Abstract
Anti-VEGF therapy has reduced the risk of legal blindness on neovascular age-related macular degeneration (nAMD), but still several patients develop fibrosis or atrophy in the long-term. Although recent statistical analyses have associated genetic, clinical and imaging biomarkers with the prognosis of patients with nAMD, no studies on the suitability of machine learning (ML) techniques have been conducted. We perform an extensive analysis on the use of ML to predict fibrosis and atrophy development on nAMD patients at 36 months from start of anti-VEGF treatment, using only data from the first 12 months. We use data collected according to real-world practice, which includes clinical and genetic factors. The ML analysis consistently found ETDRS to be relevant for the prediction of atrophy and fibrosis, confirming previous statistical analyses, while genetic variables did not show statistical relevance. The analysis also reveals that predicting one macular degeneration is a complex task given the available data, obtaining in the best case a balance accuracy of 63% and an AUC of 0.72. The lessons learnt during the development of this work can guide future ML-based prediction tasks within the ophthalmology field and help design the data collection process.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work has been developed by members of the Spanish Vitreoretinal society (SERV) and Inflammatory Disease Network (RICORS REI). It has been supported in part by a grant of Thematic Network of Cooperative Health Research in Eye Diseases (Oftared) (RD16/0008/0021) and Gangoiti Foundation. Furthermore, this work has been funded by the FIS project PI15/01374, integrated in the National Plan of I+D+I 2013-2016, the ISCIII Thematic Network of Cooperative Health Research General Subdirection, the European Program FEDER and, partially, by a grant from the Multiopticas Foundation. I.O. was supported by a Gipuzkoa Fellows grant from the Basque Government, a Ramon y Cajal Grant from Spain, and a grant from the Spanish Ministry of Science and Innovation (PID2021-126718OA-I00). J.F.C. was supported by a Fulbright fellowship.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
All procedures carried out in this study were in accordance with the guidelines of the Declaration of Helsinki. The Institutional Review Board and the Ethics Committee of Clinica Universidad de Navarra (CUN-RAN-2016-01) and Government of Navarra, Spain (EO16/19), approved the protocols used in this study. All patients were fully informed of the purpose and procedures, and written consent was obtained from each patient.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced are available online at the provided github repository.
List of abbreviations
- Anti-VEGF
- Anti–Vascular Endothelial Growth Factor
- nAMD
- neovascular Age-related Macular Degeneration
- MAF
- minor allele frequency
- SNP
- Single Nucleotide Poly-morphisms
- ETDRS
- Early Treatment Diabetic Retinopathy Study
- OCT
- Optical coherence tomography
- V1
- baseline visit
- V4
- after the loading phase treatment visit
- MNV
- macular neovascularization
- SRF
- subretinal fluid
- IRF
- intraretinal fluid
- RPE
- retinal pigment epithelium
- ML
- Machine Learning
- XGB
- eXtreme Gradient Boosting
- RF
- Random Forest
- SVM
- Support Vector Machine
- NCV
- Nested Cross-Validation
- BA
- Balanced Accuracy
- AUC
- Area under the Curve
- rAUC
- relative AUC
- OD
- Odds ratio
- CI
- Confidence interval
- ROC
- Receiver Operating Characteristic
- CV
- Cross-Validation
- DT
- Decision Tree
- Th
- Threshold
- TPR
- True Positive Rate
- FPR
- False Positive Rate
- TP
- True Positive
- FN
- False Negative
- FP
- False Positive
- ROC
- Receiver Operating Characteristics