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Abstract 
Genomic analyses have redefined the molecular subgrouping of pediatric acute lymphoblastic leukemia 

(ALL). Molecular subgroups guide risk-stratification and targeted therapies, but outcomes of recently 

identified subtypes are often unclear, owing to limited cases with comprehensive profiling and cross-

protocol studies. We developed a machine learning tool (ALLIUM) for the molecular subclassification of 

ALL in retrospective cohorts as well as for up-front diagnostics. ALLIUM uses DNA methylation and 

gene expression data from 1131 Nordic ALL patients to predict 17 ALL subtypes with high accuracy. 

ALLIUM was used to revise and verify the molecular subtype of 280 cases with undefined/B-other 

molecular phenotype, resulting in a single revised subtype for 85.4% of these cases. Our study shows the 

power of combining DNA methylation and gene expression data for resolving ALL subtypes and 

provides the first comprehensive population-based retrospective cohort study of molecular subtype 

frequencies in the Nordic countries, identifying subgroups with differential survival outcomes.  

Keywords: Acute lymphoblastic leukemia, DNA methylation, gene expression, RNA-sequencing, B-

other, machine learning, classification, molecular subtyping, minimal residual disease, nearest shrunken 

centroids 

Introduction 
Pediatric acute lymphoblastic leukemia (ALL) comprises a heterogeneous group of patients who can be  

stratified into subgroups based on the presence of recurrent cytogenetic aberrations, which are important 

predictors of clinical outcome1,2. Subtypes of pediatric B-cell precursor ALL (BCP-ALL) are often 

characterized by large-scale chromosomal aberrations, including abnormal chromosomal numbers, 

translocations that give rise to expressed fusion genes, or other structural rearrangements. Before next-

generation sequencing (NGS)-based methods were introduced into clinical practice, as many as 30% of 

all BCP-ALL cases lacked conclusive results from standard cytogenetic analyses (denoted B-other) and 

therefore subtype information was not available for treatment stratification or disease monitoring3. Recent 

application of high-resolution transcriptome sequencing (RNA-seq) has enabled the discovery of new 
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oncogenic subgroups characterized by fusion genes, such as DUX4 (DUX4-r), ZNF384 (ZNF384-r),  

MEF2D (MEF2D-r) and NUTM1 (NUTM1-r) rearrangements4–15, as well as subtype-like signatures, such 

as BCR::ABL1-like/“Ph-like”16,17 or ETV6::RUNX1-like/”ER-like”7,18, and the PAX5-driven subtypes, 

PAX5 alteration (PAX5alt) and PAX5 P80R19–22. The clinical significance of the recently identified 

subtypes is often unclear, owing to the limited number of cases and differences between protocols and 

studies7,8,20,23,24. Therefore, retrospective ALL cohort analyses have been particularly powerful for 

studying rare ALL subtypes due to the large sample sizes available in biobanks and the prolonged period 

of follow-up to collect sufficient data on rare events 

Most of the recurrent molecular alterations in ALL are strongly associated with gene expression (GEX) 

profiles24,25. RNA-seq has since emerged as a powerful tool for the identification of both fusion genes and 

GEX subtype profiling in a single assay26,27, which promises to replace cumbersome standard karyotyping 

(G-banding), PCR-based and fluorescence in situ hybridization (FISH)-based methods in a clinical 

diagnostic setting28. Compared to DNA, RNA is prone to degradation, making it challenging to obtain 

high-quality RNA for retrospective cohort analyses. However, epigenetic profiling of DNA methylation 

(DNAm) using arrays or next-generation sequencing (NGS) has demonstrated comparable subtype-

specific distributions in ALL cells29–32. DNAm is advantageous as an analyte due to its ability to identify 

methylation patterns associated with disease in degraded archival samples33. Leveraging biobank samples 

and retrospective cohort studies can provide valuable insights into long-term disease outcomes that may 

be challenging to obtain through prospective study designs, particularly for rare ALL subtypes. 

In the present investigation, we describe a multimodal machine learning classification tool, ALL subtype 

Identification Using Machine learning (ALLIUM) that uses DNAm and/or GEX signatures (Figure 1). 

We trained and applied ALLIUM to a large cohort of 1131 Nordic patient samples and determined the 

frequencies of recent genetic subtypes, which led to the revision of molecular subtypes in 85.4% of B-

other cases. 
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Results 
Molecular characteristics and data generation  
Diagnostic bone marrow aspirates or peripheral blood samples from 1131 Nordic ALL patients (n = 1025 

BCP-ALL and  n = 106 T-ALL) were obtained from a population based cohort diagnosed between 1996 

and 2013, and enrolled in the Nordic Society of Pediatric Hematology and Oncology (NOPHO) -92, -

2000, -2008, EsPh-ALL, or Interfant treatment protocols34–37. Genome-wide CpG methylation levels were 

analyzed in 1125 DNA samples (1125 patients) using 450k arrays (DNAm dataset) and RNA-sequencing 

was performed in 328 RNA samples (315 patients, GEX dataset). Molecular subtypes were assigned 

based on standard cytogenetic analysis at ALL diagnosis, where a total of 851 patients (75%) had an 

established molecular subtype and 280 were denoted B-other (Supplementary Table S1). We initially 

screened our cohort for the molecular ALL subtypes outlined by the International Consensus 

Classification (ICC)2 using a combination of genome-wide CNA detection, fusion gene screening 

(Supplementary Figure S1), and targeted mutational assessment for PAX5 p.Pro80Arg, IKZF1 

p.Asn159Tyr, and ZEB2 p.His1038Arg (Supplementary Table S2). This analysis, combined with putative 

revised molecular subtype information from previously published results7,9,30,38–40, identified 131 unique 

fusion genes in 225 patients, and 130 patients from the B-other group (46%) who belonged to one of the 

ICC subtypes. In total, this yielded 981 ICC subtype-defined cases, while 150 cases remained as B-other 

(Table 1). Of note, this included 27 patients with established subtypes missed by routine diagnostics: 

HeH (n = 9), ETV6::RUNX1 (n = 9), KMT2A-r (n = 4), TCF3::PBX1 (n = 3), BCR::ABL1 (n = 1), and 

iAMP21 (n = 1). One patient (ALL_913) was re-labelled from HeH to DUX4-r, after confirmation of the 

presence of the IGH-DUX4 fusion gene and a normal copy number. The 30 patients with dic(9;20) 

aberrations41 were classified as PAX5alt. 

Table 1. Overview of the 1131 ALL patients by ICC subtype prior to multimodal classification.  

Molecular subtype* 
# Patients 
DNAm 

# Patients 
GEX 

# Patients 
Total 

Age (sd) # Male/Female 

Total patients 1125 315 1131 6.35 (± 4.39) 615/516 
ICC subtype-defined  975 251 981 6.03 (± 4.2) 534/447 
B-other 150 64 150 8.45 (± 4.99) 81/69 
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HeH 309 46 310 5.11 (± 3.51) 166/144 
low HeH 5 3 5 3.27 (± 1.33) 2/3 
iAMP21 20 16 21 10.23 (± 3.95) 13/8 
Hypodiploidy 11 0 11 8.97 (± 4.71) 6/5 
ETV6::RUNX1 274 32 275 4.93 (± 2.55) 144/131 
ETV6::RUNX1-like 12 10 12 4.13 (± 3.66) 5/7 
T-ALL 105 19 106 9.08 (± 4.61) 78/28 
KMT2A-r 61 14 62 2.76 (± 4.22) 26/36 
NUTM1-r 3 3 3 9.46 (± 7.78) 1/2 
PAX5alt 52 33 53 5.93 (± 5.07) 25/28 
PAX5 P80R 5 4 5 12.35 (± 5.83) 4/1 
TCF3::PBX1 37 10 37 8.07 (± 4.55) 17/20 
MEF2D-r 9 8 9 11.3 (± 4.57) 3/6 
BCR::ABL1 25 10 25 8.92 (± 3.82) 15/10 
BCR::ABL1-like 10 7 10 8.82 (± 5.75) 8/2 
DUX4-r 20 19 20 9.72 (± 3.11) 11/9 
ZNF384-r 17 17 17 9.02 (± 3.78) 10/7 
* Molecular subtypes were labelled according to the International Consensus Classification (ICC). 

Fluorescence in situ hybridization and/or reverse-transcriptase polymerase chain reaction were applied at 

ALL diagnosis to identify established subtypes ETV6::RUNX1, TCF3::PBX1, KMT2A-r, dic(9;20), 

iAMP21. High hyperdiploidy (HeH) was defined as a modal number ≥ 51 chromosomes or DNA Index 

(DI) 1.12-1.35. Hypodiploidy was defined as < 40 chromosomes and included low-hypodiploidy with 30-

39 chromosomes or DI 0.6-0.84 and near-haploidy (NH) with 24-29 chromosomes or DI < 0.6. Low HeH 

was defined as 48-50 chromosomes as determined by array-based copy number analysis. All karyotypes 

were centrally reviewed. 

ALLIUM is a highly sensitive method for molecular ALL subtype classification 
In order to design a DNAm and GEX-based classifiers for ALL, the 981 patients with known ICC 

molecular subtypes defined based on updated molecular analysis were split into design and hold-out 

datasets to create and validate the ALLIUM classifier (Table 2). An internally produced replication set (n 

= 13, GEX) and three external datasets (GEX: GSE16150142, GEX NOPHO-Finland and DNAm: 

GSE5660043) were used for additional independent subtype verification. ALLIUM is based on nearest 

shrunken centroid (NSC) models consisting of DNAm and GEX data in a one vs. rest approach44. 

Subtypes with similar molecular profiles, i.e. those characterized by aneuploidies (HeH, low HeH, 
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iAMP21, hypodiploidy), ETV6 gene rearrangements (ETV6::RUNX1, ETV6::RUNX1-like), and the 

Philadelphia (ph) chromosome (BCR::ABL1, BCR::ABL1-like) were handled in a different manner. For 

these subtypes, a two-step procedure with initial classification on the group level, followed by a one-vs-

one or a multi-class classification within the group was applied (Supplementary Materials and Methods 

and Supplementary Figure S2–3). Moreover, to identify misclassification errors due to low blast count, 

control classifiers for DNAm and RNA were built utilizing data available from ALL patients in remission 

or healthy blood donors45. As the output contained probability scores for each classifier, multiple subtype 

classifications could occur. Therefore, we proceeded with a multi- to single-class transformation, 

assigning the subtype with the highest probability score for each sample. 

Table 2. Classifier performance and concordance. 

 Dataset No of samples sensitivity specificity Concordance 
with true ALL 
subtype n (%) 

DNAm NOPHO – 
GSE49031 and 

10.17044/scilifelab.2
2303531 

Design 823 0.907 0.998 754 (91.6) 

Hold-out 152 0.828 0.997 133 (87.5) 

Discovery (B-other) 
150 – – 

 
 
– 

DNAm GSE56600 
 

Validation 133 0.793 0.991 112 (84.2) 

B-other 
94 – – 

 
– 

GEX NOPHO –  
GSE227832 

 

Design 210 0.941 0.996 197 (93.8) 

Hold-out 41 0.953 0.997 38 (92.7) 

Replication 12 0.792 1.000 10 (83.3) 

Replication (B-other) 1 – – – 

Discovery (B-other) 64 – – – 

GEX NOPHO –
Finland 

Validation 55 0.993 0.998 53 (96.4) 

B-other 
10 – – 

 
– 

GEX GSE161501 Validation 19 1.000 1.000 19 (100) 

 

ALLIUM identified 519 CpGs and 425 genes as most informative for subtype determination 

(Supplementary Table S3–4). Unsupervised analysis of samples with known subtype revealed clear 

subtype-driven clustering (Figure 2a-c, Supplementary Figure S4). We evaluated the models using hold-

out, replication and independent external validation datasets (Table 2, Supplementary Table S5–13). The 
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classifiers were highly predictive overall, with 86.0% concordance between DNAm and true molecular 

subtype and 94.5% overall concordance between GEX and true molecular subtype (Figure 2b-d, Table 

2). Both DNAm and GEX classification was performed in 245 patients in our dataset, and the classifiers 

achieved 92.2% overall concordance (design: 92.6%, 189/204, hold-out: 90.2%, 37/41, Figure 2e-f). 

However, the performance varied between the subtypes (Figure 2g, Supplementary Table S14). In total, 

only 19 cases showed discrepant result between the GEX and DNAm classifier, where the GEX alone 

was correct for eight, the DNAm was correct for six, and complete mismatches were observed for the 

remaining five cases (Supplementary Table S15). Of the eight patients that were correctly predicted by 

GEX, but not by DNAm, five were predicted as no-class by the DNAm classifier. Overall, ALLIUM 

DNAm was correct for 93.5%, ALLIUM GEX was correct for 94.3%, and with both modalities available 

a correct classification as achieved in 96.7% (Supplementary Table S16). Additional details about the 

performance of the replication and external validation datasets can be found in the supplementary 

results (Supplementary Figure S4).   

Functional annotation of genes and CpG sites identified by ALLIUM 
Next we annotated the 519 CpG sites and 425 genes selected by ALLIUM. In general, the subtype-

defining signatures were more often characterized by hypomethylation (Supplementary Figure S5) and 

increased, but also variable gene expression (Supplementary Figure S6). We studied the intersection of 

the genomic location of the CpG sites and genes selected by ALLIUM. A total of 31 CpG sites 

overlapped with the genomic location of 19 of the genes selected by the ALLIUM GEX (Supplementary 

Table S17-18). Among these, 22 CpG sites located in 12 genes were selected for the same subtype i.e. 

ETV6::RUNX1 vs ETV6::RUNX1-like with 5 CpG sites in MGC70857/C8orf82 and ARHGEF12, the 

ETV6 group with 4 CpG sites in IGF2BP1 and FARP1, the aneuploidy group with 4 CpG sites in 

S100A16 and FUT7, and the Philadelphia group with 3 CpG sites in CA6, and differentiating BCR::ABL1 

from BCR:ABL1-like with 2 CpG sites in SPRED2. For these genes we observed an inverse relationship 

between methylation level and gene expression (Pearson’s correlation coefficient = -0.64, Supplementary 

Figure S7).  
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The genomic features selected by ALLIUM were distributed across all chromosomes, without a 

significant overall enrichment in the location of CpG sites or genes (FDR q-value > 0.05, Supplementary 

Figure S8 and Supplementary Table S19-20), although the CpGs sites were significantly enriched outside 

CpG islands in intergenic “open sea” regions (FDR q-value < 0.0001, Supplementary Table S21). The 

distribution of CpG sites varied among the subtypes. For example, a significant overrepresentation (44%, 

FDR q-value = 0.004) of the CpG sites differentiating ETV6::RUNX1 from ETV6::RUNX1-like, were 

annotated on chromosome 8 in the vicinity of the MGC70857/C8orf82 and ANK1 loci and MGC70857 

was selected by the GEX classifier. About 25% of the genes selected by the KMT2A-r GEX classifier 

were located on chromosome 7 in the HOX gene cluster (FDR q-value 0.02). Additionally, the GEX 

classifier selected NUTM1 for NUTM1-r, PBX1 for TCF3::PBX1, ABL1 for differentiating BCR::ABL1 

from BCR::ABL1-like, and MEF2C for MEF2D-r (Figure 3a). The classifiers selected additional 

biologically relevant genes and CpG sites for ALL, including CpG sites in CBFA2T3 and EPOR for the 

ETV6-group, expression of CDKN2A and CpG sites in AUTS2 for the PAX5alt group, expression of 

CEBPA for ZNF384-r, and CpG sites in ETV6, RUNX2, and IKZF1 for PAX5 P80R (Figure 3b).  

Comparisons of GEX model performance 
We further evaluated the ALLIUM GEX classifier against two other GEX classifiers for BCP-ALL; 

ALLSorts and ALLCatchR26,27. As both classifiers are trained specifically for BCP-ALL, we removed T-

ALL from the comparison. ALLIUM GEX, ALLSorts, and ALLCatchR were evaluated for the 312 BCP-

ALL samples of known subtype across all the five GEX datasets included herein. Overall, the three 

classifiers performed similarly (Figure 4a-c), although notable differences between ALLIUM GEX, 

ALLSorts, and ALLCatchR, respectively, were observed for classification of PAX5alt (100%, 71%, 

71%), HeH (86%, 71%, 86%), and iAMP21 (100%, 33%, 67%) using our hold-out dataset 

(Supplementary Figures S9-12). Specifically, we noted that ALLSorts and ALLCatchR predicted 3 

(including a multi-class case) and 8 PAX5alt patients with dic(9;20) (n = 14) as ph-like, respectively. 

ALLIUM was not trained on BCL2/MYC, IKZF1 N159Y, HLF, CEB and CDX2/UBTF subtypes and 

ALLSorts and ALLCatchR did not predict any of these rare subtypes in our cohort.  
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ALLIUM DNAm performed similarly to the GEX models (Figure 4d). No other model is currently 

available for subtyping in ALL by DNA methylation, with the exception of a model built by us previously 

for eight ALL subtypes30. We compared the 519 CpG sites selected by ALLIUM to our previous classifier 

(n = 232 CpG sites), which resulted in 58.2% (135/232) overlapping sites with ALLIUM (Supplementary 

Table S22).  

Resolved molecular subtypes of B-other with ALLIUM 
Next, we applied ALLIUM to the 150 remaining B-other cases in our cohort to investigate the distribution 

of recent ALL subtypes (Supplementary Table S23 and S24). For 64 cases where both DNAm and GEX 

data were available, 49 (76.6%) received concordant subtype predictions (Figure 5a). The highest 

concordance was observed for the prediction of subtypes with fusion genes, i.e. ZNF384 (4/4, 100%), 

KMT2A (1/1, 100%), DUX4-r (11/12, 91.7%), ETV6::RUNX1-like (6/7, 85.7%), and PAX5alt (19/23, 

82.6%). To establish consensus molecular subtypes for the B-other group, we constructed a 4-tier system 

to improve the confidence of subtype re-annotation (Figure 5b). Tier 1 included 29 patients with a high 

score from the DNAm or GEX classification combined with molecular evidence to support the subtype: 

expressed fusion gene, CNA, karyotype, or mutation. Tier 2 comprised 33 patients with concordant GEX 

and DNAm classification, but lacked conclusive molecular evidence. Tier 3 included 47 patients with 

only DNAm predictions or a discordant prediction with one non-class and one high score subtype 

prediction. Lastly, tier 4 included 41 patients where ALLIUM generated low confidence predictions or 

two conflicting predictions (Figure 5c).  

In total, of the 280 B-other cases at the start of the study, 239 (85.4%) were assigned a new molecular 

subtype. Of these, 27 were found to harbor established subtype-defining aberrations prior to ALLIUM 

classification and 10 additional patients were identified after analysis with ALLIUM. Only 4% (41/1025) 

of our BCP-ALL cohort remained designated as B-other (Figure 5d-e).  

The reclassified samples (tier 1–3) clustered with samples of known subtype (Figure 5f-g, Supplementary 

Figure S13). Sub-clusters were observed for KMT2A-r, DUX4-r, and T-ALL. In concordance with 

previous reports46,47, these included two putative KMT2A-r and DUX4-r subclusters based on GEX data 
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and two T-ALL clusters in the DNAm data (Figure 5f and Supplementary Figure S13). Interestingly, the 

KMT2A-r and DUX4-r clusters were not visible in the DNAm visualization, while the T-ALL cluster was 

not visible in the GEX data, but this may be due to few (n = 19) patients with RNA-seq data. We 

examined fusion gene usage and found that the KMT2A-r cluster 1 (C1, n = 5) was characterized by USP2 

(n = 3) and USP8 (n = 1) fusions, while C2 (n = 7) primarily contained patients with KMT2A::AFF1 

fusions (n = 4), indicating sub-clustering associated with the fusion partner. The patients in DUX4-r 

cluster 1 (C1, n = 12) expressed DUX4-IGH (n = 8), alongside a diverse array of other fusions, including 

CRLF2-IRF1, PAX5-FLI1, ELL-KLF2, ATAD2-NPM1 and PAX5-FOXP1. In DUX4-r, cluster 2 (C2, n = 

19) DUX4-IGH (n = 11) was the most prevalent fusions. Seven of the 19 T-ALL patients with RNA-seq 

data carried fusion genes, but no apparent clustering by fusion partner was observed.  

Outcomes of patients with new molecular subtypes treated on NOPHO protocols  
Complete follow-up data was retrieved from 1125 out of the 1131 patients. The median follow-up time 

for the patients alive at the last follow-up was 16.0 years (IQR 13.0–19.0). The 5-year event-free survival 

(EFS) and overall survival (OS) of the entire cohort was 76.7% (95% CI 74.3%–79.2%) and 87.8% (95% 

CI 85.9%–89.7%), respectively (Figure 6a, Supplementary Table S25), with expected differences 

between NOPHO -92, -2000 and -2008 protocols (Supplementary Figure S14-S15). The 276 patients 

initially B-other at ALL diagnosis had significant differences in EFS and OS after stratification by new 

molecular subtype (p < 0.001, Figure 6b, Supplementary Table S25). Minimal residual disease (MRD) 

defined as > 0.1% at the end of induction (day 29) varied among the re-classified subtypes (Kruskal-

Wallis p-value = 0.0004, Figure 6c). For example, only with PAX5alt did not have MRD (MRD+ 8.7%) 

yet this group had an intermediate EFS 77.6% (95% CI: 66.7%–90.2%) and OS 91.9% (95% CI: 84.5%–

99.8%). In contrast, 100% of ZNF384-r cases were MRD positive (n = 10) yet the EFS was 85.2% (95% 

CI: 72.8%–99.7%) and an excellent OS 96.3% (95% CI: 89.4%–100.0%) was observed. Survival analysis 

based on the two observed GEX DUX4-r sub-clusters (n = 31 patients, Figure 5f) showed differences in 

EFS between the groups (p = 0.048, Supplementary Figure S15).  The most striking feature in this group 

was that three out of five patients who relapsed succumbed to their disease, while another three patients 
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died in clinical remission (DCR1). Additional information can be found in the Supplementary Tables 

and Figures (Supplementary Table 25, Supplementary Figure S16).   

Discussion  
Recent developments in integrated large-scale genomic analyses have greatly improved our knowledge of 

the genetic basis of ALL, identification of new subtypes and disrupted pathways that can be targeted 

therapeutically20,24,46,48
.  Accurate detection of the subtype-defining alterations in the clinical setting is 

crucial to guide risk and treatment stratification, monitor treatment response, and is very important for 

future implementation of tailored or precision therapy2. Given the low frequencies of rare subtypes in 

ALL and the long follow-up data needed to evaluate their clinical relevance, it is imperative to have 

methods that allow for retrospective analysis of biobank material, in addition to robust diagnostics in 

prospective cases. Herein, we designed and implemented a multimodal classification approach for ALL 

(ALLIUM) that captures epigenomic and transcriptomic alterations left as a detectable footprint in ALL 

cells. We demonstrate the utility of ALLIUM by retrospectively evaluating the frequency and clinical 

impact of emerging molecular cytogenetic subtypes in a large cohort of patients treated uniformly on 

NOPHO protocols between 1996 and 2013 and in external datasets.  

Machine learning (ML) has potential to improve clinical diagnostics by enabling automated and accurate 

diagnostics, with reduced cost49.  A unique feature of ALLIUM, over other ML-based subtype 

algorithms26,27 is that it can use multiple modalities (DNA methylation and/or gene expression) for 

subtype determination. We demonstrate here for the first time, that a DNAm-based classifier can achieve 

a comparable performance to GEX-based methods. A specific strength of DNAm as an analyte is its 

ability to identify disease-related methylation patterns and potential biomarkers in archived samples33. By 

using biobank samples and retrospective cohort studies, insight into long-term disease outcome can be 

gained, which would be difficult to obtain through prospective study designs, especially for rare subtypes. 

The ability of RNA-seq to detect fusion genes and coding mutations that can provide clear molecular 

evidence for subtype decision making, gives additional value to a GEX approach for prospective clinical 
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diagnostics. However, RNA is not as readily available from historical material in biobanks, limiting the 

usefulness of GEX classifiers for retrospective interrogations. There is furthermore growing evidence to 

support methylation profiling for prognostication of T-ALL47, and array-based DNAm assays have the 

added benefit of generating CNA profiles50, which are helpful for diagnosing subtypes characterized by 

large-scale copy number changes, such as HeH, low HeH, hypodiploidy and iAMP21. In centers where 

DNAm subtyping for brain cancer is already routine51,52, ALLIUM DNAm subtyping could provide a 

complementary modality for routine disease diagnosis. 

Using ALLIUM as a tool, we were able to accurately detect molecular ALL subtypes for up to 85.4% of 

previously unclassified (B-other) BCP-ALL cases in our population-based Nordic cohort spanning three 

NOPHO protocols (1992, 2000, 2008). We found that the molecular composition of BCP-ALL cases in 

the Nordics is comparable to studies from Europe53,54, USA20,46,55, and Asia56, and others57. In order of 

prevalence, these include PAX5alt (with a frequency of 8% compared to a range of 4–10% in the 

aforementioned studies), BCR::ABL1-like (4% vs 3–13%) , DUX4-r (4% vs 4–7%), ETV6::RUNX1-like 

(2% vs 1–3%), MEFD2-r (<1% vs 1–2%), NUTM1-r (<1%, vs < 1–1%), PAX5 P80R (<1% vs 1–2%). 

Notably, we did not detect recently described very rare subtypes including t(5;14)(q31.1;q32.3)/IL3::IGH, 

IKZF1 N159Y, or CDX2-UBTF58. 

An additional strength of our study is our ability to assess the added value of MRD risk stratification in 

light of new molecular subtypes37. Although MRD remains as one of the best prognostic markers for 

treatment outcome in ALL, our results from patients treated on NOPHO-2008 further underscores that 

MRD stratification in the new subtypes may not be uniformly applicable55,56,59. Furthermore, early 

monocytic lineage switching, which includes loss of the B-cell immunophenotype, has been described in 

DUX4-r, ZNF394-r and PAX5-p80r subtypes59, potentially leading to an underestimation of MRD levels 

in these groups. However, questions still remain if MRD is a clinically relevant measure for treatment 

decisions in these new groups. Although we do not know what the MRD levels were of the patients 
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included herein treated prior to 2008, our confirmatory observations further support that slow clearance of 

MRD specifically in the ZNF384-r may not accurately measure future outcome.  

Excellent 5-year EFS and OS of  outcomes of >95% have been reported for DUX4-r46,55,56. The lower 5-

year OS (87.8%) for DUX4-r (n = 41) on the NOPHO protocols was unexpected, and will require 

additional investigation. Challenges also remain in identifying DUX4 fusions due to the repetitive 

structure of the DUX4 cassettes on chromosomes 4 and 1012,54. Using our modified read-mapping RNA-

seq approach9, a DUX4 fusion was detected only in ~64% of cases. Several groups argue for a “DUX4-

like” group in the absence of a detectible fusion gene, however we previously observed a case with a 

complicated insertion in between the DUX4-chr8q24.21-IGH transcript9, indicating that there are likely 

alternative formations of inserting a DUX4 cassette into the IGH (or ERG) loci, which are not easily 

detected by short-read RNA-seq. Further investigation into these cases will be needed to improve the 

accuracy of diagnosing this important emerging subtype. 

In summary, by implementing ALLIUM for retrospective analysis of a large retrospective ALL cohort 

treated uniformly on NOPHO protocols, we were able to accurately assess subtype distribution and long-

term survival in new subtype groups. ALLIUM is freely available on GitHub and can be applied to 

determine molecular subtype membership of patients with either DNA methylation array data or RNA-

seq data for research, or to support future precision diagnostics in pediatric ALL.  

Methods 
Patients  
Bone marrow aspirates or peripheral blood samples collected at diagnosis from 1131 unique population.-

based pediatric ALL patients were obtained from children diagnosed in the Nordic countries during 1996 

–2013 and enrolled on the Nordic Society of Pediatric Hematology and Oncology (NOPHO) NOPHO-92 

(n = 201), NOPHO-2000 (n = 493), NOPHO-2008 (n = 380), EsPh-ALL (n = 17), or Interfant (n = 40) 

treatment protocols34–37. Molecular diagnosis of ALL was established by analysis of leukemic cells at the 

time of diagnosis with respect to morphology, immunophenotype and cytogenetics. The guardians of the 
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patients provided written or oral consent to the study. The study was approved by the regional ethics 

board in Uppsala, Sweden and by the NOPHO Scientific Committee (Study #56).  

DNA and RNA extraction 
DNA and RNA were extracted from primary ALL cells after Ficoll gradient separation using reagents 

from the AllPrep DNA/RNA/miRNA Universal Kit (Qiagen) or the AllPrep DNA/RNA Kit (Qiagen) 

including a DNase treatment step (Qiagen). DNA and RNA were quantified using the reagents from the 

double stranded DNA Broad Range Kit or the RNA Broad Range kit on a Qubit instrument (Life 

Technologies). RNA quality was determined using the RNA Integrity Number (RIN) assessed by the 

Bioanalyzer or TapeStation system (Agilent).  

DNA methylation arrays 
Genome-wide DNA methylation levels were determined using the Infinium HumMeth450K BeadChip 

assay (450k array, Illumina). DNAm data were generated using 250 ng input DNA from 384 newly 

collected BCP-ALL samples on the 450k array. Data from 741 patients were retrieved from Gene 

Expression Omnibus (GEO) entry GSE4903145. The complete DNAm dataset (1125 patients) was firstly 

filtered according to a previous study 45 resulting in 435,941 CpG sites and then to include probes present 

on the MethylationEPIC v.1.0. B5 manifest file (https://emea.support.illumina.com/downloads/infinium-

methylationepic-v1-0-product-files.html), resulting in 406,542 CpG sites. Variance-based filtering 

removed 167,353 CpGs with low variability in the dataset (variance < 0.01). CNAs were detected using 

intensity levels from the 450k arrays using the R package “CopyNumber450kCancer”60. Data from 50 

normal blood cell samples (CD3+ and CD19+, GSE49031) was used as control data for normalization 

and transformation of probe intensities (log2 ratio, LogR).  

RNA sequencing 
A total of 328 samples from 315 patients were subjected to RNA sequencing (Supplementary Table S2 

and S27). RNA sequencing libraries were prepared from 132 samples with RIN > 7 using the Illumina 

TruSeq stranded Total RNA (RiboZero human/mouse/rat) kit with 300 ng of total input RNA. The 

libraries were paired-end (PE) sequenced (150bp) on an Illumina HiSeq2500 or NovaSeq 6000 instrument 
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to an average of 49.8M (range 30.2-113.2M) PE 150 bp reads per sample. Samples with RIN < 7 or with 

less than 300 ng input RNA available were prepared with the Illumina TruSeq RNA Access library 

preparation kit (n = 28 samples) and sequenced on an Illumina HiSeq 2500 instrument PE 150 bp to an 

average 34.0M (range 12.6-55.1M). RNA-seq data from 162 samples, generated with 1000 ng input RNA 

using the Script-Seq kit (EpiCentre)9,38,61 and 6 samples prepared with Illumina RNA access protocol38,40 

were collected from previous studies. The raw sequencing data for each of the 328 libraries included in 

the study were processed together using the nextflow-based (21.02.0.edge) nf-core/rnaseq (3.0) pipeline, 

which includes trimming of the paired-end reads by trimgalore (0.6.6), alignment to GRCh38.103 with 

STAR (2.6.1d). The aligned reads were quantified at the transcript level using Salmon (1.4.0) and the 

transcript level expression values were subsequently summarized to the gene level using the bioconductor 

package tximeta (1.8.0). The gene count matrix was corrected for batch effects with ComBat-Seq. The 

genes were subsequently filtered to remove Y chromosome, scaffold, mitochondrial (MT), and ribosomal 

(RPS and RPL) genes, as well as non-protein coding genes resulting in 19,774 protein coding genes for 

downstream analysis. Data were normalized using Gene Length corrected trimmed mean of M-values 

(GeTMM), adjusting the data for both gene length and library size and finally log2 transformed. 

Technical (n = 5, repeated RNA-seq library construction from same RNA sample) and biological 

replicates (n = 8, sample taken at relapse) from 11 patients were used to validate merging the different 

library types (Supplementary Figure S17). 

Fusion genes were detected using a combination of FusionCatcher 0.99.7d62 and targeted screening of 22 

genes known ALL fusions (Supplementary Table S2). Fusion gene status for 61 patients in the study were 

described previously7. Candidate fusion genes were validated by supporting karyotype data, copy number 

analysis and/or by experimental validation using Sanger sequencing as previously described9. 

Mutational Analysis 
Somatic single nucleotide variants (SNVs) were retrieved from a 872-cancer gene Haloplex panel for 144 

patients in our study cohort63,64 and from whole genome sequencing performed on 41 patients39,40,63. 
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Variant alleles PAX5 p.Pro80Arg, IKZF1 p.Asn159Tyr, and ZEB2 p.His1038Arg were screened for in the 

328 samples with RNA-seq data using alleleCount/3.2.2 (https://github.com/cancerit/alleleCount) on bam 

files.  

ALL subtype classification 
ALLIUM was built using the scikit-learn package, based on the Nearest Shrunken Centroid (NSC) 

method44,65. Classifiers were built for each of 17 established molecular ALL subtypes present in our 

cohort and for healthy controls in a supervised manner. Models for DNAm and GEX datasets were 

designed separately. First, the data were split into design (known subtypes), hold-out (known subtypes) 

and discovery (B-other) sets. The models were trained, optimized and features were selected on the 

design set and then their performance was evaluated on hold-out and internal replication datasets. The 

models were further validated in independent external validation datasets: RNA-seq data from 65 Finnish 

patients for which detailed information can be found in the Supplementary Materials and Methods,  and 

published datasets from RNA-seq of 19 BCP-ALL patients from GSE16150142 and 450k DNAm from 

227 BCP-ALL patients GSE5660043. Additional details can be found in the Supplementary Materials 

and Methods. ALLSorts and ALLCatchR were run on the corrected count matrix (n genes = 60,666) 

according to the instructions (https://github.com/Oshlack/ALLSorts/wiki/1.-Installation, 

https://github.com/ThomasBeder/ALLCatchR)26,27 .  

Survival analysis 
Outcome data for the 1131 patients in the study was retrieved from the NOPHO leukemia database in 

February 2022. In total, 1125 patients had complete follow-up data available, the average time since 

diagnosis was 16.3 years (range 9-26). OS was calculated as the time from the date of diagnosis to the 

date of last follow-up or death of any cause. EFS was calculated from the date of diagnosis until an event 

(relapse, induction failure, resistant disease, secondary malignant neoplasm) as defined in the protocol in 

question, death during induction, or death during complete remission or the date of last follow-up for 

patients without event. Patients who received allogeneic stem cell transplant (allo-SCT) were not 

censored at the time of transplant. OS and EFS curves were generated using the Kaplan–Meier estimation, 
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and the log-rank test was used for comparisons between groups. Survival analysis was performed in R 

using the survival and survminer packages. Kruskal-Wallis H-test from the Python library scipy.stats 

assessed the significance of subtype-stratified MRD distributions. A p-value <0.05 (2-tailed) was 

considered statistically significant. 

Data availability 
The 450k DNA methylation data are available under controlled access via 10.17044/scilifelab.22303531. 

The GEX count matrix is available in GEO under the accession number GSE227832. Requests for data 

sharing may be submitted to Jessica Nordlund (jessica.nordlund@medsci.uu.se).  

Code availability 
All scripts and environment requirements to reproduce the analyses, as well as the ALLIUM model are 

available at GitHub https://github.com/Molmed/Krali_2023. 
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Figures 
 

Figure 1. Study overview. DNA methylation (DNAm, 450k arrays), gene expression (GEX, RNA-sequencing), and 

somatic mutation (WGS, targeted sequencing) data were generated from 1131 patients treated on the Nordic Society 

for Pediatric Hematology and Oncology (NOPHO) protocols diagnosed between 1996 and 2013. Molecular 

subtyping was performed based on a combination of cytogenetics, fusion gene screening, mutational analysis, and 

copy number analysis. A supervised classification method was used to build subtype-specific models based on 

DNAm and GEX profiles for 17 molecular subtypes of ALL. B-other patients were reclassified using multimodal 

subtype classification with ALLIUM.  

Figure 2. Evaluation of model performance. a) Unsupervised hierarchical clustering based on DNA methylation 

(DNAm) levels of 519 CpG sites across molecularly defined patients (n = 975) and control samples (n = 139). b) 

Concordance between ALLIUM DNAm subtype predictions (x-axis) and true molecular subtypes (y-axis) for the 

975 patients. c) Unsupervised hierarchical clustering based on gene expression (GEX) levels of 425 genes across 

molecularly defined patients (n = 251) and control samples (n = 12). d) Concordance between ALLIUM GEX 

subtype predictions (x-axis) and true molecular subtypes (y-axis) for the 251 patients. e) The degree of concordance 

between DNAm and GEX predictions (“no class” predictions are not shown). The light bars represent the overall 

predictions per subtype and the darker bars indicate the number of concordant predictions. f) Concordance of 

DNAm (x-axis) and GEX (y-axis) subtype predictions (n = 245 patients). g) Sensitivity and specificity across 17 

ALL subtypes for our design, hold-out and replication datasets, and the three external validation datasets, DNAm 

GSE56600, GEX GSE161501 and GEX NOPHO-Finland.  

Figure 3. Subtype-specific signatures determined by ALLIUM. Boxplots demonstrating the a) GEX levels for 

eight genes across 315 patients grouped by revised molecular subtype. b) DNAm levels for eight CpG sites across 

1125 patients by revised molecular subtype. The boxes are color-coded by respective subtype according to the key at 

the bottom. The Benjamini-Hochberg (BH) corrected Kruskal-Wallis H-test p-value indicates the statistical 

significance between subtypes (bottom right). Asterisks indicate the subtype(s) for which ALLIUM chose each 
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specific CpG or GEX signature, while connected asterisks indicate signatures selected to differentiate subtypes 

within larger groups. 

Figure 4. Performance of ALLIUM, ALLSorts and ALLCatchR. a) Concordance between ALLIUM GEX 

subtype predictions (x-axis) and true molecular subtypes (y-axis) for 312 BCP-ALL samples of known subtype. b) 

Concordance between ALLSorts subtype predictions (x-axis) and true molecular subtype (y-axis). c) Concordance 

between ALLCatchR subtype predictions (x-axis) and true molecular subtype (y-axis).  d) Boxplots demonstrating 

classification performance, including precision, sensitivity, specificity, F1 score and accuracy (balanced) for the 

three GEX models (n = 312 samples) and ALLIUM DNAm (n = 1108 samples with known subtype).  

Figure 5. Frequencies of molecular subtypes. a) Molecular subtype concordance for 64 B-other patients based on 

DNA methylation (DNAm, x-axis) and gene expression (GEX, y-axis). b) Patient stratification into subtype and tier 

group for 150 B-other patients subtyped using ALLIUM. c) Distribution of all B-other patients (n = 280) after 

molecular re-classification. d) Subtype distribution of the BCP-ALL cohort (n = 1025) as was established at ALL 

diagnosis and e) after molecular re-classification. f) Unsupervised dimensionality reduction (UMAP) for samples 

with defined subtypes (n = 975), controls (n = 139) and newly re-characterized B-other patient samples (n = 109) 

based on DNAm levels of 519 CpG sites. g) UMAP based on 425 genes across samples with molecularly defined 

subtypes (n = 251), controls (n = 12) and newly re-characterized B-other patient samples by ALLIUM (n = 55).  

Figure 6. Clinical information and patient survival. a) Kaplan-Meir (KM) survival curves depicting event free 

survival (EFS, top) and overall survival (OS, bottom) colored according to molecular subtype as determined for 

1125 patients at ALL diagnosis (left) and the re-classified B-other patients (n = 238) colored according to molecular 

subtype and the remaining unclassified “B-other” patients (n = 38, right). b) Clinical data including age, white blood 

cell count (WBC), sex, treatment protocol, risk groups, primary event, and cause of death per subtype for the B-

other patients with recent subtype after re-classification (n = 240). CR1: complete remission, DCR1: death in 

complete remission. c) Minimal residual disease (MRD) at day 29 available for all patient data (n = 368, top) and re-

classified B-other (n = 95, bottom) colored by their corresponding subtype.   
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