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Anti-VEGF therapy has reduced the risk of legal blindness on
neovascular age-related macular degeneration (nAMD), but still
several patients develop fibrosis or atrophy in the long-term. Al-
though recent statistical analyses have associated genetic, clini-
cal and imaging biomarkers with the prognosis of patients with
nAMD, no studies on the suitability of machine learning (ML)
techniques have been conducted. We perform an extensive anal-
ysis on the use of ML to predict fibrosis and atrophy develop-
ment on nAMD patients at 36 months from start of anti-VEGF
treatment, using only data from the first 12 months. We use
data collected according to real-world practice, which includes
clinical and genetic factors. The ML analysis consistently found
ETDRS to be relevant for the prediction of atrophy and fibrosis,
confirming previous statistical analyses, while genetic variables
did not show statistical relevance. The analysis also reveals that
predicting one macular degeneration is a complex task given the
available data, obtaining in the best case a balance accuracy of
63% and an AUC of 0.72. The lessons learnt during the develop-
ment of this work can guide future ML-based prediction tasks
within the ophthalmology field and help design the data collec-
tion process.
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1. Introduction
Age-related macular degeneration (AMD) is a progressive
chronic disease whose advanced forms, such as neovascu-
lar AMD (nAMD), can lead to severe and irreversible vision
loss. Neovascular AMD is characterized by macular neovas-
cularization (MNV), which can progress to subretinal fibrosis
and macular atrophy (1, 2). Subretinal macular fibrosis is a
result of an excessive wound healing response that follows
MNV in nAMD and can produce local destruction of pho-
toreceptors, retinal pigment epithelium (RPE) and choroidal

vessels (3). On the other hand, macular atrophy is charac-
terized by atrophic lesions of the outer retina, RPE and un-
derlying choriocapillaris, and it is usually found in patients
with long-standing nAMD (4). Both atrophy and fibrosis can
cause permanent macular dysfunction, legal blindness or in-
ability to perform routine activities such as reading or facial
recognition (5).

Advances in diagnostic techniques and anti-vascular en-
dothelial growth factor (anti-VEGF) therapy have helped to
reduce AMD-related legal blindness in some countries, and
its increasing social and emotional impact (6, 7). However,
some patients do not achieve a satisfactory long-term re-
sponse with current treatment, developing atrophy and fibro-
sis, and the need for frequent intravitreal injections and oph-
thalmological visits places a significant burden on patients,
their families and healthcare professionals (8).

Some genetic, clinical and imaging biomarkers have been as-
sociated with the anatomical and functional prognosis of pa-
tients with nAMD, and may help in the planification of indi-
vidualized anti-VEGF therapies (9–14). One of the imaging
biomarkers that has been widely studied in nAMD in the last
few years is retinal fluid visualized on optical coherence to-
mography (OCT), both after the loading phase of anti-VEGF
treatment and in the long follow up. The subretinal location
of this fluid seems to be related to better visual prognosis and
less atrophy and fibrosis formation, while intraretinal fluid
has been associated with higher macular fibrosis and worse
vision in the long term (13, 15, 16).

The increasing sophistication of imaging systems, network-
ing and software analysis, are making it possible to imple-
ment artificial intelligence, such as machine learning (ML),
into the diagnostic in medicine, especially in retinal patholo-
gies (17, 18). Nevertheless, in all the aforementioned stud-
ies, no ML techniques have been analyzed to predict the out-
come of nAMD patients undergoing anti-VEGF treatment.
Hence, in this work we evaluate the suitability of ML to
predict whether a patient with nAMD will develop fibrosis
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and/or atrophy after anti-VEGF treatment. We use data col-
lected in a 36-month study according to real-world practice
(dataset PI15/01374) to assess possible risk factors in nAMD
patients (13). In the previous study, only a conventional sta-
tistical analysis of clinical and environmental variables was
performed, without evaluation of genetic variables. The ob-
jective of this study is therefore twofold: to perform a statis-
tical analysis of the genetic variables that were collected but
not analyzed in (13), and to evaluate the predictive power of
ML models for atrophy and fibrosis development in nAMD
patients at 36 months, using all the clinical and genetic vari-
ables collected in routine clinical practice up to 12 months
from start of treatment.

2. Methods

2.1. Study design

Dataset PI15/01374 (13) was used in this study to as-
sess the influence of clinical (including environmental
factors) and genetic factors on the progression towards
macular atrophy and fibrosis (Table 1 and Supplementary
Table S1). Data collection was conducted from 1 September
2016 to 28 February 2020 across 17 sites in Spain, through
an ambispective (retrospective and prospective) multicentre
36-month study of a cohort of 354 patients (one eye study)
with nAMD treated according to routine clinical practice.

2.2. Genotyping

Genomic DNA was extracted from oral swabs using
QIAcube (Qiagen, Hilden, Germany) and processed in the
Ophthalmology Experimental Laboratory of the Clínica Uni-
versidad de Navarra (Spain). Genetic analysis of 14 single
nucleotide polymorphisms (SNPs) was performed by qPCR
(Taqman probes): ARMS2 (rs10490924); CFB (rs641153,
rs12614); CFH (rs1061170, rs800292); CFI (rs4698775,
rs17440077, rs10033900); SERPINF1 (rs12603486);
SMAD7 (rs7226855); TGFb1(rs2241713); TNF (rs2256974,
rs909253); VEGFR (rs7993418). The SNPs located in
the CFB gene were analyzed by Sanger sequencing. The
sequence of the Taqman probes for analysis is detailed
in Supplementary Table S2. The qPCR was performed
with the amplification mix “TaqMan™ Genotyping Mas-
ter Mix (Thermo Fisher)” with the specific primers and
probes according to the manufacturer’s instructions, in the
QuantStudio-5 Applied Biosystem equipment. Controls of
known genotype are included in the assay. The analysis of
results was carried out with the software: QuantStudio™
Design & Analysis Software. For the genotyping of the
SNPs in the CFB gene, the genomic region containing them
was amplified with the CertAmp Kit (Biotools) according
to the manufacturer’s specifications. The amplification
primers are the product of the Secugen design (Forward:
5’ gagccaagcagacaagcaaa 3’(Tm: 61.63ºC); Reverse: 5’
tctccctccccatttctgagt -3’(Tm62.25ºC); Size: 703pb). PCR
conditions: 94ºC (3min) +35x [94ºC (0.5min) + 60ºC (1min)
+ 72ºC (1min)] + 72ºC (10min). The amplicons obtained

were visualized on a 2% agarose gel and purified using
ExoSAP-IT™ (Applied Biosystems, Spain). Subsequently,
they were sequenced by automatic Sanger-type sequenc-
ing with BigDye 3.1 reagent and loaded on an AB3730
sequencer. The obtained sequences were analyzed with
SeqScape Software v2.5 (Thermo Fisher) (9, 19, 20).

2.3. SNPs statistical analysis

To evaluate the significance of the alleles’ frequencies,
we used the chi-square test within the following two groups:
fibrotic vs non-fibrotic patients, and atrophic vs non-atrophic
patients, all at 36 months. All SNPs analyzed in this study
were in Hardy-Weinberg equilibrium. The Bonferroni
method was used to correct for multiple comparisons. The
results of this analysis are also used to perform feature
selection of the genetic variables prior to the ML model (see
Data preprocessing subsection).

2.4. Machine Learning analysis

The dataset PI15/01374 specifies whether a nAMD pa-
tient developed fibrosis and/or atrophy at 36 months. Due
to the different nature of these outcomes, we considered
distinct machine learning models to predict, at 12 months
from start of treatment, whether a patient (eye) will develop
24 months later (i.e., at 36 months): atrophy and/or fibrosis
(Atrophy|Fibrosis_36m); fibrosis (Fibrosis_36m); and atro-
phy (Atrophy_36m). In all cases this reduces to a supervised
learning problem for binary classification, in which the
positive class is referred as having the pathology and the
negative class as not having it.

2.4.1. Data preprocessing

The considered PI15/01374 dataset contains informa-
tion of clinical and genetic (SNPs) variables for 335 eyes.
Before being used as input to the ML models, we performed
some preprocessing steps.
Since the goal is to make a prediction on month 12 after start-
ing the treatment, clinical variables collected at 36 months
were removed, as they would not be available in a predicting
real scenario. This reduced the number of clinical variables to
20 (see Table 1). Out of the 14 genetic variables, we selected
a representative SNP from each of the 4 risk-pathways associ-
ated with nAMD Atrophy and Fibrosis: complement system
(CFI), metabolic change in mitochondria (ARMS2), inflam-
mation (SMAD7) and neovascularization (VEGFR) (21). The
SNPs statistical analysis results were used to guide this se-
lection and filter out SNPs that did not show statistical differ-
ences (Figure 1). To ease the feature importance analysis (see
subsection 2.4.4), the retained clinical and genetic variables
were further split in seven groups based on their clinical simi-
larity (Table 1). Due to the high variables/eyes ratio, categori-
cal variables (including SNPs) were encoded following a La-
belEncoding instead of a OneHotEncoding (using Python’s
sklearn library).
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2.4 Machine Learning analysis

Table 1 Feature (variables) contained on the considered dataset PI15/01374. Features are organized in groups based on their
clinical similarity.

Group name Associated features
Numerical Categorical

Atrophy/Fibrosis† Atrophy V1, Fibrosis V1, Atrophy V4, Fibrosis V4,
Atrophy 12m, Fibrosis 12m, Atrophy 36m, Fibrosis 36m.

Demographic Age
Tabaquism, Sex, Hypertension, Vitamin supplements,
Hypercholesterolemia, Dry Macula 36m*

Retinal fluid Intraretinal fluid V1, Subretinal fluid V1,
Intraretinal fluid V4, Subretinal fluid V4

Foveal thickness Foveal thickness V1, Foveal thickness V4
Neovascular membrane Neovascular membrane V1, Neovascular membrane V4
Cataract Cataract V1, Cataract V4, Cataract 12m
ETDRS ETDRS V1, ETDRS V4, ETDRS 12m

SNPs ARMS2, CFI, VEGFR, SMAD7, CFB*, CFB1*, CFH*,
CFH1*, SERPINF1*, CFI1*, CFI2*, TGFb1*, TNF*, TNF1*

Treatment Injections 36m*
∗ These variables have not been included in the ML models due to the lack of importance and improvement within the model
or due to data leakage motives.
† V1, V4 and 12m variables have not been included in the ML models, see Data preprocessing for further details. Atrophy and
Fibrosis at 36m are predicting variables.

We dropped samples (eyes) which already presented the
pathology to be predicted at 4 or 12 months, as it was ob-
served that in these cases the pathology remained unchanged
at 36 months. Moreover, retaining these samples can over-
simplify the models and avoid their correct training. We
also dropped samples containing variables (from the retained
ones) with missing values (N/A). These steps reduced down
the number of samples to 296 for the atrophy experiment,
284 for fibrosis and 254 for atrophy and/or fibrosis. In total,
55% of the samples presented atrophy and/or fibrosis at 36
months, 37% presented fibrosis, and 30% presented atrophy.

2.4.2. Supervised learning models

Three different supervised learning methods known to
perform well in practice were selected: Random Forest (RF)
(22), Extreme Gradient Boosting (XGB) (23) and Support
Vector Machines (SVM) (24). Deep learning models were
not considered due to the low number of available samples.
RF and XGB are encompassed within the field of ensemble
learning, as they combine decision trees (DTs) to find
patterns and classify the data. RF is based on bagging, which
performs bootstrapping over the data and uses multiple DTs
to average the results and reduce the variance. To decorrelate
the trees and prevent overfitting, in RF the DTs can only use
a random subset of the features. XGB is based on boosting,
in which trees are built sequentially (i.e., previously built
trees are taken into account to build the next one). SVM
classifies the data by applying linear separators, making use
of kernels to get margin classifiers that work efficiently in
very high dimensional data. Both RF and XGB fall within
the category of soft-classifiers, as they compute the posterior
probability of an input sample belonging to the positive
class. SVM is a hard-classifier that outputs the predictive

class without explicitly computing the posterior probability.
Yet, an estimation of this probability can be computed using
cross-validation. By default, if the posterior (or predictive)
probability is larger or equal to 0.5, a positive prediction
is made (negative otherwise). Nevertheless, since these
probabilities reflect how confident the model is when making
a prediction, a different threshold (Th) can be used such that
only samples with a probability greater than Th are classified
as positive. As shown below, the capacity of a model to
separate both classes can be evaluated by modifying this
threshold.

2.4.3. Evaluation metrics

Accuracy, defined as the percentage of samples correctly
classified (i.e. for which the correct prediction is made), is
generally the preferred metric to evaluate ML models for
classification. However, due to the data imbalance among
positive and negative samples, balanced accuracy (BA) score
was also considered. BA computes the average between the
accuracy on the positive samples and the accuracy on the
negative samples, giving equal weight to both classes. To
evaluate the reliability and confidence of the models, we
considered the Area Under the ROC (Receiver Operating
Characteristic) Curve (AUC). The ROC curve plots the True
Positive Rate (TPR) vs the False Positive Rate (FPR) for
each possible threshold, defined as:

TPR = TP

TP +FN
; FPR = FP

FP +TN
, (1)

where TP, FN, and FP stand for true positives, false nega-
tives, and false positives, respectively. The AUC is given by
the area under the ROC curve, and ranges from 0 to 1, with
0.5 being a random classifier and 1 a perfect one. Intuitively,
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a reliable and confidence model should generate high prob-
abilities when input positive samples, and viceversa. Addi-
tionally, if samples are sorted by their predictive probabili-
ties, positive samples are expected to appear before negative
samples, such that for high thresholds only positive samples
would be predicted as positive (i.e., FPs would be close to
zero). As the threshold decreases, the opposite is expected,
i.e., we should have close to zero FNs. The ROC curve and
the AUC therefore provide metrics to better understand how
well the model separates both classes.

2.4.4. Feature importance

In order to analyze the models’ feature importance in
a homogeneous manner, we define a relative AUC (rAUC)
score as

rAUC = AUCf −AUCf . (2)

rAUC measures the increase or decrease in the models’ AUC
that a specific feature or group of features yield. AUCf ac-
counts for the AUC of a model when using a group of features
as input, including the specific feature f we want to com-
pute the rAUC for. AUCf accounts for the AUC of the same
model, i.e., same parameters and same features, but exclud-
ing feature f . Hence, rAUC measures the specific contribu-
tion of feature f to the model’s reliability. For a set of p fea-
tures, there would be 2p − 1 possible combinations. Hence,
to reduce the computation complexity, we analyze the impor-
tance of each feature group (Table 1) rather than individual
features, and apply this metric to models with at least two
group of features. 2p−1−p combinations are therefore eval-
uated (p being 7 in our case).

2.4.5. Experimental setup

When evaluating ML models, it is key to verify their
generalization ability, i.e., how they perform on data not
used for training (referred to as test data). Due to the low
number of available samples, cross-validation (CV) was used
to generate training and test folds iteratively (25). However,
when performing hyperparameter tuning and feature selec-
tion simultaneously, CV can yield overfitted test folds. In our
case, for each ML model, we considered different values for
the hyperparameters as well as all combinations of feature
groups. Therefore, we used nested cross validation (NCV)
instead (26). Similarly to CV, in NCV data is split in folds,
and at each iteration one fold is left out for testing and the
remaining ones are used for training (called outer training
fold in NCV). But contrary to CV, in NCV the outer training
fold is further split into folds, and iteratively all folds but
one are used for training and the left out fold for validation.
The hyperparameters that better perform (on average) in the
validation sets are then tested in the test fold. This allows
hyperparameter tuning and feature selection while ensuring
generalization ability of the resulting models, avoiding
overfitting and increasing robustness during the training.
In our experiments 6 folds were used in both the outer and
inner loops. For each considered model, hyperparameter tun-
ing was performed by applying a grid search (Supplemen-

tary Table 4) , and all possible subsets of the defined feature
groups were tested during training. For each prediction task,
we evaluated the importance of each feature group by com-
puting the corresponding rAUCs on the test sets from NCV.
Finally, the model with the best combination of features and
hyperparameters in terms of average AUC (on the test folds)
was selected. Unless stated otherwise, all reported metrics
are on the test folds (from NCV).

3. RESULTS

3.1. SNPs statistical analysis results

The results of the allelic analysis of the 14 considered
SNPs regarding their association with the development of
atrophy or fibrosis are shown in Figure 1. Allelic frequencies
exhibited a significant association between patients with
fibrosis compared to non-fibrotic patients with the CFI gene.
All the SNPs of this gene showed frequencies with some dif-
ferences (Supplementary Table S3) but the SNP rs4698775
(CFI) indicated a significantly higher minor allele frequency
(MAF) in patients with fibrosis (p<0.05, OR 1.4 with 95%
CI 1.0-1.9) versus non-fibrotic. This significance is however
lost after Bonferroni adjustment (p>0.05). Regarding the
development of atrophy, no significant differences were
found in the allelic frequencies of these 14 SNPs.

3.2. Machine learning results

3.2.1. Feature importance

We first evaluated the importance of each of the seven
considered feature groups by computing the corresponding
rAUC values. Due to the flexibility of RF, XGB and SVM
models and the limited availability of samples, we considered
different hyperparameters for each model and prediction
task, as well as all possible combinations of feature groups.
Figure 2 shows the rAUC distributions across features group
and ML models, for each prediction task.

Atrophy or Fibrosis at 36m

When analyzing the Atrophy|Fibrosis_36m experiment,
we observed that ETDRS and foveal thickness were the
two most important feature groups based on rAUC, espe-
cially for the XGB model (Figure 2). The importance of
ETDRS is related to the previous statistical analysis, where
it was shown that atrophy and fibrosis at 36 months were
associated with lower ETDRS at any visit, explained by the
visual impairment generated at the macular level (13, 15).
However, foveal thickness at baseline (V1) and after the
loading phase (V4) did not show statistically significant
differences for the development of atrophy and fibrosis in the
previous statistical analysis (p>0.05). This is not surprising,
as ML models can learn complex patterns in the data, and
features that are not statistically significant when analyzed in
isolation may add relevant information to the models when
combined with other features. The fact that all features in
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3.2 Machine learning results
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Fig. 1. Minor Allele Frequency (MAF) differences between Atrophy/non-Atrophy and Fibrosis/non-Fibrosis patients. Two barplots have been used for representing
the MAF alleles frequencies for each SNP and disease of study. Minor allele type for each SNP has also been added. The significant allele frequency differences, according
to the chi-square test among groups within the same disease (see Methods), have also been pointed out (*). SNPs used in the ML models (see Table 1) are highlighted in
bold.

the ETDRS and foveal thickness groups are numerical may
also help, as numerical variables can ease the exploitation
of patterns in ML models with high predictive power such
as the ones being evaluated. Interestingly, even though the
variance of rAUC for ETDRS variables is larger than the
variance of rAUC for foveal thickness variables, the ETDRS
rAUC score distribution is significantly higher than the one
of foveal thickness (p<0.001), corroborating the importance
of ETDRS in the evolution of nAMD. It is worth noting that
contrary to what previous studies have shown related to the
statistical power of the retinal fluid variable group to predict
atrophy and fibrosis diseases in nAMD patients, their rAUC
distribution shows that they do not add much value to the
ML models. Probably, the fact that the retinal fluid variables
are qualitative has caused them to be less relevant for the
predictive models, while foveal thickness (quantitative),
being directly correlated with retinal fluid (since the greater
the fluid, the greater the foveal thickness and vice versa),
would be an indirect reflection of the importance of retinal
fluid. Future studies should consider collecting the retinal
fluid variables as quantitative rather than qualitative. Finally,
demographic, cataract, SNPs and neovascular membrane
groups do not seem to add value to the ML models in terms
of rAUC (distribution centered around 0).

Fibrosis at 36m

In the Fibrosis_36m prediction task, the ETDRS rAUC
distribution shows a similar but much less pronounced
trend to that of the Atrophy|Fibrosis_36m experiment.
ETDRS and retinal fluid are the only two groups with a
non-negative mean rAUC (see Figure 2). The fact that the
rAUC distribution is more skewed towards smaller values as
compared to the Atrophy|Fibrosis_36m rAUC distribution
can be associated with the complexity of the predicted
variable. Specifically, in the Fibrosis_36m experiment, both
healthy patients and those that develop only atrophy at 36
months belong to the negative class, even though the latter
also have a bad prognosis. This can add noise and blur
the decision making of the ML models. On the contrary,
Atrophy|Fibrosis_36m includes patients that develop either
atrophy or fibrosis in the positive class, avoiding this
problem.

Atrophy at 36m

Finally, the rAUC distributions in the Atrophy_36m
experiment show foveal thickness and retinal fluid groups to
increase the robustness of the model the most (see Figure
2). This can be explained by the relation between these
groups of variables, as mentioned above, and the fact that
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Fig. 2. Relative AUC (rAUC) scores for each group of features and prediction task. Left. Distribution of rAUC values as a function of each group of features, for the
three prediction tasks, shown as a violin plot. A swarm plot is added within each violin plot to distinguish among the three machine learning models (RF, XGB, SVM). Right.
Barplot showing the mean rAUC as a function of each group of features, for every prediction task.

retinal fluid has been previously identified as having clinical
importance in the development of atrophy in nAMD (13, 15).

3.2.2. Predictive results

Model selection

After the conducted analysis that considered all com-
binations (>250,000) of ML models (RF, XGB and SVM),
hyperparameters and feature groups, the combination with
the highest validation AUC score (during NCV) was selected
for each prediction task. Table 2 contains a summary of the
final models. In all cases XGB obtained the highest AUC,
albeit with a different set of hyperparameters. Regarding
the feature groups, all three experiments employ the ET-
DRS group and an additional feature group. Specifically,
the Atrophy|Fibrosis_36m experiment includes the foveal
thickness group, the Fibrosis_36m experiment the SNPs, and
the Atrophy_36m experiment the retinal fluid group.

Performance metrics

Next we report the obtained evaluation metrics of the
final models for each prediction task, computed as the
average across the NCV test folds (see Figure 3A). For

Atrophy|Fibrosis_36m, the obtained average BA is 0.63, the
accuracy 0.65, and the AUC 0.72. For Fibrosis_36m, the
average BA is 0.54, the accuracy is 0.72, and the AUC is
0.6. Finally, for Atrophy_36m, the average BA is 0.54, the
accuracy is 0.7, and AUC is 0.57. Due to the imbalance be-
tween positive and negative samples in all experiments, BA
is always lower than accuracy, showcasing the importance of
considering BA in addition to accuracy. The highest AUC is
obtained for the Atrophy|Fibrosis_36m, since there is a more
clear distinction between negative and positive samples.

To further assess the proposed models, Figure 3A shows the
evaluation metrics obtained for each of the splits within NCV.
It is clear from the results that there is an intrinsic complex-
ity in the prediction of atrophy and fibrosis given the avail-
able data. This is more pronounced for the Fibrosis_36m and
Atrophy_36m experiments, in which lower metrics are ob-
tained as compared to the Atrophy|Fibrosis_36m experiment.
As stated above, this is expected, as the prediction task in
the first two experiments is more complex. Moreover, results
for Atrophy|Fibrosis_36m and Atrophy_36m show signs of
overfitting in the training fold, suggesting the models were
complex enough to learn complex patterns, but the variance
within patients did not allow these patterns to become gener-
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3.2 Machine learning results

Table 2 Detailed information about the final models used for each prediction task, including hyperparameters and input
features.

Experiment Atrophy|Fibrosis_36m Fibrosis_36m Atrophy_36m

Model XGBoost XGBoost XGBoost

Variables ETDRS
Foveal Thickness

ETDRS
SNPs

ETDRS
Retinal fluid

Hyperparameters
Number of estimators
Max depth
Min child weight
Gamma
Subsample
Colsample by tree
Learning rate
Reg alpha
Reg lambda

287
50
0.1
1.5
1.0
0.6
0.0001
0.1
0.0001

287
50
5
0.5
1.0
0.6
0.1
0.0001
0.1

525
50
0.1
1.5
1.0
1.0
0.0001
0.1
0.0001

alizable. The same trend is found in the Fibrosis_36m exper-
iment. Even though the accuracy does not show overfitting
signs, patients from validation and test folds yield lower ac-
curacies and AUCs, highlighting the underlying difficulty of
the prediction tasks. This is reasonable, since heterogeneity
has been pointed out as a common denominator in patients
with nAMD, and more so in this real-life clinical practice
study, with less exhaustive inclusion and exclusion criteria
than in a clinical trial, applying various anti-VEGF therapies,
multiple treatment and follow-up regimens.

Feature importance

We also analyzed the importance of each of the in-
cluded features, computed as the average gain across all
splits the feature is used in (gain option in the xgboost
Python package).

Atrophy or Fibrosis at 36m. Regarding the Atro-
phy|Fibrosis_36m experiment, even though ETDRS at
V1 (ETDRS_b) and 4 months (ETDRS_V4) do not show
relevance signs within the best combination, ETDRS at
12 months is statistically significant (from the feature
importance perspective) for the classification power of the
model (p<0.001, Figure 3A). The rationale behind this
is that ETDRS variables are correlated within each other
(Supplementary Figure S1) and the model uses only one (the
closest in correlation to the predicting variable) for most of
the splits, hence obtaining the highest feature importance
among the three ETDRS features and in general also.

Fibrosis at 36m. The Fibrosis_36m prediction task
exhibits a similar feature importance distribution to the
Atrophy_36m|Fibrosis_36m experiment (Figure 3B). The
importance of ETDRS at 12 months is also significantly
above the rest of variables (p<0.05), followed by the SNPs
VEGFR, CFI and SMAD7. Recall that the SNP CFI showed
some statistical differences between fibrotic and non-fibrotic

patients. Finally, as expected, the order importance of the
ETDRS variables are sorted by time (12 months, V4, and
V1).

Atrophy at 36m. Finally, for the Atrophy_36m experiment,
the importance of the basal subretinal fluid appears to be
significantly above the other features (p<0.001, Figure 3C).
Clinically, subretinal fluid has shown to be associated with a
better visual acuity and a lower risk of developing macular at-
rophy or fibrosis, with fewer injections (11–13). The remain-
ing features do not seem to add to the predictive power of the
model. Nevertheless, the performance of the model (BA 0.54
and AUC 0.57) indicates that the model cannot learn to distin-
guish between atrophic and non-atrophic patients. This is ex-
pected, as the development and evolution of atrophy involves
the interaction of several metabolic, functional, genetic and
environmental factors, making its affectation unpredictable
(27). Likewise, at a functional level, atrophy can appear in an
advanced form but not have much visual affectation and vice
versa, making its prediction very complex.

4. DISCUSSION AND CONCLUSION

This work presents, to the best of our knowledge, the first ex-
haustive analysis regarding the suitability of machine learn-
ing for predicting development of fibrosis and atrophy on
neovascular age-related macular degeneration patients under-
going anti-VEGF treatment. The ML models are trained to
predict the development of fibrosis and atrophy at 36 months
after starting the treatment with VGEF, using data collected
during the first 12 months. For the analysis, we used de-
mographic, clinical, and genetic variables. We consistently
found ETDRS to be relevant for the prediction of atrophy and
fibrosis, confirming previous statistical analyses (13). On the
other hand, the analyzed SNPs, being in some cases widely
associated with AMD development (with high risk or pro-
tective frequencies compared to healthy controls), have not
shown any specific association with macular degeneration in
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Fig. 3. Evaluation metrics and importance scores of the final models for each prediction task. A. Evaluated metrics (BA, accuracy and AUC) along the folds (train,
validation and test) for each experiment for the final ML models. B-D. Boxplots showing the distribution of importance scores for variables within each group from the test
split across folds of the NCV setup, for B) Atrophy|Fibrosis_36m, C) Fibrosis_36m, and D) Atrophy_36m experiments. Variables within each experiment are sorted by their
corresponding feature importance mean.

the considered cohort, and have not significantly contributed
to the ML models. The best performing model is able to
predict the development of at least one macular degeneration
with an accuracy of 65%, a balance accuracy of 63%, and an
AUC of 0.72. As highlighted below, access to more samples
as well as more features (or of better quality) could boost the
prediction power of ML models.
In particular, even though the presented results confirmed the
known relationship between macular degeneration and reti-
nal fluids on OCT (11–13, 28, 29), we believe that the cat-
egorical nature of these features may have narrowed down
the pattern-exploitation ability of the applied ML predictors.
Hence, storing the numerical value (OCT liquid volume) for
these features may help in future ML studies.
Moreover, due to the nAMD heterogeneity and the under-
lying complexity of atrophy and fibrosis diseases, the ML
models would benefit from a higher number of samples, as
the lack of generalization has been observed along the three
considered experiments. Still unexplored deep learning ap-
proaches would also benefit from this.

Regarding the evaluated SNPs, even though they did not
show to be sufficient to predict nAMD development, addi-
tional analysis with larger cohort of patients should be carried
out before they are ruled out, as they could have a regulatory
role in these processes. A different set of SNPs could also be
evaluated to analyze their potential effect on disease progres-
sion.
The fact that nAMD is a complex disease involving many
factors means that the ML models need access to high quality
data in order to make accurate predictions. Hence, when col-
lecting data from real clinical practice, it would be desirable
to use the same (or similar) image detection and analysis sys-
tems, so that data is as homogeneous as possible, and to have
long follow-up periods with regular visits, so that more in-
formation per patient is available. Raw values should also be
collected for each variable when possible, e.g., without con-
verting numerical variables to categorical by applying thresh-
olds.
In summary, in this work we have established the guidelines
for future nAMD atrophy and fibrosis prediction. Several ML
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3.2 Machine learning results

approaches have been analyzed and, despite the complexity
of the prediction task, multiple already-known biological re-
lationships have been found along the process. Moreover,
lessons learnt during the development of this work may guide
future ML-based prediction tasks within the ophthalmologi-
cal field and help design the data collection process.

Code and Data availability

All supporting code, data (PI15/01374) and mate-
rials are available in the following github repository
https://github.com/jesusdfc/ml_namd.
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