poisson distribution’s probability generating function is necessary for
calculating the extinction probability and outbreak size distribution.
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The generating function of a mixed Poisson distribution with mixing distribution pdf
g(λ) is given by [16]

G(s) =

∞∫
0

eλ(s−1)g(λ)dλ. (22)

Thus, the pgf of a beta-Poisson distributed random variable X is

GX(s) =

1∫
0

epN(s−1) p
α1−1(1− p)α2−1

B(α1, α2)
dp

=
1

B(α1, α2)

1∫
0

epN(s−1)pα1−1(1− p)α2−1dp

=
1

B(α1, α2)

Γ(α1)Γ(α2)

Γ(α1 + α2)
M(α1, α1 + α2, N(s− 1))

= M(α1, α1 + α2, N(s− 1))

= M(λΦ, NΦ, N(s− 1)).

(23)

The generating function of the random variable Z, the total cases generated by K cases,
is then

GZ(s) = (M(λΦ, NΦ, N(s− 1)))K . (24)

3 Extinction probability

Extinction occurs with probability one for branching process epidemics with R0 ≤ 1.
The extinction probability of a branching process epidemic with R0 > 1 is given by the
unique solution q on (0, 1) to the equation [37]

q = G(q). (25)

Branching processes which go extinct are often referred to as mortal branching
processes [5], and in epidemiological contexts the terminology minor outbreak is used.

To effectively control an outbreak (in the sense of guaranteeing that all outbreaks go
extinct), we need to force the effective reproductive ratio Re below one. Consider a
control measure that reduces the average number of susceptible contacts made during
an infectious period to Nc < N . This measure reduces the mean of the Poisson contact
distribution while leaving the mean of the beta transmission probability intact at its
value of λ/N . Under this control measure the effective reproductive ratio is

Re = Nc
λ

N
. (26)

Thus, Re is below one when Nc < N/λ. Such a control measure can be achieved by
instituting quarantine measures or school/work closures to reduce the number of
contacts made, or through a vaccination program which reduces the number of
susceptible contacts made. In the latter case, we observe that at the critical level of
vaccination N −Nc = N(1− 1/λ), giving us the critical vaccination formula commonly
found for compartmental models [38].

4 Minor outbreak size calculations

The probability that a mortal branching process with m initial particles attains a total
size of Z is given by the joint probability that the Z particles generate Z −m particles
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between them (i.e. there are as many birth events produced as there are progeny in the
entire process), scaled through by a factor of m/Z. The outbreak size probability
P (Z = z|m) in our branching process model is thus given by

P (Z = z|m) =
m

Z

G
(z−m)
Z (0)

(z −m)!

=
m

Z

1

(z −m)!

dz−m

dsz−m
[M(λΦ, NΦ, N(s− 1))]z|s=0.

(27)

The ith derivative of the confluent hypergeometric function M(a, b, z) is given by [36]:

di

dzi
M(a, b, z) =

a(k)

b(k)
M(a+ k, b+ k, z), (28)

and so

di

dsi
M(λΦ, NΦ, N(s− 1))|s=0 =

(λΦ)(k)

(NΦ)(k)
M(λΦ + k,NΦ + k,−N). (29)

Using the Leibniz rule:

dn

dxn
(f(x)g(x)) =

n∑
k=0

(
n

k

)
f (k)(x)g(n−k)(x), (30)

Equation 27 becomes

P (Z = z|m) =
1

(z −m)!

dz−m

dsz−m
M(λΦ, NΦ, N(s− 1))[M(λΦ, NΦ, N(s− 1))]z−1|s=0

=
1

(z −m)!

z−m∑
k=0

(
z −m
k

)
Nk (λΦ)(k)

(NΦ)(k)
M(λΦ + k,NΦ + k,−N)×

dz−m−k

dsz−m−k
[M(λΦ, NΦ, N(s− 1))]z−1|s=0.

(31)

Derivatives of the form Di,j = di

dsi [M(λΦ, NΦ, N(s− 1))]j |s=0 can be calculated
recursively using the Liebniz rule:

Dij =
di

dsi
M(λΦ, NΦ, N(s− 1))[M(λΦ, NΦ, N(s− 1))]j |s=0

=

i∑
k=0

(
i

k

)
Nk (λΦ)(k)

(NΦ)(k)
M(λΦ + k,NΦ + k,−N)

di−k

dsi−k
[M(λΦ, NΦ, N(s− 1))]j−1|s=0

=
i∑

k=0

(
i

k

)
Nk (λΦ)(k)

(NΦ)(k)
M(λΦ + k,NΦ + k,−N)Di−k,j−1.

(32)
The jth column of the matrix D = (Di,j) is expressed in terms of the j − 1th row. To
initiate the recursive process, we note that Di,1 is just the ith derivative of the confluent
hypergeometric function M(λΦ, Nφ,N(s− 1) evaluated at s = 0,

Di,1 = N i (λΦ)(i)

(NΦ)(i)
M(λΦ + i,NΦ + i,−N). (33)

To calculate the probability of obtaining an outbreak of size z from m index cases,
we need to calculate the (z −m)× z submatrix Dm,z of D. This submatrix contains all
the submatrices necessary for calculating all the outbreak size probabilities up to
P (Z = z|m), and so we effectively obtain the entire distribution up to z.
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5 Major outbreak attack rate

The attack rate of a major epidemic in a large population is approximately Gaussian
with mean Z∞, which is the unique solution to the equation [37, Chapter 4]

τ = 1− exp(−R0τ). (34)

The standard deviation is given by the formula [37, Chapter 4]

ρτ + λ̃2σ2τρ

(1− λ̃ιρ)2
(35)

where τ = Z∞, ρ = 1− τ . This formula describes a Poisson process of fixed intensity λ̃
across the population, which takes place over a randomly distributed infectious period
with expectation ι and variance σ2. Although our model does not make any
assumptions about the distribution of infectious period, it is statistically equivalent to
an epidemic with intensity N over a beta-distributed infectious period with mean

λ̃ = λ/N and variance ι = λ(N−λ)
N2(NΦ+1) . The standard deviation of the major epidemic

attack rate is thus
ρτ + λ2 λ(N−λ)

N4(NΦ+1)τρ

(1− λρ)2
. (36)

Since the major epidemic attack rate distribution is conditional on not going extinct in
the early branching stages of the epidemic, it needs to be scaled by a factor of (1− q) to
give the absolute probabilities of attaining these sizes.

6 Likelihood calculations using outbreak size data

By fixing an average number of contacts N , the beta-Poisson model makes explicit
assumptions about underlying contact structure. This means that when fitting the
model to outbreak size data we require that all of the outbreaks be from the same
underlying population (or a set of populations with similar contact behaviour). For a
dataset containing Z cases attributable to m importations, a maximum likelihood
estimator for λ is given by [5]

λ̂ = 1− m

Z
. (37)

This formula is accurate only when none of the importations have resulted in major
outbreaks. Becker [5] outlines the calculation of an MLE when some of the outbreaks
are in fact major, but this only works when the underlying offspring distribution is a
power series distribution.

Using the minor outbreak size distribution to perform likelihood calculations is very
inefficient, since we need to calculate all outbreak size probabilities up to the maximum
in our dataset. Intuitively we would expect this distribution to be heavy-tailed,
containing large outbreaks with big gaps between the outbreak sizes. This means we
need to calculate lots of outbreak size probabilities which we do not directly use. One
possible improvement when the underlying population is relatively small is to use the
minor outbreak size distribution for outbreak sizes below a certain threshold, and the
normally distributed major attack rate distribution for outbreak sizes above that
threshold. Because the branching process approximation begins to diverge from the
standard epidemic model when the epidemic size reaches the square root of the
population size [39], a natural threshold for a population of size M is

√
M . The

cumulative outbreak size probability up to
√
M may be substantially smaller than the

extinction probability q, and so we denote this cumulative probability qM . This is the
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probability of a minor outbreak in a population of size M , using the definition in terms
of divergence from the standard epidemic model. The normally distributed major attack
rate distribution is scaled by (1− qM ) rather than (1− q). Andersson and Britton [37]
suggest that the normal approximation for major outbreaks is reasonably accurate for
populations of around size 100, and so this fitting procedure is most useful for
populations in the low hundreds, becoming less useful as

√
M grows and we need to

carry out larger and larger matrix calculations.

7 Fitted parameter values

Parameter fits for the negative binomial and ZIP models are provided in Tables A
and B. Fits and confidence intervals for the parameter λ in the Poisson and geometric
models are identical to those for λ in the negative binomial and beta-Poisson models
and so are not listed here.

Dataset λ θ
Plague 1.32 (0.88, 1.82) 0.92 (0.12, 1.98)
Mpox 0.3 (0.22, 0.4) 0.52 (0.1, 1.05)
Ebola, Nigeria 2014 0.95 (0.15, 2.3) 6.89 (0.0, 24.55)
Ebola, Guinea 2014 0.95 (0.61, 1.36) 5.26 (2.66, 8.77)
SARS, Singapore 2003 0.79 (0.36, 1.38) 8.5 (2.07, 18.87)
MERS, South Korea 2015 1.05 (0.2, 2.31) 28.18 (1.91, 77.98)
MERS, Saudi Arabia 2015 0.96 (0.42, 1.67) 1.33 (0.0, 4.0)
Norovirus, Netherlands 2012 0.93 (0.61, 1.3) 0.56 (0.0, 1.39)

Table A. Maximum likelihood estimates of negative binomial model parameters by
dataset, 95% confidence intervals in parentheses.

Dataset λ̃ σ
Plague 1.87 (1.15, 2.6) 0.29 (0.05, 0.48)
Mpox 0.72 (0.37, 1.09) 0.58 (0.28, 0.72)
Ebola, Nigeria 2014 3.71 (0.15, 8.33) 0.74 (0.0, 0.9)
Ebola, Guinea 2014 3.24 (2.12, 4.46) 0.71 (0.62, 0.78)
SARS, Singapore 2003 4.0 (1.63, 6.8) 0.8 (0.73, 0.86)
MERS, South Korea 2015 8.7 (1.47, 18.67) 0.88 (0.82, 0.92)
MERS, Saudi Arabia 2015 1.71 (0.61, 3.13) 0.44 (0.0, 0.68)
Norovirus, Netherlands 2012 1.31 (0.73, 1.93) 0.28 (0.0, 0.5)

Table B. Maximum likelihood estimates of zero-inflated Poisson model parameters by
dataset, 95% confidence intervals in parentheses.

8 Sensitivity analysis

To better understand the fitting behaviour of the beta-Poisson model we calculate
one-dimensional cross-sections of the likelihood surface associated with each dataset. In
each case we calculate each of the beta-Poisson parameters λ, Φ, and ν over a range of
values with the other two parameters fixed at their MLEs. These cross-sections are
plotted in Fig A.

The plots in the middle column of Fig A reveal substantially different fitting
behaviour for the parameter Φ depending on the level of overdispersion seen in the
dataset in question. Fig A a)(ii), b)(ii), g)(ii), and h)(ii), corresponding respectively to
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the plague, Mpox, Saudi Arabian MERS and norovirus datasets (all with low levels of
overdispersion) all show a comparatively gentle decrease in likelihood as Φ increases
away from its MLE, whereas Fig A c)(ii), d)(ii), e)(ii), and f)(ii), corresponding to the
more overdispersed Nigerian Ebola, Guinean Ebola, SARS, and South Korean MERS
datasets, all display a much more defined peak around the MLE. The third column
shows a high likelihood assigned to ν = 0 for all the datasets, supporting our finding
that the beta-Poisson is unable to offer a substantial improvement in likelihood over the
negative binomial model.
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Fig 2. Maximum likelihood estimates of the beta-Poisson model parameters by
dataset: a) basic reproductive ratio λ; b) overdispersion parameter Φ; c) inverse contact
parameter ν. Black lines are 95% confidence intervals. In plot c) MLEs and lower
confidence bounds of 0 are not shown.
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Fig 3. Lower portion of maximum likelihood offspring distributions fitted to secondary
case data from a) plague; b) Mpox; c) Ebola, Nigeria 2014; d) Ebola, Guinea 2014; e)
SARS, Singapore 2003; f) MERS, South Korea 2015; g) MERS, Saudi Arabia 2015; h)
Norovirus, Netherlands 2012.
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Fig 4. Overdisperion of maximum likelihood offspring distributions fitted to
reconstructed transmission trees from a) plague; b) Mpox; c) Ebola, Nigeria 2014; d)
Ebola, Guinea 2014; e) SARS, Singapore 2003; f) MERS, South Korea 2015; g) MERS,
Saudi Arabia 2015; h) Norovirus, Netherlands 2012. Black lines are 95% confidence
intervals.
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Fig 5. Proportion of superspreaders in maximum likelihood offspring distributions
fitted to reconstructed transmission trees from a) plague; b) Mpox; c) Ebola, Nigeria
2014; d) Ebola, Guinea 2014; e) SARS, Singapore 2003; f) MERS, South Korea 2015; g)
MERS, Saudi Arabia 2015; h) Norovirus, Netherlands 2012. Black lines are 95%
confidence intervals.
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Fig 6. Proportion of zeros in maximum likelihood offspring distributions fitted to
reconstructed transmission trees from a) plague; b) Mpox; c) Ebola, Nigeria 2014; d)
Ebola, Guinea 2014; e) SARS, Singapore 2003; f) MERS, South Korea 2015; g) MERS,
Saudi Arabia 2015; h) Norovirus, Netherlands 2012. Black lines are 95% confidence
intervals.
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Fig A. Log-likelihood curves of the beta-Poisson model parameters by dataset. Row a)
plague; row b) mpox; row c) Ebola, Nigeria 2014; row d) Ebola, Guinea 2014; row e)
SARS, Singapore 2003; row f) MERS, South Korea 2015; row g) MERS, Saudi Arabia
2015; row h) norovirus, the Netherlands 2012; column (i) log-likelihood of λ values with
Φ and ν fixed at MLEs; column (ii) log-likelihood of Φ values with λ and ν fixed at
MLEs; column (iii) log-likelihood of ν values with λ and Φ fixed at MLEs.
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