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ABSTRACT 

Circulating proteins play key roles in inflammation and a broad range of diseases. To identify 

genetic influences on inflammation-related proteins, we conducted a genome-wide protein 

quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target 

platform in 15,150 participants. We identified 180 pQTLs, of which 50 were novel. Integration 

of pQTL data with eQTL and disease GWAS provided insights into pathogenesis, implicating 

lymphotoxin-alpha (LTA) in multiple sclerosis. Using Mendelian randomisation (MR), we 

identified both shared and distinct effects of specific proteins across immune-mediated 

diseases, including directionally discordant causal roles for CD40 in rheumatoid arthritis, 

multiple sclerosis and inflammatory bowel disease. Our results highlight novel potential 

therapeutic avenues, including CXCL5 in ulcerative colitis (UC), a finding supported by 

elevated gut CXCL5 expression in UC patients. Our data provide a powerful resource to 

facilitate future drug target prioritization. 

 
INTRODUCTION 

 
Inflammation is a key physiological host response to infection or injury. However, aberrant 

inflammatory responses result in tissue damage and are central to the pathophysiology of 

multiple diseases including sepsis, autoimmunity and atherothrombosis. Inflammatory 

responses are orchestrated by a complex network of cells and mediators, including circulating 

proteins such as cytokines and soluble receptors. Therefore, discovery of the genetic 

influences on abundance of inflammation-related circulating proteins should yield valuable 

insights into both physiology and the aetiology of a broad range of diseases. 

  
Proteomic studies are particularly informative as proteins are the effector molecules of most 

biological processes, and from a translational biomedical perspective, proteins are the targets 

of most drugs. The development of high-throughput proteomic technologies now allows for 

profiling of the plasma proteome at epidemiological scale. Coupling genomic and proteomic 

data enables identification of genetic variants associated with protein abundance, protein 

quantitative trait loci (pQTLs). pQTLs provide valuable insights into the molecular basis of 

complex traits and diseases, by identifying proteins that lie between genotype and phenotype. 

Recent years have seen a rapid increase in both the number and size of pQTL studies, 

transforming our understanding of the genetic architecture of the circulating proteome. Most 

studies have used either the antibody-based Olink platform or the aptamer-based SomaScan 

platform1-6. 
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Here we extend this body of work by performing pQTL mapping for 91 inflammation-related 

proteins in 15,150 participants. We use these data to identify proteins that are the molecular 

intermediaries that link the genome and disease risk. Using Mendelian randomization and 

colocalisation analyses, we identify proteins that play a causal role in disease etiology. Our 

results reveal both pathways that are known to be therapeutically important, and new putative 

drug targets, including lymphotoxin-alpha (LTA) in multiple sclerosis and the chemokine 

CXCL5 in ulcerative colitis. 

 

RESULTS 

 
Genetic architecture of circulating inflammatory proteins. We performed pQTL mapping 

for 91 proteins measured using the Olink Target Inflammation panel in 11 cohorts totaling 

15,150 European-ancestry participants (Supplementary Table 1), and meta-analysed the 

results (Supplementary Figure 1). In order to provide a succinct and standardised 

nomenclature, we report proteins by the non-italicised symbols of the genes encoding them 

(see Supplementary Table 2 for a mapping of symbols to full protein names and UniProt 

identifiers). We identified a total of 180 significant (P<5×10−10) associations between 108 

genomic regions and 70 proteins (Figure 1, Supplementary Table 3, Supplementary Item). 

To date, 50 of these associations have not previously been reported in peer-reviewed articles 

(r2≥0.8)1,5-12 (Table 1). Of the 180 significant associations, 59 (33%) were local-acting (‘cis’ 

pQTLs; defined here as a genetic variant lying within +/- 1 megabase of the gene encoding 

the associated protein) and 121 (67%) were distant-acting (‘trans’). We found evidence of 

trans-pQTL hotspots associated with multiple proteins (e.g. rs3184504 at the SH2B3 locus 

was associated with six proteins: CXCL9, CXCL10, CXCL11, CD5, CD244, and IL12B) 

(Figure 2a). 
 
For 70 (77%) of the 91 proteins studied, we identified at least 1 significant pQTL, including 59 

(65%) proteins that had a cis-pQTL. Of these 70 proteins, 19 had only cis-pQTL(s), 11 had 

only trans-pQTL(s), and 40 had both cis- and trans-pQTLs. For 18 of the 21 proteins for which 

no pQTL was detected, >50% of samples had levels below the lower limit of detection (LLOD) 

in the INTERVAL study (where we had access to individual-level data), suggesting that the 

lack of genetic signal is due to low protein abundance in plasma (Supplementary Figure 2a). 

Nevertheless, through inclusion of protein values (‘NPX’) below the LLOD, we were able to 

identify pQTLs for some low abundance proteins that otherwise would have been missed (e.g., 

a cis-pQTL at IL17C, for which 83% of samples had levels below the LLOD) (Supplementary 
Figure 2b). The number of genomic loci associated with each protein ranged between 1 and 

8 (Figure 2b), but was less than 4 for the majority of proteins. Examples of multi-locus-
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regulated proteins include TNFSF10 (TNF-related apoptosis-inducing ligand, TRAIL) and 

IL12B (interleukin-12B), both of which had 1 cis- and 7 trans-pQTLs (Figure 2c,d). Conditional 

analyses using GCTA-COJO (Methods) revealed the presence of an additional 47 

independent signals, which were mostly cis. This raised the total number of pQTL signals from 

180 (59 cis, 108 trans) to 227 (99 cis, 128 trans) (Supplementary Table 4). 

  
To validate our genome-wide association study (GWAS) findings, we tested our significant 

pQTLs for replication in an independent cohort of 1,585 participants recruited as a part of the 

ARISTOTLE trial13-15. Of the 180 pQTL signals, we were able to test 174 in the ARISTOTLE 

data, of which 168 had a directionally consistent effect estimate. There was a strong 

correlation (Pearson r=0.97) between the pQTL effect estimates in ARISTOTLE and in the 

discovery meta-analysis; this correlation was consistent for both cis- and trans-pQTL effect 

sizes (r=0.99 and r=0.94) (Supplementary Figure 3). Out of the 174 pQTL signals, 32 were 

replicated at p≤5x10-10 and 72 at p≤2.9x10-4 (a Bonferroni-corrected threshold), respectively 

(Supplementary Table 5). 

 
In line with other GWAS, we observed an inverse relationship between effect size and minor 

allele frequency (MAF), with pQTLs driven by rarer variants generally showing larger effect 

sizes (Supplementary Figure 4). The proportion of variance explained (PVE) by the 

significant sentinel variants from our discovery meta-analysis varied from 0.003 for NTF3 

(Neurotrophin-3, NT-3) to 0.285 for CCL8 (also known as Monocyte Chemotactic Protein 2, 

MCP2) (Supplementary Figure 5). 

 
Annotation and characterisation of cis-pQTLs. Of the 59 cis-pQTLs identified, 11 sentinel 

variants were protein-altering variants (PAVs) (10 missense and 1 splice acceptor), while a 

further 10 sentinel variants were in high linkage disequilibrium (r2>0.8) with a protein-altering 

variant (all missense). PAVs can result in false positive cis-pQTL signals by altering protein 

epitopes which affects binding of antibodies used in proteomic assays16. However, they can 

also impact the abundance of plasma proteins through several mechanisms, including protein 

translation, secretion into the circulation, enzymatic cleavage of pre-proteins, as well as 

protein clearance and degradation. Alternatively, plasma protein abundance can also be 

affected by altered transcriptional regulation in blood cells or other tissues. 

 

We next examined the degree to which our 59 cis-pQTLs were explained by corresponding 

cis-eQTLs, by comparing our findings with publicly available cis-eQTL data. In a meta-analysis 

of whole blood eQTL data from the eQTLGen Consortium17, we found a genome-wide 

significant (p<5x10-8) cis-eQTL for 32 of the 59 cis-pQTLs, where the cis-eQTL target gene 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.24.23287680doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.24.23287680
http://creativecommons.org/licenses/by-nd/4.0/


 

 

 
 

5 

encodes the cis-pQTL target protein. However, systematic statistical colocalization analyses 

using COLOC showed that only six (rs34790908-TNFSF12, rs72912115-TGFA, rs471994-

MMP1, rs674379-CD5, rs450373-CXCL5, rs5744249-IL18) of these cis-eQTLs colocalised 

with their cognate cis-pQTLs (Supplementary Table 6), indicating that the remaining 26 

eQTL-pQTL pairs may not share the same underlying causal genetic variant. 

  

Of the 6 colocalising eQTL-pQTL pairs, 5 were directionally consistent. However, the eQTL 

and pQTL for IL18 at rs5744249 were oppositely associated with the mRNA and protein levels. 

rs5744249 resides in intron 2 of IL18 and is in high LD (r2>0.8) with a 3’ UTR variant 

(rs5744292, r2=0.98 | 1000G EUR), but no PAVs. Therefore, the directional discordance is not 

easily explained either by an artefactual pQTL signal due to altered antibody binding or by a 

difference in the release of IL18 into the circulation due to differences in protein structure. 

  

To extend our search to tissue- and cell-type-specific cis-eQTLs, we explored data from the 

Genotype-Tissue Expression (GTEx) (v8) project18 and the eQTL Catalogue19. Systematic 

COLOC analyses revealed colocalising (PP>0.8) cis-eQTLs in at least one tissue or cell type 

for 30 of the 59 cis-pQTLs (Supplementary Tables 7-8); 15 were highlighted by both eQTL 

resources, 10 by GTEx only, and the remaining 5 by the eQTL Catalogue. This included all 6 

colocalising cis-eQTLs from eQTLGen, as well as several cis-eQTLs that did not reach the 

genome-wide significance threshold, or the significance threshold set by GTEx. Taken 

together, these findings suggest that at least 50% of our cis-pQTLs may be driven by 

underlying cognate cis-eQTLs. 

  

In most cases, colocalization (PP>0.8) between cis-eQTL-pQTL pairs was observed across 

two or more distinct tissues or cell types, up to a maximum of 41 (for rs1883832-CD40). In 

other cases, colocalization was observed in just a single tissue or cell type. For example, the 

sole colocalising cis-eQTL signal (rs62360376) for GDNF was in skeletal muscle from GTEx, 

where, according to the Human Protein Atlas20, GDNF mRNA is enriched (i.e., tissue-

enhanced) relative to other human tissues. GDNF production by skeletal muscle is responsive 

to physical activity, and has been shown to be a survival factor for peripheral motor 

neurons21,22. Similarly, there were several colocalising cis-eQTLs from the eQTL Catalogue 

highlighting specific cell types, including one for TNFRSF9 (rs1776354) in Natural Killer Cells, 

and another for IL18R1 (rs2270297) in Th17 memory cells. 

 

Identifying the mediators of trans-pQTLs. We sought to identify the most likely gene 

mediators of the trans-pQTLs using the ProGeM bioinformatics tool23, which utilises genomic 

(e.g., cis-eQTL) and biological (e.g., gene ontology and pathways) annotation data from 
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multiple sources. For some trans-pQTLs, we identified strong evidence to implicate a gene 

encoded near the pQTL as mediating the distant association with the target protein. Examples 

included receptor-ligand pairs such as IL6-IL6R, IL10-IL10RA, CCL2-CCR2, CCL4-CCR5, 

and CCL11-CCR3. We also identified genes mediating pQTLs through intracellular signaling 

pathways rather than direct ligand-receptor interactions. An example is rs385076, an intronic 

variant in NLRC4, which is a trans-pQTL for IL18. IL18 is synthesized as an inactive precursor 

(pro-IL18), which is cleaved by caspase-1 in the NLRC4 inflammasome to produce the active 

form of IL18 (Figure 3a). Since rs385076 is also a cis-eQTL for the inflammasome gene 

NLRC4 (Figure 3b), together, these QTL data indicate that genetic variation in NLRC4 alters 

its expression and likely results in altered inflammasome activity, with consequent effects on 

circulating IL18 levels. 

 

Following a manual literature review to refine the ProGeM output, we were able to narrow 

down the most likely mediating gene(s) to either one or two candidates for 100 of the 121 

trans-pQTLs (Supplementary Table 9). For 94 of them, manual review highlighted one of the 

three nearest genes to the sentinel variant as the primary candidate, many of which are 

supported by previous biochemical and cellular studies. For example, for the pQTL at 

rs13010492 associated with CCL19 (C-C Motif Chemokine Ligand 19) levels, we prioritized 

CTLA4 as the most likely mediator, which has been shown to regulate the mRNA expression 

of CCL1924. Similarly, the prioritized gene at the rs13103023 locus, KLB, encodes a necessary 

cofactor that enables signaling of the trans-affected protein, FGF19 (Fibroblast Growth Factor 

19)25. 

 

For 23 of these 84 loci where either one or two candidate genes were prioritised, ProGeM 

revealed functional links between both: (i) the sentinel variant and the nearby candidate 

mediating gene (e.g., cis-eQTL), and (ii) the same candidate mediating gene and the trans-

affected protein(s) (e.g., through protein-protein interaction). We have previously shown that 

this type of convergence on the same candidate mediator is indicative of a strong candidate23. 

An example of this is the trans-pQTL at rs12075, which is associated with multiple chemokines 

(CCL2, CCL7, CCL8, CCL11, CCL13, CXCL6) that attract and activate leucocytes. rs12075 

is a missense variant and a cis-eQTL (whole-blood, eQTLGen) for the DARC gene, which 

encodes the atypical chemokine receptor 1 (ACKR1) protein. A STRINGdb analysis revealed 

experimental evidence to show that ACKR1 is an interacting partner for 3 (CCL2, CCL7, 

CCL8) of the 6 trans-affected chemokines26-28. Previous studies have shown that ACKR1 acts 

as a negative regulator of inflammation by non-specifically binding both the CCL and CXCL 

family of chemokines30, thus explaining the multiple chemokine associations observed at this 

pQTL. In keeping with the effects on chemokines, rs12075 is also associated with white blood 
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cell count, as well as monocyte and basophil count31(Supplementary Figures 6-7). 

  
We found that plasma levels of some proteins were associated with numerous genetic loci, 

with IL12B, KITLG (KIT ligand, also known as stem cell factor, SCF), and TNFSF10 (TRAIL) 

regulated by seven genetic loci each. We hypothesized that the mediating genes at each of 

the regulatory loci for a given protein might be functionally related, enabling identification of 

shared pathways which in turn might facilitate the identification of the most likely mediating 

gene(s). We therefore generated protein-protein interaction networks for each of these multi-

locus-regulated proteins and their respective candidate mediating genes from ProGeM (see 

Methods) (Supplementary Table 9), and visualized the interactions using String-db 

(Supplementary Figure 8). All three networks are significantly enriched with protein-protein 

interactions relative to the protein-coding genome (TNFSF10: p=1.44x10-9, KITLG: p<1x10-16, 

IL12B: p=8.22x10-9), and the clusters of interconnected proteins help pinpoint the mediating 

genes. 

 

For the multi-locus-regulated protein TNFSF10 (TRAIL), we observed a cluster of eight 

interacting proteins including PLAUR, KNG1, and SERPINA1 (Supplementary Figure 8a). 

This cluster contains proteins encoded by five of the seven loci regulating TNFSF10, each of 

which converge on the plasminogen-activating system: (i) rs4760 is a missense variant in 

PLAUR, which encodes the plasminogen-activator urokinase receptor; (ii) rs5030044 is 

intronic in KNG1, which encodes the kininogen 1 protein, involved in bradykinin formation, 

which is regulated by plasmin; (iii) rs28929474 is a missense variant in SERPINA1, which 

cleaves many targets including plasmin; (iv) rs8178824 is intronic to APOH, which encodes a 

cofactor for plasminogen activation33,34; and (v) rs654488 is upstream of MEP1B, which has 

been shown to be triggered by the plasminogen-activating system35. Together, these findings 

highlight the most likely mediating genes at 5 of the 7 regulatory loci and indicate that TRAIL 

is regulated by the plasminogen-activating system. 

 

As a further example, for the multi-locus-regulated protein KITLG (SCF), a key driver of 

hematopoiesis36 encoded by KITLG, we found a cluster of interacting proteins (e.g., PON1, 

ABCA1, PLTP) (Supplementary Figure 8b) converging on cholesterol metabolism. To 

determine whether the 7 trans-pQTLs for KITLG were also associated with cholesterol-related 

traits at the variant level, we performed a phenome-scan of the sentinel variants and proxies 

in high LD (r2>0.8) using Open Targets. We found that 5 of the 7 trans-pQTLs were significantly 

(p<5x10-8) associated with levels of either HDL or LDL cholesterol, and some with other lipids 

such as triglycerides (Supplementary Table 10). Our findings therefore highlight a potential 

link between cholesterol metabolism and plasma KITLG levels, which may result in altered 
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hematopoiesis. Indeed, the phenome-scan indicated several genome-wide significant 

associations between the KITLG trans-pQTLs and blood cell traits (Supplementary Table 
10). Finally, for the interactions in the IL12B network (Supplementary Figure 8c) we did not 

identify a clear biological pattern among the interconnected candidate mediating genes. 

 

Overlap with GWAS of traits and diseases. Genome-wide association studies (GWAS) 

have identified thousands of genomic regions associated with common diseases37, including 

immune-mediated diseases (IMDs). Many of these disease-associated loci lie outside protein-

coding regions and so the effector molecules and pathways by which these genetic variants 

confer disease risk are often unclear38. Integration of pQTL and GWAS data can help bridge 

this knowledge gap by linking disease risk loci to specific proteins. To this end, we looked for 

overlap between pQTLs, or proxy variants in high LD (r2≥0.8) with our sentinel variants, in 

disease GWAS (Methods). This revealed overlap between our pQTLs and disease-

associated variants for 73 diseases (Supplementary Figure 9, Supplementary Table 11). 

Examples of genetically anchored protein-disease connections included: TNFSF11 (RANKL) 

with osteoporosis and hypothyroidism; NGF (nerve growth factor) with migraine; TNFSF12 

(TWEAK) with hypertension; and FGF5 with hypertension and cardiovascular diseases. 

 

We next focussed on IMDs in more detail, intersecting our pQTLs with IMD GWAS data to 

identify proteins linking genotype and disease phenotypes. We found that 31 of our pQTLs 

overlap GWAS hits for at least one common IMD, with 76 unique pQTL-protein-disease 

associations (Supplementary Table 12, Supplementary Figure 10). For example, we 

observed that a cis-pQTL for IL10 was also associated with risk of inflammatory bowel disease 

(IBD), with the allele associated with higher plasma IL10 also associating with reduced IBD 

risk, consistent with the anti-inflammatory effects of IL10. Some pQTLs showed diverging 

directions of effect on different diseases (e.g. the trans-pQTL at IL6R for plasma IL6 levels 

described earlier had opposing directions of effect on risk of rheumatoid arthritis and allergic 

diseases (Supplementary Figure 10), as previously described39-41). Clustering of these 

genotype-protein-disease associations recapitulated groupings of diseases with clinical or 

pathogenic similarity (Supplementary Figure 10). For example, ankylosing spondylitis, 

psoriatic arthritis and psoriasis clustered together. These diseases share IL-17 driven 

pathology and clinical features (e.g., peripheral joint and spinal inflammation and uveitis). 

Similarly, we observed clustering of asthma and allergic disease, examples of Th2-mediated 

pathology. Since the proteomic assay was not proteome-wide and the disease GWAS had a 

range of sample sizes (and therefore statistical power), we cannot make formal conclusions 

about IMD similarity from our data. Nevertheless, the clustering provides interesting 

information about examples of shared etiology related to specific proteins. 
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Trans-pQTL data implicate the LTBR-LTA axis in multiple sclerosis pathogenesis. 
We identified a novel trans-pQTL for lymphotoxin alpha (LTA, also known as TNF-beta) at 

rs2364485 on chromosome 12 (Table 1), an intergenic variant previously found to be 

associated with multiple sclerosis42. We found that the multiple sclerosis risk allele, 

rs2364485:A, was associated with higher plasma levels of LTA. We next applied the ProGeM 

algorithm which revealed two candidate genes in the region near the pQTL that might mediate 

the trans-pQTL: TNFRSF1A (encoding tumor necrosis factor receptor 1, TNFR1) and LTBR 

(encoding lymphotoxin beta receptor, LTBR). LTA is a ligand for TNFR1, but also can bind the 

membrane-bound receptor LTBR when bound to LTB as a heterodimer. Functional studies 

have shown that TNFRSF1A is the causal gene underlying a neighboring independent multiple 

sclerosis association in the region, about 70kb upstream from rs2364485. The sentinel variant 

at this neighboring signal, rs1800693, results in an alternative TNFRSF1A isoform due to 

skipping of exon 643. We therefore sought to determine if TNFRSF1A is also the likely 

mediating gene for the LTA trans-pQTL at rs2364485, or whether LTBR is the more likely 

candidate. 

 

Through mining of eQTL databases, we found that rs2364485 is a cis-eQTL for LTBR (but not 

TNFRSF1A) in multiple tissues, including in the eQTLGen consortium meta-analysis of whole-

blood44, with the multiple sclerosis risk allele (rs2364485:A) associated with lower LTBR 

mRNA levels. Pairwise statistical colocalization analyses using conditioned LTBR eQTL data 

(from eQTLGen) and multiple sclerosis GWAS data42 (see Methods) showed that the 

rs2364485 trans-pQTL signal for LTA colocalises with both LTBR mRNA expression in whole 

blood (PP=0.79) and multiple sclerosis (PP=0.86) (Figure 4). Taken together, these data are 

consistent with a pathogenic model whereby the multiple sclerosis risk allele results in lower 

abundance of LTBR (the receptor) and consequently higher circulating levels of the ligand 

LTA. 

 

Identifying proteins with causal roles in disease using Mendelian randomization (MR). 
Observational studies comparing patients with IMDs to healthy controls have identified many 

proteins that are dysregulated. However, it is often unclear whether such proteins are 

upstream drivers of the disease process or are merely downstream markers. Distinguishing 

these possibilities is important therapeutically, as pharmacological targeting of the latter (e.g. 

C-reactive protein) is unlikely to be beneficial. We therefore applied Mendelian randomisation 

(MR), an approach that tests the causal role of an exposure in a disease in observational data 

using genetic variants as instrumental variables45. We used the 58 proteins with cis-pQTLs 
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outside the HLA region in our study as exposures and 14 IMDs as outcomes (see Methods). 
By restricting our use of genetic instruments to cis-pQTLs, we reduce the likelihood of violating 

MR assumptions through horizontal pleiotropy. Using Generalised Summary-data-based MR 

(GSMR)46, we found 22 significant (FDR<0.01) putative causal associations (Figure 5, 

Supplementary Table 13). To evaluate the robustness of these associations, we first checked 

the strength of the disease association in the GWAS summary statistics. Of the 22 protein-

disease MR associations, we eliminated 5 due to the lack of convincing disease association 

(smallest p-value at the locus P>1x10-4). For the remaining 17 MR associations, we then 

evaluated whether there might be confounding due to LD by estimating the r2 between the 

sentinel pQTL and the disease-associated variant to determine whether the association 

signals were likely shared or distinct. For 12 of 17 disease-protein pairs, r2 was >0.8 and 

therefore unlikely to be due to confounding by LD (Supplementary Table 14). These 12 were: 

IL12B with inflammatory bowel disease (IBD) and both its major subtypes, Crohn’s disease 

(CD) and ulcerative colitis (UC); CD40 with rheumatoid arthritis, multiple sclerosis, IBD and 

CD; IL18R1 with CD and eczema; CD6 with IBD; CXCL5 with UC; and CD5 with primary 

sclerosing cholangitis. These results highlighted a number of established links between 

proteins and inflammatory diseases that are supported by other lines of evidence. For 

example, we found that genetic predisposition to higher plasma IL12B levels was associated 

with increased risk of IBD, consistent with the therapeutic benefit of ustekinumab (an anti-

IL12/23 monoclonal antibody) in this disease (Supplementary Table 15). 

 

Another example was our MR finding implicating CXCL5 in the pathogenesis of UC. CXCL5 

is a chemokine that acts on neutrophils, and a potential therapeutically tractable target. The 

plasma cis-pQTL for CXCL5, colocalised with cis-eQTLs for CXCL5 in both blood and gut 

tissue, and with the UC GWAS signal (Figure 6a). Furthermore, the importance of CXCL5 in 

the pathogenesis of UC was supported by analysis of mucosal expression of CXCL5 

transcripts in gut samples from patients with IBD and healthy controls. IBD TAMMA is a 

publicly available, open access resource for interrogating transcriptomic data across multiple 

datasets in a meta-analysis framework47. Using this platform, we observed that the expression 

of transcripts encoding CXCL5 was significantly increased in mucosal biopsies sampled from 

patients with UC in comparison with biopsies from healthy control participants (log2 fold 

change 7.07, P<1.98x10-174) (Figure 6b). Indeed, in patients with UC, CXCL5 was the third 

most highly upregulated transcript in UC across the entire transcriptome (Figure 6c). We 

replicated these findings in three independent datasets (Figure 6d). Of note, our GSMR 

analysis revealed the association of CXCL5 was restricted to UC (unadjusted P=2.3x10-6), 

with no significant association in CD (unadjusted P 0.4) (Figures 6a,e). CXCL5 gene 
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expression in gut samples from IBD patients was higher in UC than in CD (Figure 6b), 

supporting a pathogenic effect of CXCL5 specific to UC rather than CD. Somewhat counter-

intuitively (given the upregulation of CXCL5 in UC patient tissue samples), evaluation of the 

direction of MR association effect revealed that genetic susceptibility to higher plasma CXCL5 

reduces risk of UC (Figure 6e). This effect was consistent across 12 of the 13 the individual 

genetic variants used in the MR score (Supplementary Figure 11). We found consistent 

direction of effects for the CXCL5 plasma pQTL and the blood and gut eQTLs 

(Supplementary Figure 12), so the lower UC risk with genetic susceptibility to higher plasma 

CXCL5 levels could not be accounted for by discordant effects between mRNA and protein 

levels, or by differences between tissue at the site of inflammation and systemically. 

 

We observed that genetic predisposition to higher plasma CD40 levels was associated with 

increased rheumatoid arthritis risk, consistent with evidence from both animal models and 

humans implicating the CD40 pathway in rheumatoid pathogenesis48. In addition, our MR 

analysis identified a potential causal role for the CD40 pathway in IBD (including both Crohn’s 

and UC) and multiple sclerosis. Interestingly, however, the MR associations for these diseases 

had the opposite direction of effect compared to rheumatoid arthritis i.e. genetic predisposition 

to lower plasma CD40 levels was associated with higher risk of IBD and multiple sclerosis. 

These findings highlight how the same pathway can have pleiotropic effects on disease 

susceptibility, but also point to the complexity of immune-mediated disease pathogenesis, with 

opposing effects on different diseases. 

 

 

DISCUSSION 
 
Here, we performed a large-scale pQTL GWAS of 91 circulating inflammation-related proteins 

measured using Olink immunoassays in 15,150 participants. We identified 180 significant 

associations (59 cis, 121 trans), involving 108 independent loci and 70 proteins. Our results 

provide validation of previous pQTL studies, with 130 (~72%) of the 180 significant 

associations we observed here previously reported in peer-reviewed journals1,5-12,49. We also 

highlighted 50 pQTLs (11 cis, 39 trans) that have not yet been reported in peer-reviewed 

articles, despite recent highly powered pQTL studies including Ferkingstad et al.10 (n=35,559 

participants) and Pietzner et al.6 (n=10,708 participants), both of which utilized the Somascan 

platform for discovery. Thus, the novel contributions made by our study and others (e.g., 5) 

underscore the importance of conducting analyses using data not only from large samples but 

also from complementary proteomic platforms, including immunoassays and mass 

spectrometry. Each of these technologies have their own relative strengths, with the Olink 
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proximity extension immunoassay system reducing the likelihood of cross-reactivity, while 

mass spectrometry is robust to epitope effects. 

 
By comparison with eQTL databases, we showed that at least 50% of the cis-pQTLs we 

observed are likely driven by cognate cis-eQTLs in a diverse range of tissues and cell-types. 

eQTL studies in blood have been carried out using large sample sizes of a similar order of 

magnitude to the sample size in our pQTL study. However, eQTL studies in other tissues tend 

to be smaller, and so it is likely that some of the plasma cis-pQTLs observed here are 

underpinned by tissue-specific eQTLs that have not yet been detected due to lack of statistical 

power. We also observed evidence of directional uncoupling when comparing our observed 

cis-pQTLs with cis-eQTLs for cognate genes (e.g., rs5744249 associated with IL18 in plasma 

and IL18 in whole blood in opposing directions). Directional uncoupling of eQTL-pQTL pairs 

has been reported (e.g., 6,50). However, it is important to bear in mind that plasma pQTL studies 

examine genetic effects on extracellular protein levels whereas blood eQTL studies examine 

the effects on intracellular RNA levels (predominantly in leucocytes). This has several 

implications. First, a wide range of tissues other than blood cells contribute to the plasma 

proteome, with the liver the major producer of circulating proteins. eQTL directional 

discordance has been observed between different tissues18 or even within different 

leucocytes51. As it is not always clear which cell types are the principal source of plasma 

proteins, it is conceivable that tissue-specific eQTLs could underpin discordance between 

blood eQTLs and plasma pQTLs. Second, abundances of proteins within the plasma are also 

affected by non-transcriptional mechanisms including cleavage, secretion and clearance. 

 
Our pQTL study identified twice as many trans associations compared to cis (121 versus 59, 

respectively), which is typical of well-powered pQTL studies (e.g., 5,6,10). The integration of cis-

pQTLs (and cis-eQTLs) with GWAS data provides useful, if sometimes obvious, insights into 

the upstream mechanisms of disease, since the mediating gene has usually already been 

suspected by virtue of the location of the GWAS signal. In contrast, trans-pQTLs represent a 

double-edged sword for interpreting genetic associations with disease. On the one hand, they 

often represent a less direct link from genotype to disease than cis-pQTLs, and from the 

perspective of causal inference analysis, are more vulnerable to violating the assumptions of 

MR through horizontal pleiotropy. On the other hand, the integration of GWAS data and trans-

pQTLs can provide unexpected regulatory network-level insights into more distal 

pathophysiology, thereby highlighting potential therapeutic targets further downstream. For 

example, our study highlights the multi-locus-regulated protein KIT ligand (stem cell factor), a 

regulator of hematopoiesis, as a potential nexus point through which perturbed cholesterol 

metabolism might interface with downstream inflammatory responses. Indeed, deposition of 
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cholesterol in the vascular wall leads to elevated hematopoiesis and a consequent increase 

in circulating leucocytes, which serves to exacerbate atherosclerosis52,53. KIT ligand may 

therefore be of particular relevance within the context of atherosclerotic cardiovascular 

disease. 

 

As a further example of the utility of trans-pQTLs in understanding disease mechanisms, we 

identified a novel trans-pQTL (rs2364485) for LTA at a multiple sclerosis risk locus on 

chromosome 12. This multiple sclerosis risk locus contains two plausible causal genes 

(TNFRSF1A, LTBR) and two independent signals for multiple sclerosis risk (rs1800693, 

rs2364485). By integrating whole blood eQTL and multiple sclerosis GWAS data, we showed 

that LTBR is the most likely gene meditating our LTA trans-pQTL at rs2364485, and one of 

the multiple sclerosis signals at the locus. LTA is a member of the TNF superfamily of proteins 

and is the only member of this superfamily that is generated as a secreted protein rather than 

through cleavage of a membrane-bound protein. The multiple sclerosis risk allele is associated 

with lower expression of LTBR and higher circulating protein levels of LTA, a component of its 

ligand. This raises the question as to whether elevated LTA is secondary to lower LTBR, or 

vice versa (e.g. through compensatory receptor downregulation). The distinction between cis- 

and trans-QTLs enables us to address this. Given that the eQTL for LTBR is cis, and the pQTL 

for LTA trans, it is highly likely that former is the upstream effect, with the higher levels of 

soluble LTA occurring as a result of reduced binding to its receptor. This demonstrates the 

value of pairing QTLs for ligands and their receptors for deconvoluting the ordering of 

biological pathways. 

 

Integration of pQTLs with GWAS disease signals revealed disease-protein connections 

reflecting both established and plausible putative mechanisms of pathophysiology. For 

example, a cis-pQTL for TNFSF11 (RANKL) overlapped with GWAS signals for osteoporosis 

and hypothyroidism. The former is consistent with RANKL’s well-established role in bone 

biology and RANKL is the target of the anti-osteoporosis drug denosumab54. However, RANKL 

also plays a role in the immune system55, and these effects may be relevant to risk of 

autoimmune hypothyroidism. A cis-pQTL for TNFSF12 (TWEAK) was associated with risk of 

hypertension. TWEAK is a cytokine predominantly produced by leucocytes and has pleiotropic 

actions, including on the endothelium56,57, potentially explaining the association with blood 

pressure. A cis-pQTL for NGF (nerve growth factor) was associated with migraine risk, 

consistent with NGF’s role in the nervous system. A cis-pQTL for FGF5 was also associated 

with susceptibility to hypertension and cardiovascular diseases, with the allele associated with 

higher plasma FGF5 levels associating with lower risk of cardiovascular diseases. Consistent 

with this, there are reports that FGF5 has cardioprotective effects in pig models58. 
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31 of our pQTLs overlap GWAS hits for at least one common IMD. Disease-protein links 

identified from this analysis highlighted commonalities in pathogenesis between specific IMDs 

(e.g. ankylosing spondylitis and psoriasis), mirroring the overlap in clinical manifestations (e.g. 

uveitis and spinal inflammation can occur in psoriasis as well as in ankylosing spondylitis). 

However, the contributions of proteins to IMD risk were sometimes complex, with the same 

protein conferring risk of one IMD but protecting from another. For example, genetic 

predisposition to higher levels of soluble IL6 had opposing effects on risk of rheumatoid 

arthritis and allergic disease. We observed a similar phenomenon for CD40, with genetic 

predisposition to higher CD40 increasing risk of RA but protecting against IBD and multiple 

sclerosis. 

 

The development of biologic therapies targeting specific inflammatory proteins has 

transformed the clinical management of immune-mediated diseases59. Understanding which 

proteins are drivers of disease and distinguishing these from proteins that are simply markers 

of inflammation is therefore critical for development of new treatments. We used Mendelian 

randomisation to evaluate the causal contributions of proteins to different IMDs. Our results 

identify pathways that are already the target of existing drugs (e.g. IL12B in inflammatory 

bowel disease), providing confirmation of the utility of this approach, and also highlight new 

potential therapeutic targets. 

 

One such example was CXCL5 in UC. CXCL5 is a chemokine that acts on neutrophils, which 

are known to play a role in tissue injury in IBD60. A previous study reported that serum levels 

of CXCL5 are higher in IBD patients than controls61.  Our MR findings extend this by providing 

evidence to support a causal role for CXCL5 in UC pathogenesis. We provide further support 

for the importance of CXCL5 in UC pathogenesis by showing that CXCL5 is one of the most 

upregulated transcripts in gut tissue samples from UC patients. However, the direction of effect 

of our MR association presents an apparent paradox, with genetic susceptibility to higher 

levels of plasma CXCL5 associated with lower UC risk. This could not be explained by 

differences between plasma protein levels and gene expression, since we observed 

directionally concordant findings when examining eQTL data from both the blood and gut 

samples. We hypothesize that the discrepancy between direction of effects from the MR 

analysis and from analysis of patient samples might reflect differences in the processes of 

disease initiation and perpetuation. By analogy, a non-coding genetic variant associated with 

lower gene and protein expression of TNFSF15 (encoding the inflammatory cytokine TL1A) in 

monocytes and macrophages increases IBD susceptibility62, but in patients with active IBD 

TL1A is upregulated both systemically and in the gut63-65 and anti-TL1A therapies have 
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recently shown efficacy in IBD in phase 2 randomised trials (NCT05013905 and 

NCT04996797)66-68. The MR association at CXCL5 appeared specific to UC, and not CD (the 

other major subtype of IBD), and in IBD gut samples, CXCL5 was more upregulated in UC 

than CD. In UC the extent of neutrophilic inflammation in the gut correlates with disease 

severity69,70. Recent studies have implicated neutrophil recruitment as a key pathogenic event 

in UC correlating with important histopathological features, such as ulceration, and 

differentiating patient trajectories, including their responsiveness to different treatments71,72. 

Accordingly, excessive production of CXCL5 in non-immune compartments, including stromal 

cells and epithelial cells, which is driven by pathogenic cytokines, such as IL1-b71,72, 

represents a conceptually attractive pathogenic axis to target therapeutically, especially in 

patients refractory to conventional therapies. Consistent with this hypothesis, targeting 

CXCR2, the receptor for CXCL5, significantly attenuates preclinical models of UC72. 

 

Another potential therapeutic avenue highlighted by our data was targeting the CD40 pathway 

in rheumatoid arthritis. CD40, a member of the TNF receptor superfamily, is a stimulatory 

receptor constitutively or inducibly expressed on both immune cells (B cells, dendritic cells, 

macrophages and microglia) and non-immune cells (including endothelial cells, epithelial cells, 

and keratinocytes)73. Its ligand, CD40L, is expressed primarily on activated T cells but also on 

a range of other immune and non-immune cells. CD40L-CD40 binding triggers immune cell 

activation and proliferation and inflammatory cytokine production. In B cells, CD40 stimulation 

leads to differentiation of B cells into IgG-secreting plasma cells, making it central to antibody 

responses. In a murine model of inflammatory arthritis, knock out or inhibition of the CD40 

pathway resulted in reduced inflammation74. Observational studies have demonstrated 

upregulation of CD40L in the blood and tissues of patients with RA and other autoimmune 

rheumatic diseases48, and indicated a role of CD40/CD40L in the longitudinal course of RA 

from autoimmunity to joint inflammation75. These findings previously motivated development 

of drugs targeting the CD40 pathway in RA and other IMDs, but, unfortunately, anti-CD40L 

therapy was complicated by thrombosis due to cross-linking CD40L on platelets. Therapeutic 

targeting of CD40 rather than CD40L may avoid this. Our MR results suggest rheumatoid 

arthritis as a candidate for this approach. However, the plethora of approved treatments for 

rheumatoid arthritis make demonstrating value of a new agent is challenging, although the 

prospect of using such therapy very early in the disease course is an interesting possibility75. 

In addition, the directionally discordant effects we observed of CD40 on RA versus multiple 

sclerosis and IBD raises the possibility of triggering other forms of immune-mediated diseases 

as a side-effect of anti-CD40 therapy. This has some parallels with therapies targeting TNF-α 

(another TNF superfamily member). Anti-TNF-α therapy is effective in rheumatoid arthritis, but 
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not in multiple sclerosis, and indeed can worsen multiple sclerosis or provoke de novo central 

nervous system demyelination76,77. Thus, for any anti-CD40 therapy careful monitoring for the 

development of features of multiple sclerosis or IBD would be required in both clinical trials 

and post-marketing surveillance. 

 

The observation that genetic predisposition to lower circulating CD40 levels is a risk factor for 

IBD may at first appear paradoxical given that CD40 is generally considered to be pro-

inflammatory. However, accumulating evidence points to the role of defective mucosal 

homeostasis and host-microbe interactions in the pathogenesis of IBD. Reduced CD40 may 

reduce the host’s immunological defence against gut microbes and allow them to breach the 

intestinal wall and thus trigger a chronic inflammatory response. This hypothesis is consistent 

with the emerging concept that IBD arises from relative immunodeficiency78. By analogy, there 

are coding variants at several other IBD risk loci that result in impaired host antibacterial 

responses, including NOD279 and ATG16L180-82, illustrating the importance of the immune 

system in gut barrier integrity, as well as the example of TL1A discussed earlier62. 

 

Our study has several limitations. Our pQTL analysis was restricted to 91 proteins measured 

on the Olink Inflammation panel. These proteins do not include all the circulating proteins that 

are important in inflammation, and so this limits the generalisability of our findings, particularly 

with regards to genetic architecture. Since this was a pQTL meta-analysis, study-level 

technical variation resulted in heterogeneity, which necessitated filtering out of potentially 

spurious associations that were inconsistent across cohorts. There is a risk that some true 

biological signals were also removed in this process. Very large single cohorts with 

standardized sample processing such as UK Biobank will avoid this issue. 

 

Our meta-analysis consisted predominantly of general population cohorts without 

inflammatory disease. As a result, some of the proteins measured were below the lower limit 

of detection in a high proportion of samples, although we were able to partially mitigate this by 

using untruncated NPX values. In addition, there may be context-specific pQTLs that are only 

present during infection or inflammation. eQTL studies using human immune cells stimulated 

in vitro (e.g. with lipopolysaccharide or interferon) have already demonstrated eQTLs that are 

not present in resting cells but become apparent in the context of cellular activation83,84. 

Conducting well-powered pQTL studies in patients with infection or inflammation will be an 

important future research endeavor. Where proteins exist in both membrane-bound and 

cleaved states, it is not always clear whether plasma proteomic assays are exclusively 

capturing the soluble form or also protein from cell membranes (e.g. arising from in vivo 

sources such as exo-/ectosomes, or ex vivo processes such as venepuncture or sample 
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processing). This complicates the interpretation of the direction of effect from MR analysis. 

Future well-powered studies examining genetic determinants of cell surface proteins 

measured through flow cytometry would provide valuable complementary information to aid 

the interpretation of plasma pQTL studies. Finally, as with all epidemiological-scale pQTL 

studies, proteins were measured in plasma (i.e. the extracellular component of blood), which 

may not always be the disease-relevant biological matrix. For example, our MR analysis 

revealed that genetic predisposition to higher plasma IL12B is associated with increased IBD 

risk and the causal role for IL12B is supported by the therapeutic efficacy of ustekinumab. 

However, it is more likely that local levels of IL12B in the gut rather than circulating levels are 

most relevant to IBD pathogenesis. We speculate that in this instance the plasma pQTL 

mirrors the genetic effect in local tissues (perhaps because it is driven by subsets of 

leucocytes, which are also a major constituent of blood). However, for other proteins, the 

genetic determinants of concentration may differ between plasma and tissues, and so future 

tissue- and cell-specific pQTL studies will be valuable to understand differences in genetic 

signals across tissues. 

 
In summary, we have used a large international consortium to robustly characterise the 

genetic determinants of a set of inflammation-related proteins, providing insight into the 

etiology of immune-mediated diseases. The increasing number of trans-pQTLs now being 

highlighted in proteomic GWAS should facilitate network-level insights into disease 

pathophysiology. The pQTL summary statistics generated in this study will be a valuable 

resource for interrogating future disease GWAS and will help guide drug target identification 

and prioritization. 

 
 
METHODS 

Cohorts. We recruited 11 cohorts of participants with genome-wide genetic data and plasma 

proteomic data measured using the Olink Target Inflammation panel. All participants provided 

written, informed consent. 

Biomarkers For Identifying Neurodegenerative Disorders Early and Reliably 
(BioFINDER). The BioFINDER study85 is run by the Clinical Memory Research Unit and The 

Biomedical center, at Lund University, Sweden. Participants were recruited from the Memory 

and Neurology clinics at Skåne University Hospital as well as the Memory Clinic at 

Ängelholm’s Hospital. A total of 1,496 participants with mild cognitive symptoms, dementia or 

parkinsonian symptoms, as well as cognitively healthy elderly, have so far been enrolled in 

the study. 
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Estonian Biobank (EstBB). The EstBB cohort is a volunteer-based sample of the Estonian 

resident adult population (aged ≥ 18 years)86. A total of 487 participants contributed to this 

study. The research conducted in this project was approved by the Estonian Committee on 

Bioethics and Human Research (1.1-12/624) and by the Research Ethics Committee of the 

University of Tartu (application number 262/T-3, October 2016), data extraction nr K29. 

INTERVAL. The INTERVAL study1,87,88 is a prospective cohort study of blood donors, initially 

recruited for a randomized trial to determine optimal blood donation intervals. Volunteers were 

recruited and consented between 2012 and 2014 from 25 NHSBT (National Health Service 

Blood and Transplant) static donor centers across England. The INTERVAL study was 

approved by the Cambridge (East) Research Ethics Committee. A subset of 4,994 participants 

from INTERVAL with Olink inflammation panel data contributed to the present study. These 

participants had an age range between 49 and 78 years (median 61, IQR=55-66). 

 

Cooperative Health Research in the Region of Augsburg (KORA). KORA is a series of 

independent population-based studies from the general population living in the region of 

Augsburg, Southern Germany. The KORA F4 study was conducted from 2006-2008 as a 

follow-up study to KORA S4 (1999-2001)89. 1,064 participants from KORA F4 contributed data 

to this study.. 

 

Orkney Complex Disease Study (ORCADES). The ORCADES is an ongoing family-based 

study in the isolated Scottish archipelago of Orkney, part of the Viking Genes studies 

(ed.ac.uk/viking). A total of 981 individuals with Olink inflammation panel data contributed to 

this pQTL study. All participants gave written informed consent and the study was approved 

by Research Ethics Committees in Orkney, Aberdeen (North of Scotland REC), and South 

East Scotland REC, NHS Lothian (reference: 12/SS/0151). 

 

Northern Sweden Population Health Study (NSPHS). The NSPHS is a cross-sectional 

study conducted in the communities of Karesuando (samples gathered in 2006) and Soppero 

(2009) in the subarctic region of the County of Norrbotten, Sweden. A total of 866 individuals 

with Olink inflammation panel data contributed to this pQTL study. 

RECOMBINE/EIRA. The RECOMBINE/EIRA biobank was generated from participants with 

rheumatoid arthritis according to the American College of Rheumatology (ACR) 1987 or the 

2010 ACR/EULAR diagnostic criteria and being part of the Epidemiologic Investigation of 

Rheumatoid Arthritis (EIRA) study90. At the time of recruitment, all participants were 

undergoing a change to or were at the start of a new treatment regimen between February 
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2011 and May 2013 at the Rheumatology clinic, Karolinska University Hospital, Stockholm, 

Sweden. Participants donated blood at baseline and then again at a 3-month follow-up visit. 

A total of 860 rheumatoid arthritis patients with Olink inflammation panel data contributed to 

this pQTL study. 

Stabilization of Atherosclerotic Plaque by Initiation of Darapladib Therapy Trial 
(STABILITY). STABILITY is a randomized, controlled trial conducted in 15,828 patients with 

chronic coronary heart disease (CHD) comparing darapladib or placebo, in addition to 

standard of care (https://clinicaltrials.gov/ct2/show/NCT00799903)91. Data from 2,951 

individuals with Olink inflammation panel and genotyping data contributed to this pQTL study. 

All participants gave written informed consent to the biomarker and genetic sub-studies and 

the study was approved by the National Ethics Committees in the participating countries. 

STANLEY (SWEBIC). The SWEBIC cohort comprises participants meeting the diagnostic 

criteria for Bipolar disorder as per the DSM-IV recruited at Swedish sites in affiliation with the 

Stanley Medical Research Institute. In total, SWEBIC contributed 644 samples (cohort A 

[swe6]: 300, cohort B [lahl]: 344) with Olink inflammation panel data to this pQTL study. Ethical 

approval for SWEBIC was granted by the Regional Ethical Review Board in Stockholm, 

Sweden (2008/2009-31/2). 

VIS. CROATIA-Vis is a family-based, cross-sectional study in the island of Vis, Croatia. 899 

participants with Olink Inflammation panel and genotyping data contributed to this pQTL study. 

All participants gave written informed consent and the study was approved by Research Ethics 

Committees in Croatia (Institutional Ethics Committee of the University of Split School of 

Medicine [protocol code 2181-198-03-04/10-11-0008] and Scotland). 

ARISTOTLE. The Apixaban for reduction in stroke and other ThromboemboLic events in atrial 

fibrillation (ARISTOTLE) trial was designed to investigate the safety and efficacy of the Factor 

Xa (FXa) inhibitor apixaban for secondary prevention of stroke in atrial fibrillation patients. Full 

details of the ARISTOTLE cohort are available at13-15. In total, ARISTOTLE contributed 1,585 

samples with Olink inflammation panel data for comparison with the pQTL discovery meta-

analysis findings. All participants gave written informed consent to the biomarker and genetic 

sub-studies and the study was approved by the National Ethics Committees in the participating 

countries. 

Protein assays. Plasma proteins were measured using Olink immunoassays. We used the 

Olink Target-96 Inflammation panel, which measures 92 inflammation-related proteins 

(https://www.olink.com/resources-support/document-download-center/, accessed: 9th 
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September 2022) from multiplexed antibody-based immunoassays which uses a matched pair 

of antibodies for a protein linked to paired oligonucleotides92. Proteomic data for each cohort 

were generated at Olink laboratories in Uppsala. Normalized Protein mapping to UniProt 

(https://www.uniprot.org/) identifiers was provided by Olink with additional information 

obtained from BioMaRt93. Protein eXpression, or (NPX), is Olink’s normalised relative units in 

log2 scale. Olink defines the lower limit of detection (LOD) for quantification of each protein as 

3 standard deviations above background (determined using blank control samples). During 

the course of the project, BDNF was removed from the inflammation panel by Olink due to 

assay problems therefore 91 proteins were included in our study (Supplementary Table 2). 

Genotyping. Each cohort was genotyped on a SNP array and imputed using either a  

1000Genomes or Haplotype Reference Consortium (HRC) panel (Supplementary Table 1). 

Cohort-level pQTL mapping. A GWAS analysis was run for each protein in each cohort using 

an additive association model with protein level as the dependent variable. Proteins were 

inverse-rank normalised as the outcomes in the regression models. Population substructure 

was adjusted for by including genetic principal components as covariates. We also included 

age, sex and other study-specific covariates in the model (see Supplementary Table 1). To 

avoid proteins with truncated distributions due to LOD with multiple tied values that would 

violate linear regression assumptions, pQTL analysis was performed using continuous protein 

values (including those below the LOD where relevant). We illustrate the value of this 

approach in recovering biological signals in Supplementary Figure 2b. 

pQTL meta-analysis. We meta-analysed pQTL summary statistics from each cohort 

(Supplementary Table 1), representing  a total of 15,150 participants. A schematic of our 

analysis pipeline is shown in Supplementary Figure 1. Prior to the meta-analysis, we applied 

cohort-level filters to pQTL GWAS summary statistics with respect to MAF (≥0.001), HWE 

(P>10-6), and imputation score (𝑟 ≥0.3 or SNPTEST proper_info>=0.4). For each cohort, we 

generated QQ plots and Manhattan plots for visual examination using the R packages qqman 
v0.1.4 and QCGWAS v1.0-8. We performed the meta-analysis with the METAL software 

(version 28.8.2018), using inverse-variance weighted analysis of regression betas and 

standard errors from the cohort-level summary statistics. We observed no evidence of 

genomic inflation (mean lambda 0.9945, range 0.9945-1.0485) across the 91 proteins. From 

the meta-analysis summary statistics, we generated QQ and Manhattan plots for each protein 

GWAS (Supplementary Figure 13). The forest plots were generated using the gap package 

v1.2.3-6. Regional association plots were generated using LocusZoom 1.4 (Supplementary 
Figure 14). We defined statistical significance as P<5×10−10 (based on Bonferroni correction 
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of the conventional ‘genome-wide’ significance threshold P<5x10-8 for approximately 100 

proteins). 

To remove potentially erroneous meta-analysis signals arising due to an extremely strong 

association in a single cohort, we examined the meta-analysis results at each sentinel variant 

by visual inspection of the forest plot and imposed the following criteria: 1) to be included in 

the meta-analysis, a variant was required to be available in at least three studies and in at 

least 3,500 participants; 2) in order to be declared significant, we required a meta-analysis 

P<5×10−10, and, if there was evidence of heterogeneity with I2 >30%, then we required the P-

value in at least three studies to be <0.05 and the direction of effect in those studies to be 

consistent with the overall meta-analysis results. These were implemented through 

modification of METAL source code. 

Replication cohort. We compared the results from our primary meta-analysis to pQTL results 

generated in an independent set of 1,585 participants from the ARISTOTLE study13-15 for 

validation purposes. 

Definition of pQTL sentinel variants and regions. We defined a pQTL as a genetic locus 

significantly (P<5x10-10) associated with protein abundance. We defined the sentinel variant 

at a locus as the variant with the lowest P-value in the region for a given protein. We used the 

following approach for each protein to define genomic regions and the sentinel variant in each: 

1) we first obtained a list of significant (P<5x10-10) variants and the flanking region (+/-1Mb) 

for each variant; 2) overlapping regions were then iteratively merged until no overlapping 

regions remained; 3) the most significant variant in each resulting region was then defined as 

the sentinel variant. This approach has the flexibility to cope with long stretches of LD whilst 

avoiding the drawback of setting a longer than necessary region for all variants. The algorithm 

was implemented using bedtools v2.27.0. Signals within/beyond 1Mb of the transcription start 

site (TSS) of the gene encoding the target protein were defined as cis and trans, respectively. 

Protein variance explained by pQTLs. We used the following equation to estimate the 

proportion of variance explained (PVE) by (T) pQTLs from the meta-analysis summary 

statistics for each protein: 

PVE=" !!"

!!""#!$%

&

'()
 

where 𝜒'% is the chi-squared statistic based on each associated variant’s effect size and its 

standard error and Ni is the associated sample size. We estimated the variance of the PVE 

for each variant as 2(Ni -2)/[(Ni -1)2(Ni +1)] 94. For visualization of effect size in Supplementary 
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Figure 4, we used the associated form 2𝛽2[f(1-f)] 95, where 𝛽 is the effect size and f the effect 

allele frequency, respectively. 

Conditional analysis. To identify conditionally independent signals within a genomic region, 

we performed approximate stepwise conditional analyses using GCTA v1.93.0beta with the ‘-

-cojo-slct’ option, using effect sizes and standard errors from the meta-analysis. We estimated 

the correlation between variants using individual-level data from the INTERVAL study as a 

reference. As GCTA imputes LD from mean genotypes when they are missing, to avoid bias 

we excluded variants with MAF<1% (unless they were sentinel variants). For stepwise 

selection, we considered only those variants passing the genome-wide threshold (P≤5x10-10), 

rather than all variants in the region96. As in certain cases GCTA conditional analysis yielded 

results involving pairs of variants in relatively high LD (r2≥0.7), we used independent genetic 

variants (r2≤0.1)97 in the INTERVAL imputed genotype data whilst forcing the inclusion of the 

sentinel variants in the pruned set98 (Supplementary Table 4). 

Identification of known pQTLs. To identify previously reported pQTLs, we manually curated 

published results from literature obtained from the NCBI web interface 

(https://pubmed.ncbi.nlm.nih.gov/) through its Entrez programming utility R/rentrez99, 

PhenoScanner v239, and the NHGRI-EBI GWAS Catalog with phenotypes mapped to the 

Experimental Factor Ontology (EFO)100 (EFO_0004747), restricting to  associations reported 

in European-ancestry populations. We selected variants that reached the conventional 

genome-wide significance threshold P=5x10-8 and that were in high LD (r2=0.8) with the meta-

analysis pQTL sentinel variant, paying attention to any possible protein isoforms on the 

Somascan platform. We also considered significant loci reported from cohorts in this1,101 and 

meta-analyses5 as known loci, as were those published at later stage of this analysis6,10,12,49,102. 

Variant annotation. We obtained the absolute distance of sentinel variants to the TSS of the 

gene encoding the target protein using the rGREAT (Genomic Regions Enrichment of 

Annotations Tool)103 R package rGREAT. We annotated sentinel variants and LD proxies 

(defined as r2≥0.8, using the INTERVAL dataset as the LD reference panel) using the Ensembl 

Variant Effect Predictor (VEP, v98.3)104 including the LOFTEE plugin32. 

Prioritizing likely mediating genes at trans-pQTLs. To prioritize likely mediating genes at 

trans-pQTLs, we used an adapted version of the ProGeM method, which has been described 

previously23. For the cis-eQTL lookups of our trans-pQTL sentinel variants we utilized 

eQTLGen44, the eQTL Catalogue19, and the Genotype-Tissue Expression project (GTEx, v8)18 

data. To determine whether the trans-pQTL sentinels are likely to be causal cis-eQTL variants 

in the eQTL Catalogue and GTEx data, we used the fine-mapped eQTL credible sets available 

at the eQTL Catalogue (https://www.ebi.ac.uk/eqtl/Data_access/). For the eQTLGen data, 
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where credible sets were not available, we used a manual approach whereby we: (i) first 

defined a region around each trans-pQTL sentinel variant of +/-500kb; (ii) identified the variant 

with the lowest cis-eQTL p-value in this region for the cis-affected gene(s); and (iii) checked 

to see whether this sentinel cis-eQTL variant is the same sentinel variant for the trans-pQTL, 

or if the two are in high LD (r2>0.8). 

For the “top-down” component of ProGeM, we first identified locally-encoded genes using a 

window around each trans-pQTL sentinel variant of +/-500kb. We then probed the proteins 

encoded by these local genes using: (1) protein:protein interaction (PPI) data; and (2) data 

from functional annotation databases. With the PPI data we aimed to determine whether there 

is evidence to indicate that genes residing close to each sentinel variant might physically 

interact with the corresponding trans-affected protein. We used the Bioconductor package 

STRINGdb (v2.8.4) to identify any pairwise interactions. We used data from functional 

annotation databases to determine whether any local genes encode proteins that might be 

functionally related to the corresponding trans-affected protein(s). For both the trans-affected 

proteins and locally encoded proteins, all assigned Gene Ontology terms, Reactome 

pathways, and KEGG pathways were extracted using the Bioconductor biomaRt (v2.52) and 

KEGGREST (v1.36) packages. To assess whether there is significant overlap between the 

functional annotation terms/pathways assigned to locally encoded proteins and the 

corresponding trans-affected proteins, we determined the number of shared and non-shared 

terms for each local gene and the corresponding trans-affected protein. Fisher’s exact test 

was then applied for each local gene/trans-protein combination, and p-values were Bonferroni-

corrected for the number of local genes at each given trans-pQTL. The background set of 

terms for each trans-pQTL was composed of all terms assigned to all local genes at the locus 

(i.e., all protein-coding genes within 500kb from the sentinel variant). 

To determine the most likely mediating genes for the multi-locus regulated proteins IL12B, 

KITLG (SCF), and TNFSF10 (TRAIL), we used the STRINGdb105 webtool to identify 

interactions or functional relationships between genes residing at distinct loci. This is based 

on the assumption that if the true mediating genes at distinct loci are all associated with plasma 

levels of the same protein, then they may share some other functional relationship. As input 

to STRINGdb, we used all proteins encoded by candidate mediating genes identified by 

ProGeM (Supplementary Table 9) at each of the loci for a given protein, as well as the 

relevant trans-affected protein. We deemed clusters of proteins residing at distinct loci with 

multiple functional interactions to be the most likely mediating genes at their respective loci. 

We performed a phenome-scan of the trans-pQTLs for KITLG using the Open Targets 

Genetics webtool106. 
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Statistical colocalization analysis. We performed pairwise statistical colocalization analyses 

of cis-pQTLs identified in the meta-analysis with all cognate cis-eQTL data derived from 

eQTLGen44,107, the eQTL Catalogue19, and GTEx v818. We extracted the meta-analysis 

summary statistics for each cis-pQTL sentinel and their +/-1Mb flanking regions, then 

extracted the same genomic windows from their cognate cis-eQTL data. We performed 

colocalization analyses using the coloc R package as implemented in v.21.01.1 of the eQTL 

Catalogue/colocalization workflow19 (https://github.com/kauralasoo/eQTL-Catalogue-

resources). Briefly, coloc returns posterior probabilities indicating the likelihood that the 

following scenarios are true: (i) there is no association at the locus with either protein or mRNA 

(PP0), (ii) there is an association with either the protein (PP1) or the mRNA (PP2), but not 

both, (iii) there is an association with both the protein and the mRNA but with distinct causal 

variants (PP3) or with a shared causal variant (PP4). We considered a PP4>=0.8 to be robust 

evidence of colocalization between a cis-pQTL and its cognate cis-eQTL. As eQTLGen data 

only provides allele frequency (f) and z-score statistic (z) for a particular variant, we obtained 

the effect size (b) and its standard error (se) with 𝑏 = 𝑧 𝑑⁄ , 𝑠𝑒 = 1 𝑑⁄ , where 𝑑 =

-2𝑓(1 − 𝑓)(𝑧% +𝑁), and 𝑁 is the associate sample size108. 

To investigate potential colocalization between a trans-pQTL (rs2364485) for LTA identified in 

this meta-analysis, a multiple sclerosis GWAS signal42, and a cis-eQTL for LTBR from 

eQTLGen44, we used a tool for multi-trait colocalization called HyPrColoc109. We obtained 

multiple sclerosis summary statistics (MSchip, “discovery_metav3.0.meta.gz”) from 

Patsopoulos et al. by request to the International Multiple Sclerosis Genetics Consortium 

(IMSGC). Due to a lack of genotype coverage at the LTBR/TNFRSF1A locus in the extended 

and replication samples from Patsopoulos et al., we selected the summary statistics from the 

“discovery” sample (n=41,505) for colocalization analyses, not the full meta-analysis. As a 

result, the p-value for association between the variant of interest (rs2364458) and multiple 

sclerosis in the discovery subset (p=5.78x10-6) was higher than reported in Patsopoulos et al. 

(p=2.0x10-20)42. We then extracted summary statistics for rs2364458 (+/-1Mb) 

(chr12:5514963-7514963) from each of the 3 datasets, and performed conditional analyses to 

adjust for any independent signals at the locus using GCTA-COJO. We ran this using a two-

step approach: we first used the COJO-slct function to identify independent signals at the 

locus, and then for datasets with independent signals (i.e., in addition to rs2364485), we used 

COJO-cond to generate conditioned summary statistics for use in HyPrColoc. HyPrColoc 

returns the posterior probability that 2 or more traits colocalize, akin to PP4 from coloc. We 

considered a PP>=0.8 as robust evidence of colocalization between traits. 

Overlap of pQTL and disease traits. We used a PhenoScanner v2-based R code to look 
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up associations of our pQTL sentinels and their LD proxies (r2≥0.8) in disease GWAS 

summary statistics. 

Mendelian randomization analyses. We performed MR analyses using the proteins with cis-

pQTLs identified in this meta-analysis as exposures, and immune-mediated diseases (IMDs) 

as outcome variables. All MR analyses were run using the Generalized Summary-data-based 

Mendelian Randomisation (GSMR) method46. For each protein analysed, we defined a +/- 1 

Mb window around the gene encoding it and extracted pQTL summary statistics for this region. 

For outcome data, we downloaded GWAS summary statistics for immune-mediated diseases 

(IMDs) from OpenGWAS (https://gwas.mrcieu.ac.uk/datasets/) and when larger sample and 

variants are available from the GWAS catalog (https://www.ebi.ac.uk/gwas/downloads). For 

IMDs with several alternative datasets available, we selected the dataset with the largest case 

sample size, provided it (i) had genotype data with sufficient coverage at the loci of interest, 

(ii) it was generated in European-ancestry samples so that it matched the ancestry of the 

participants in our pQTL meta-analysis, and (ii) betas and standard errors either available or 

calculable. We excluded UKB GWASs since they generally underestimate effect sizes of 

causal effects due to relatively small number of cases but large number of controls. We used 

the GSMR implementation in GCTA with at least 3 (--gsmr-snp-min 3) genome-wide significant 

(--gwas-thresh 5e-8), quasi-independent variants (--clump-r2 0.1)  with specification of 

difference in allele frequency of each SNP between the GWAS summary datasets and the LD 

reference sample (--diff-freq 0.4) and p-value threshold for the HEIDI-outlier filtering analysis  

(--heidi-thresh 0.05)  

(https://yanglab.westlake.edu.cn/software/gcta/#Mendelianrandomisation), These criteria 

additionally excluded Celiac disease and primary biliary cholangitis. The final analysis involved 

58 proteins and 14 diseases since it is from the HLA region whose MR results were unreliable. 

P-values were corrected for multiple testing using Benjamini-Hochberg correction, applied to 

the results for 331 models which involved at least 3 variants for both proteins and diseases. 

CXCL5 differential expression analysis in UC cohorts 

Changes in CXCL5 gene expression levels were evaluated in four independent cohorts, 

including the IBD Transcriptome and Metatranscriptome Meta-Analysis (TaMMA) platform47, 

the Gene Expression Omnibus (GEO) series GSE16879, GSE206285, as well as the Imperial 

UC cohort. IBD TaMMA (https://ibd-meta-analysis.herokuapp.com/) gives access to 3,853 

transcriptomic profiles from 26 independent studies including IBD and control samples across 

different tissues, all processed with the same pipeline and batch-corrected47. Pre-computed 

differential expression results between colon biopsies from UC patients versus healthy donors 

were downloaded and plotted. 
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Data from GEO Series GSE16879 used in this study consist of colonic mucosa microarray 

expression profiles from healthy donors (n=6) and UC patients (n=24) sampled before first 

infliximab treatment110. CEL file import into R, and background correction, normalization and 

RMA calibration of the raw intensity data were carried out using the oligo package111. Only 

probe sets with median expression greater than 4 and associated to only one ENTREZ gene 

identifier were kept for analysis. Intensity data for different probe sets mapped to the same 

ENTREZ gene identifier were combined by taking the geometric mean sample wise. Tests of 

differential gene expression of ulcerative colitis samples compared to healthy control samples 

were performed with the limma package. P-values were adjusted for multiple testing with the 

Benjamini and Hochberg procedure. 

 

GEO Series GSE206285 contains array-based transcriptomic data collected at baseline as 

part of UNIFI, a randomized placebo-controlled phase 3 clinical trial evaluating the efficacy 

and safety of ustekinumab112. RMA signal intensity profiles and associated donor information 

were downloaded from NCBI GEO. Only probe sets associated to only one ENTREZ gene 

identifier were kept for analysis. Intensity data for different probe sets mapped to the same 

ENTREZ gene identifier were combined by taking the geometric mean sample wise. Genes 

with median expression greater than 3 across all samples were tested for differential 

expression between ulcerative colitis samples (n=550) versus healthy control samples (n=18) 

using the limma package113. P-values were adjusted for multiple testing with the Benjamini 

and Hochberg procedure. 

 

The Imperial UC cohort includes whole tissue biopsies from ulcerative colitis patients (n=16) 

and healthy volunteers (n=6). RNA was extracted (Qiagen RNeasy mini kit) and sequencing 

libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, 

USA) following manufacturer’s recommendations. Briefly, mRNA was purified from total RNA 

using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent 

cations under elevated temperature in NEBNext First Strand Synthesis Reaction Buffer（5X). 

First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse 

Transcriptase（RNase H-). Second strand cDNA synthesis was subsequently performed 

using DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends 

via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA fragments, 

NEBNext Adaptor with hairpin loop structure were ligated to prepare for hybridization. Library 

fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA) and 

treated with 3 μl USER Enzyme (NEB, USA) at 37°C for 15 min, followed by 5 min at 95 °C. 

Then PCR was performed with Phusion High-Fidelity DNA polymerase, Universal PCR 
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primers and Index (X) Primer. Library quality was assessed on Agilent Bioanalyzer 2100 and 

on Nanodrop ND-1000 Spectrophotometer. The library preparations were sequenced on an 

Illumina HiSeq platform, generating 150 bp paired end reads. 

 

The resulting fastq files were processed with trimmomatic1148 (v. 0.39) to remove adaptor 

contamination and poor-quality bases. The output read files were mapped to the GRCh38 

assembly of the human genome using Hisat21159 (v. 2.2.1) with default parameters. The 

number of reads mapping to the genomic features annotated in Ensembl11610 with a MAPQ 

score higher than or equal to 10 was calculated for all samples using htseq-count11711(v. 

0.11.3) with default parameters. Data for Ensembl genes with no associated ENTREZ gene 

identifier were discarded; the read counts for Ensembl genes mapped to the same ENTREZ 

gene identifier were summed up sample wise. 

 

Differential expression analysis between ulcerative colitis versus healthy biopsies was 

performed in R (v. 3.6.1) using the Wald test as implemented in DESeq211812. Only genes with 

an average read count across samples greater than or equal to 10 were tested for differential 

expression. P-values were adjusted for multiple testing with the Benjamini and Hochberg 

procedure. 

Data availability. Full per-protein summary statistics will be made available on publication. 

Code availability. GitHub: https://jinghuazhao.github.io/INF/, cambridge-ceu: 

+https://cambridge-ceu.github.io/public (modified METAL, pQTLtools). 
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Figure 1. Circos plot showing the location of cis- (red) and trans- (blue) pQTLs and their 
associated proteins. Labels for the cis-pQTLs (red) indicate the gene encoding the target 
protein. For the trans-pQTLs (blue), the gene symbols of the target proteins are indicated 
along with the likely mediating gene(s) at the trans-pQTLs in square brackets. -log10(P-values) 
are capped at 150 for readability. 
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Figure 2. Genetic architecture of 91 inflammation-related proteins.  (a) Distribution of the 
number of identified pQTLs per protein. The HLA region was treated as a single region. (b) 
Circos plot showing the six trans-pQTLs for the SH2B3 ‘hotspot’ locus on chromosome 12. (c) 
Manhattan plots showing genetic associations with plasma abundance of IL12B and (d) 
TNFSF10 (TRAIL). The horizontal red line indicates statistical significance (P=5x10-10). 
Nearest genes in the region of pQTL signals are annotated. 
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Figure 3. Genetic regulation of the inflammasome impacts plasma IL18 levels. a) 
Schematic illustrating the cleavage of pro-IL18 by caspase 1 and subsequent secretion of 
mature IL18 from the cell into the extra-cellular space. b) Regional association plots around 
NLRC4 showing: the trans-pQTL signal for plasma IL18 protein (top) from this study 
(n=15,150), and the cis-eQTL signal for NLRC4 (bottom) in whole blood from the eQTLGen 
study (n=31,684)44. 
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Figure 4. The LTBR-LTA axis in the etiology of multiple sclerosis (MS). (a) Unconditioned 
and (b) conditioned regional association plots at the TNFRSF1A-LTBR locus (rs2364485 +/- 
100kb) for MS (top), plasma LTA protein levels (middle), and LTBR mRNA expression in whole 
blood from eQTLGen44 (bottom). MS associations were conditioned on rs1800693 (the 
strongest disease signal in the region). LTBR mRNA expression levels were conditioned on 
the following independent eQTLs: rs3759322, rs1800692, rs2228576, rs10849448, 
rs2364480, and rs12319859. 
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Figure 5. GSMR results for circulating proteins and immune-mediated diseases. Effect 
estimates are from GSMR analysis46 using cis-pQTLs which involved at least 10 genome-wide 
significant and quasi-independent variants required for the GSMR analysis. Cells are coloured 
according to Z-scores - Red: higher genetically-predicted plasma protein levels are associated 
with higher risk of disease; blue: higher genetically-predicted plasma protein levels are 
associated with lower risk of disease; gray: fewer than 10 variants available to run the GSMR 
analysis. Associations with FDR ≤0.01 are denoted with dots, with filled circles indicating those 
that are robust to confounding by LD and open circles indicating those that were not. 
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Figure 6. CXCL5 in UC pathogenesis. 

a) Genetic associations in the CXCL5 gene region. From top to bottom: plasma CXCL5 pQTL, 
whole blood eQTL (from eQTLGen data), colon tissue eQTL (from GTEx), ulcerative colitis 
and Crohn’s disease (from the IBD Genetics Consortium). 

b) Violin plots showing CXCL5 expression in gut mucosal samples from patients with UC or 
CD and from healthy controls (IBD TaMMA). PBH = Benjamini-Hochberg adjusted p-values. 

c) Volcano plot showing differential expression analysis comparing colonic tissue from UC 
versus healthy controls (IBD TaMMA). Each point represents a transcript. Red and blue 
indicate significantly (5% FDR) up- and down-regulated, respectively. 
 
d) Replication of CXCL5 differential gene expression patterns in colon biopsies from ulcerative 
colitis (UC) patients compared to healthy controls (HC). 
 
Left hand panel: CXCL5 differential expression results from transcriptome-wide analysis 
across 3 cohorts. GSE numbers are Gene Expression Omnibus accession numbers. Imperial 
= Imperial UC cohort. Each lollipop represents a separate cohort. GSE16879 n= 24 UC 
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patients versus n=6 healthy controls. GSE206285 n=550 UC patients versus n=18 healthy 
control samples. Imperial n=16 UC vs 6 healthy controls. PBH = Benjamini-Hochberg adjusted 
p-values. Circle colour indicates the log2 fold change (FC) in CXCL5 expression between UC 
and HC. 
 
Right hand panel: CXCL5 expression in colon biopsies sampled at baseline during the UNIFI 
clinical trial. Each point is associated to one participant in the ulcerative colitis (UC) or healthy 
control (HC) group, and its y coordinate reflects the normalised expression level of CXCL5. 

e) Forest plot showing Mendelian randomisation analysis for UC and CD. OR = odds ratio for 
the risk associated with a 1 standard deviation increase in the level of the protein. Square box 
indicates point estimate and whiskers indicate 95% confidence intervals (CI).   
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Table 1. Unreported pQTLs. pQTLs not previously reported to our knowledge. pQTLs are 
ordered by chromosome and position. Target protein = protein whose abundance is 
associated with the genetic variant. Target proteins are annotated using the gene symbol of 
their encoding gene in order to provide a standardised nomenclature. Candidate mediating 
gene = the leading candidate mediating gene(s) according to ProGeM23 for the trans-pQTLs. 
A1/A2=effect allele/reference allele, b(se)=regression coefficient (standard error). 
 
 
 

no chr:pos rsid a1/a2 b (se) -log10(p) cis/trans 
Target 
protein 

Candidate 
mediating 

gene(s) 
1 1:7972201 rs1776354 A/G -0.13 (0.013) 22.99 cis TNFRSF9 - 
2 1:44253015 rs3828139 T/C 0.074 (0.012) 9.39 trans CD244 ST3GAL3 
3 1:115829943 rs6328 A/C -0.08 (0.012) 10.12 cis NGF - 
4 1:160636559 rs60094514 T/C 0.221 (0.016) 41.42 cis SLAMF1 - 
5 1:179682087 rs142421172 A/G 0.208 (0.031) 10.68 trans IL10RB FAM163A 
6 1:206954566 rs12123181 A/G -0.1 (0.015) 10.35 cis IL10 - 
7 2:27730940 rs1260326 T/C 0.132 (0.012) 27.85 trans FGF21 GCKR 
8 2:65602149 rs1866051 T/C -0.075 (0.012) 10.01 trans FLT3LG SPRED2 
9 2:70774295 rs72912115 A/T 0.137 (0.018) 13.03 cis TGFA - 

10 2:160726868 rs7564243 A/G -0.085 (0.011) 13.13 trans PLAU LY75 
11 2:204776176 rs13010492 C/G -0.08 (0.012) 10.18 trans CCL19 CTLA4 
12 3:5026008 rs11130215 A/G -0.101 (0.015) 10.6 trans IL12B BHLHE40 
13 3:42910621 rs7612912 T/C 0.128 (0.012) 25.96 trans CCL13 ACKR2 
14 3:98429219 rs73133996 C/G 0.081 (0.012) 10.84 trans TNFSF12 ST3GAL6 
15 3:128381886 rs7624160 T/G -0.106 (0.012) 18.39 trans FLT3LG RPN1; RAB7A 
16 3:143021856 rs9842051 C/G 0.119 (0.014) 16.88 trans TNFSF12 CHST2 
17 4:103188709 rs13107325 T/C 0.203 (0.024) 17.02 trans TNFSF12 NFKB1 
18 4:105806108 rs144317085 A/T 0.221 (0.032) 10.99 trans FLT3LG TET2 
19 4:187158034 rs3733402 A/G -0.13 (0.012) 28.59 trans EIF4EBP1 KLKB1, F11 
20 4:187161211 rs66530140 T/C -0.168 (0.014) 34.25 trans SULT1A1 KLKB1, F11 
21 5:1282319 rs7726159 A/C -0.119 (0.013) 19.91 trans FLT3LG TERT 
22 5:95263427 rs570025519 A/G 0.132 (0.016) 15.05 trans SLAMF1 ELL2 
23 6:32434716 rs28377109 A/C 0.159 (0.02) 14.62 trans IL10 HLA-DRA 
24 6:32586222 rs11759846 A/G -0.326 (0.027) 33.78 trans IL1A HLA-DQA1 
25 6:161256529 rs12191307 A/G -0.145 (0.02) 12.79 trans CXCL9 PLG 
26 7:73030175 rs13229619 A/G -0.161 (0.018) 19.15 trans FGF21 MLXIPL 
27 8:116657911 rs2721961 T/G -0.12 (0.013) 18.85 trans CCL13 TRPS1 
28 9:34710084 rs11574915 A/C -0.146 (0.017) 17.11 cis CCL19 - 
29 9:90362040 rs3128517 T/C -0.078 (0.012) 10.22 trans NGF CTSL 
30 9:128807910 rs138854302 T/C -0.139 (0.02) 10.93 trans KITLG MVB12B 
31 11:60922561 rs674379 C/G 0.119 (0.013) 20.47 cis CD5 - 
32 11:61549025 rs174533 A/G 0.079 (0.012) 10.14 trans TNFSF10 MYRF 
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33 11:108311965 rs11212636 A/G -0.077 (0.012) 10.39 trans FLT3LG C11orf65 
34 11:117864063 rs3135932 A/G -0.16 (0.015) 24.54 trans IL10 IL10RA 
35 12:578100 rs7296588 A/G -0.116 (0.012) 22.62 trans CCL25 B4GALNT3 

36 12:6514963 rs2364485 A/C 0.176 (0.019) 19.79 trans LTA 
LTBR; 
TNFRSF1A 

37 12:111865049 rs7310615 C/G 0.136 (0.013) 23.22 trans LTA SH2B3; TRAFD1 

38 12:111884608 rs3184504 T/C 0.143 (0.013) 28.29 trans 

CD5; 
CD244; 
CXCL9; 
CXCL10; 
CXCL11; 
IL12B SH2B3; TRAFD1 

39 12:111973358 rs597808 A/G 0.116 (0.013) 17.24 trans CD6 SH2B3 
40 12:112007756 rs653178 T/C -0.098 (0.013) 13.13 trans SLAMF1 ATXN2; SH2B3 
41 14:68760141 rs1950897 T/C 0.08 (0.013) 9.39 trans IL12B RAD51B 
42 16:28561581 rs149278 T/C -0.188 (0.014) 43.45 cis SULT1A1 - 
43 17:7106378 rs200489612 A/G 0.769 (0.114) 10.74 trans SLAMF1 DLG4 
44 17:16852187 rs34557412 A/G -0.612 (0.091) 10.77 trans TNFRSF9 TNFRSF13B 
45 17:32522613 rs7213460 A/G 0.094 (0.013) 11.97 cis CCL7 - 
46 17:32683289 rs3136676 A/G 0.39 (0.025) 53.9 cis CCL13 - 
47 17:38137033 rs3859189 A/G 0.11 (0.012) 20.41 trans OSM PSMD3; CSF3 
48 17:79220224 rs2725405 C/G 0.089 (0.014) 9.69 trans SLAMF1 SLC38A10 
49 18:45546185 rs7227917 A/G -0.119 (0.019) 9.83 trans CD5 CD5 
50 19:49260677 rs838131 A/C 0.163 (0.013) 35.18 cis FGF21 - 
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Supplementary Figure 3. pQTL replication in the ARISTOTLE cohort. 
Supplementary Figure 4. Relationship between allele frequency, pQTL effect size and 
proportion of variance explained. 
Supplementary Figure 5. Proportion of variance explained. 
Supplementary Figure 6. Chemokine trans-pQTL hotspot. 
Supplementary Figure 7. Colocalisation of pleiotropic chemokine trans-pQTL and blood cell 
count trait signals. 
Supplementary Figure 8. Interactions between the candidate mediators for multi-locus-
regulated proteins. 
Supplementary Figure 9. Protein-disease connections from overlap of pQTLs and disease 
GWAS. 
Supplementary Figure 10. Protein and immune-mediated disease connections from 
overlap of pQTLs and disease GWAS. 
Supplementary Figure 11. Mendelian randomisation analysis for CXCL5 and ulcerative 
colitis. 
Supplementary Figure 12. Directional concordance between CXCL5 pQTL and blood and 
colon tissue eQTLs. 
Supplementary Figure 13. Manhattan and Q-Q plots for the 91 proteins. 
Supplementary Figure 14. Forest plots and regional association plots for the 180 pQTLs. 
 
Supplementary Item. 3-dimensional interactive genomic map of pQTLs. 
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Supplementary Figure 1. Overview of the pQTL analysis. 
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Supplementary Figure 2. Plasma protein abundance and pQTL detection. a) Proteins 
with low abundance are more likely to have no detectable pQTL. Y-xxis percentage of samples 
above lower limit of detection for each protein, calculated using the INTERVAL data (n=4994) 
for which we had individual-level protein data available. Blue and red points indicate presence 
or absence of at least 1 significant pQTL in the GWAS meta-analysis, respectively. b) 
Manhattan plot for genetic associations with plasma IL17C, where the red horizontal line 
indicates the statistical significant threshold (5x10-10). 
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Supplementary Figure 3. pQTL replication in the ARISTOTLE cohort. Comparison of 
effect sizes between pQTLs from the discovery pQTL meta-analysis (n=15,150) and the 
ARISTOTLE cohort (n=1,585). Each point represents a genetic variant that was a significant 
pQTL in the discovery meta-analysis. Red= cis, Blue= trans. 
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Supplementary Figure 4. Relationship between allele frequency, pQTL effect size and 
proportion of variance explained. Effect size versus MAF versus the proportion of variance 
explained (2MAF(1-MAF)Effect2, red=cis, blue=trans) for 227 conditionally independent 
pQTLs. 
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Supplementary Figure 5. Proportion of variance explained. Proportion of variance 
explained (PVE) by the conditionally independent variants associated with each protein. 
Proteins are annotated using the gene symbol of their encoding genes. Protein names are 
colored in red if over 80% of samples have levels below the lower limit of detection in the 
INTERVAL dataset. 
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Supplementary Figure 6. Chemokine trans-pQTL hotspot. Forest plot showing the 
associations for the pleiotropic trans-pQTL at rs12075 (GRCh37, 1:158175353- 160525679) 
with plasma levels of chemokines and blood cell counts. WBC = white blood cell count. P = p-
value, CI = confidence interval, b= beta (effect size). SE = standard error. Blood cell 
association data from Chen et al31. 
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Supplementary Figure 7. Colocalisation of pleiotropic chemokine trans-pQTL and blood 
cell count trait signals. Regional association plots in the region around rs12075 (GRCh37, 
1:158175353-160525679). Left side: association with plasma chemokine levels. Right: 
associations with basophil, monocyte and white blood cell (WBC) counts using data from Chen 
et al31. 
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Supplementary Figure 8. Interactions between the candidate mediators for multi-locus-
regulated proteins. (A) TNFSF10 (TRAIL), (B) KITLG (KIT ligand, also known as stem cell 
factor) , and (C) IL-12B. The graphs were generated using the STRINGdb (v11.5) webtool. 
The coloring of the edges indicates the type of evidence supporting an interaction, as shown 
in the legend above. 
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Supplementary Figure 9. Protein-disease connections from overlap of pQTLs and 
disease GWAS. The protein and the corresponding pQTL sentinel variant are indicated in the 
format of protein-rsid. The nearest gene in the genomic region around the pQTL is shown in 
brackets. Asterix indicates the genetic variant lies in the HLA region. Red squares: genetic 
susceptibility to increased plasma levels of the protein is associated with increased disease 
risk. Blue squares: decreased disease risk. 
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Supplementary Figure 10. Protein and immune-mediated disease (IMD) connections 
from overlap of pQTLs and disease GWAS. The protein and the corresponding pQTL 
sentinel variant are indicated in the format of protein-rsid. The nearest gene in the genomic 
region around the pQTL is shown in brackets. Asterix indicates the genetic variant lies in the 
HLA region. Red squares: genetic susceptibility to increased plasma levels of the protein is 
associated with increased disease risk. Blue squares: decreased disease risk. 
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Supplementary Figure 11. Mendelian randomisation analysis for CXCL5 and ulcerative 
colitis. Scatterplot showing the 13 variants used in the GSMR analysis assessing the effect 
of CXCL5 on ulcerative colitis (UC) risk from the GWAS by de Lange et al119. Each point 
represents a genetic variant, and indicates the effect size of the variant on CXCL5 levels 
versus UC risk (log odds ratio). Vertical and horizontal lines represent 95% confidence 
intervals. 
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Supplementary Figure 12. Directional concordance between CXCL5 pQTL and blood 
and colon tissue eQTLs. Forest plots showing effect size estimates for rs450373 pQTL in 
plasma (from our discovery meta-analysis) and eQTLs in whole blood and transverse colon 
tissue (GTEx v8 data). OR= odds ratio, calculated from beta estimate (representing the 
change in inverse-rank normalised plasma protein level in standard deviations associated with 
each copy of the effect allele). CI = confidence interval. P = p-value. 
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Supplementary Figure 13. Manhattan and Q-Q plots for the 91 proteins. 𝜆GC = lambdaGC, 
the genomic inflation factor. Proteins are labelled with both the label provided by Olink, and 
with the encoding gene symbol in parentheses. Pdf file provided separately. 

Supplementary Figure 14. Forest plots and regional association plots for the 180 
pQTLs. Left panels: forest plots show the effect estimate and 95% confidence intervals in 
each cohort. Metrics of heterogeneity are provided. Right panels: locuszoom plots of the 
regional associations. Proteins are labelled with both the label provided by Olink, and with the 
encoding gene symbol in parentheses. Pdf file provided separately. 

Supplementary Item. 3-dimensional interactive genomic map of pQTLs. The html file 
shows pQTL sentinel variant position in relation to the gene encoding the target protein and 
the strength of the statistical association. Hover over a point to see detailed information. The 
image can be rotated by holding at left clicking the mouse. 
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