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Abstract 30 

In the era of living with COVID-19, the risk of localised SARS-CoV-2 outbreaks 31 

remains. Here, we develop a multi-scale modelling framework for estimating the local 32 

outbreak risk for a viral disease (the probability that a major outbreak results from a 33 

single case introduced into the population), accounting for within-host viral dynamics. 34 

Compared to population-level models previously used to estimate outbreak risks, our 35 

approach enables more detailed analysis of how the risk can be mitigated through 36 

pre-emptive interventions such as antigen testing. Considering SARS-CoV-2 as a 37 

case study, we quantify the within-host dynamics using data from individuals with 38 

omicron variant infections. We demonstrate that regular antigen testing reduces, but 39 

may not eliminate, the outbreak risk, depending on characteristics of local 40 

transmission. In our baseline analysis, daily antigen testing reduces the outbreak risk 41 

by 45% compared to a scenario without antigen testing. Additionally, we show that 42 

accounting for heterogeneity in within-host dynamics between individuals affects 43 

outbreak risk estimates and assessments of the impact of antigen testing. Our results 44 

therefore highlight important factors to consider when using multi-scale models to 45 

design pre-emptive interventions against SARS-CoV-2 and other viruses. 46 
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Introduction 47 

Following the widespread rollout of COVID-19 vaccines, countries worldwide 48 

have adopted policies of “living with COVID-19” (for example, the UK removed its final 49 

domestic restrictions in February 2022 (1)). Waves of COVID-19 cases continue to 50 

occur (2), generated by factors including waning immunity (3,4) and the continued 51 

evolution of the SARS-CoV-2 virus (5–7), although vaccines provide high levels of 52 

ongoing protection against severe disease. Nonetheless, localised outbreaks, either in 53 

geographical areas or in specific populations such as schools, universities and 54 

workplaces, continue to cause disruption (for example, through student or staff 55 

absence). 56 

Mathematical modelling can be used to estimate the (local) outbreak risk, which 57 

is defined as the probability that a major infectious disease outbreak results from a 58 

single infection occurring within the population (8–12). While the outbreak risk can be 59 

estimated by simulating a stochastic epidemic model a large number of times (and 60 

calculating the proportion of simulations in which a large outbreak occurs), branching 61 

process theory can also be used to derive outbreak risk estimates analytically (12). A 62 

commonly used formula in the applied epidemic modelling literature (13–19) is 63 

�Outbreak risk
 � 1 � 1/�� (whenever the basic reproduction number, �� � 1; when 64 

�� � 1, the outbreak risk is zero). However, this formula relies on simplistic 65 

assumptions, including each infected individual having constant infectiousness 66 

throughout an exponentially distributed infectious period. Several studies have 67 

therefore relaxed these assumptions, for example by considering a gamma-distributed 68 

infectious period (14,17,20) and/or accounting for heterogeneity between age groups 69 

(9,21,22). 70 
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In multi-scale epidemic modelling frameworks, within-host viral dynamics 71 

models, which describe how the viral load of an infected host evolves over the course 72 

of infection and can be calibrated to longitudinal individual data, are used to inform 73 

population-level epidemiological models (23–25). One advantage of such approaches 74 

is that they facilitate a detailed description of the impact of interventions, such as 75 

antigen testing (26–28) or the use of antiviral drugs (29), which depend upon and/or 76 

affect the within-host dynamics in a manner that cannot be fully captured in simple 77 

population-level models. Multi-scale approaches have been applied to SARS-CoV-2 78 

(26–33) and other pathogens including influenza (23,34) to generate outbreak 79 

projections and test control interventions. However, multi-scale methods have not 80 

previously been used to estimate the outbreak risk, or to analyse how the risk can be 81 

mitigated through pre-emptive interventions. 82 

In this study, we develop a multi-scale approach for calculating the outbreak 83 

risk, accounting for within-host viral dynamics and heterogeneity in these dynamics 84 

between individuals. We derive an equation satisfied by the outbreak risk under a 85 

multi-scale model, and verify our analytically derived outbreak risk estimates using 86 

simulations of an individual-based stochastic outbreak simulation model. Focussing 87 

on the case study of SARS-CoV-2, we characterise the viral dynamics by fitting a 88 

within-host model (35–42) to data from 521 individuals with infections due to the 89 

omicron variant (43). We first consider the outbreak risk in the absence of 90 

interventions, before exploring the extent to which the outbreak risk can be mitigated 91 

through regular rapid antigen testing of the entire local population. Additionally, we 92 

analyse the impact of the reproduction number for local transmissions, the level of 93 

transmission following detection, heterogeneity in within-host dynamics, and 94 

asymptomatic infection, on the outbreak risk and the effectiveness of antigen testing. 95 
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Our results highlight that the impact of regular antigen testing on the local 96 

SARS-CoV-2 outbreak risk is dependent on the regularity of testing, as well as the 97 

exact population under consideration (including the level of vaccine- or 98 

infection-acquired immunity) and the characteristics of the viral variant responsible for 99 

infections. Based on our analysis, we expect antigen testing to reduce the outbreak 100 

risk but not eliminate it completely. We stress that while SARS-CoV-2 is our focus 101 

here, our general approach can be applied to other viruses in preparedness for future 102 

outbreaks, epidemics and pandemics beyond COVID-19.  103 
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Results 104 

 Our multi-scale modelling framework for estimating outbreak risks and 105 

analysing the impact of pre-emptive control is outlined in the context of SARS-CoV-2 106 

and regular antigen testing in Figure 1. In our approach, a within-host model is first 107 

fitted to individual infection data to estimate the viral load of infected hosts at each time 108 

since infection, potentially accounting for heterogeneity in within-host dynamics 109 

between different individuals (Figure 1A). Accounting for a reduced transmission risk 110 

following detection, which may occur prior to symptom onset if regular antigen testing 111 

is carried out (Figure 1B), the viral load profile(s) can be used to estimate the 112 

infectiousness profile(s) (Figure 1C). The outbreak risk, following a single newly 113 

infected individual arriving in an otherwise uninfected population, is then estimated 114 

under a branching process transmission model incorporating the estimated 115 

infectiousness profile(s) (Figure 1D). Specifically, we have analytically derived 116 

equations satisfied by the outbreak risk assuming either homogeneous (Eq. (1) in 117 

Methods) or heterogeneous (Eq. (2)) within-host dynamics (the derivations are 118 

described in Supplementary Note 1). The effect on the outbreak risk of factors such 119 

as the frequency of antigen testing can then be analysed. 120 
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 121 
Figure 1. Schematic illustrating our multi-scale approach for calculating the local SARS-CoV-2 122 

outbreak risk, accounting for regular antigen testing. A (top right). By fitting a within-host model to 123 

individual infection data, the temporal viral load profile(s) of infected individuals can be estimated, 124 

potentially accounting for heterogeneity in within-host dynamics between individuals. B (bottom left). In 125 

the absence of antigen testing, we assumed that infected individuals are detected upon symptom onset 126 

(scenario 1). Regular antigen testing of the whole local population may facilitate detection before 127 

symptoms (scenario 2), where the viral load profile can be used to estimate the probability of a positive 128 

test result. Accounting for the frequency of testing, the probability of detection by each time since 129 

infection can be calculated. C (middle right). The viral load profile(s) can then be used to estimate the 130 

infectiousness profile(s) of infected individuals, accounting for a lower transmission risk following 131 

detection, so earlier detection (e.g., when regular antigen testing takes place) leads to a suppressed 132 

infectiousness profile. D (top left). Assuming a branching process transmission model incorporating the 133 

estimated infectiousness profile(s) (the transmission trees next to C represent possible model 134 

realisations either without or with regular antigen testing), we have analytically derived an equation 135 

satisfied by the outbreak risk. The impact of the frequency of antigen testing on the outbreak risk can 136 

then be assessed.  137 
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The SARS-CoV-2 local outbreak risk and the impact of regular antigen testing 138 

Using nonlinear mixed effects modelling, we fitted a within-host viral dynamics 139 

model (35–42) to data from 521 individuals with infections due to the omicron 140 

SARS-CoV-2 variant (43). The temporal viral load profile of infected individuals, using 141 

population estimates of within-host model parameters (Supplementary Table 1), is 142 

shown in Figure 2A. Model fits to data from individual hosts are shown in 143 

Supplementary Figure 1. 144 

For simplicity, we initially demonstrated our multi-scale approach for estimating 145 

the outbreak risk under the assumption of homogeneous within-host dynamics 146 

(heterogeneous within-host dynamics are considered in Figure 4). First, we used the 147 

viral load profile in Figure 2A to estimate the probability of detection by each time 148 

since infection (Figure 2B). We considered scenarios both without regular population 149 

antigen testing (so that infected individuals are only detected upon symptom onset), 150 

and with regular antigen testing (with the detection probability accounting for 151 

randomness in test timing and outcome). We then estimated the (expected) 152 

infectiousness profile in each scenario, accounting for a reduction in the transmission 153 

risk following detection, and averaging over different possible detection times in the 154 

scenario with regular antigen testing (Figure 2C). 155 

Outbreak risk estimates in the absence of regular antigen testing, obtained 156 

using either our multi-scale approach (using Eq. (1)) or the commonly used 157 

population-level estimate (which neglects within-host dynamics), 1 � 1/��, are shown 158 

for a range of values of �� in Figure 2D (throughout this article, we always use �� to 159 

denote the basic reproduction number without regular antigen testing; we denote the 160 

reproduction number at the start of the outbreak but accounting for testing (if carried 161 

out) by ��,���). As would be expected, the outbreak risk increases with ��, while our 162 
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multi-scale method generally gives an outbreak risk higher than the standard 163 

population-level estimate (when �� � 1). 164 

We then used our multi-scale approach to explore the impact of regular 165 

antigen testing on the outbreak risk. First, we estimated the proportion of 166 

transmissions prevented from each infected individual, compared to a scenario in 167 

which infected individuals are only detected upon symptom onset, under different 168 

frequencies of testing (Figure 2E). We then calculated the outbreak risk in each case 169 

(Figure 2F), assuming �� � 1.5 in the absence of testing (different �� values are 170 

considered in Figure 3). Daily testing was here found to prevent 20% of transmissions 171 

(Figure 2E), leading to an outbreak risk of 0.32 (Figure 2F), which is 45% lower than 172 

the corresponding outbreak risk without testing (0.58). In comparison, testing every 173 

two days was found to prevent only 13% of transmissions, giving an outbreak risk of 174 

0.43. 175 

To verify our results, we also used a discrete-time, individual-based, 176 

stochastic outbreak simulation model to estimate the outbreak risk (Supplementary 177 

Figure 2). There was relatively close agreement between estimates of the outbreak 178 

risk between our analytic approach (blue line in Figure 2F) and the stochastic 179 

simulations (red crosses). In Supplementary Figure 3, we considered the sensitivity 180 

of our results to details of how we implemented antigen testing in our multi-scale 181 

framework. We found a lower outbreak risk under frequent antigen testing (i.e., 182 

antigen testing had a greater impact on the outbreak risk) when we assumed a 183 

constant interval between antigen tests, compared to our baseline assumption of a 184 

constant rate of testing (i.e., an exponentially distributed interval between tests, which 185 

was more straightforward to implement in our analytic approach; Supplementary 186 

Figure 3B). 187 
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 188 

Figure 2. Multi-scale estimation of the SARS-CoV-2 local outbreak risk and analysis of the 189 

impact of regular antigen testing. A. Viral load profile using population estimates of within-host model 190 

parameters (Supplementary Table 1). The symptom onset time is shown as a vertical grey dashed line 191 

(note that the incubation period was estimated as part of the model fitting procedure), and the assumed 192 

viral load threshold for infectiousness and antigen detection is shown as a horizontal black dashed line. 193 

Note that we assumed a measurement error affecting antigen test outcomes, leading to the possibility of 194 

a positive antigen test with true viral load below this threshold, and vice versa. B. Probability of detection 195 

by each time since infection, both without regular antigen testing (blue) and with testing every two days 196 

(orange dotted). C. Infectiousness profiles in the two scenarios, averaging over exact detection times of 197 

different individuals in the scenario with antigen testing. D. The probability of a major outbreak without 198 

antigen testing for different values of the basic reproduction number for local transmissions, ��, 199 

comparing our multi-scale approach (blue) with the commonly used formula, 1� 1/�� (whenever 200 

�� � 1; black dashed). E. The proportion of transmissions prevented from each infected individual by 201 

regular antigen testing (compared to a scenario where infected individuals are only detected upon 202 

symptom onset), 1� ��,���/�� (where ��,��� is the basic reproduction number accounting for testing), 203 

for different values of the (mean) interval between tests. F. The outbreak risk for different values of the 204 

(mean) interval between tests when �� � 1.5 in the absence of testing (results for other values of �� 205 

are shown in Figure 3C), comparing our analytic multi-scale approach (blue) with estimates obtained 206 

using a discrete-time stochastic outbreak simulation model (see Supplementary Figure 2; red 207 

crosses).  208 
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Effect of the local reproduction number and the extent of transmission 209 

following detection 210 

In Figure 2F, we considered the outbreak risk under antigen testing for a 211 

single value of the basic reproduction number for local transmissions (in the absence 212 

of testing), �� � 1.5. However, even for SARS-CoV-2, the �� value for local 213 

outbreaks is likely to vary between time periods and local populations because of 214 

factors including contact rates, viral evolution and existing immunity levels. Equivalent 215 

results to those in Figure 2F for different �� values are therefore shown in Figure 3C. 216 

At �� values of 1.25 or below, we found daily antigen testing to be sufficient to reduce 217 

the outbreak risk to zero (by reducing the reproduction number accounting for testing, 218 

��,���, to below one), whereas the estimated outbreak risk remains high even with 219 

frequent antigen testing for large �� values. 220 

We also explored the effect on our results of the relative transmission risk of 221 

detected individuals, �� (Figure 3DEF), with a lower �� value corresponding to a 222 

higher proportion of presymptomatic transmissions. Whereas in most of our analyses 223 

we assumed a small, but positive, �� value (reflecting that, for example, some 224 

household transmission may occur following detection) (44), the blue curves in Figure 225 

3DEF represent a scenario in which �� � 0. This may be relevant to specific 226 

populations, such as workplaces, in which it may be possible to completely isolate 227 

detected cases from the remainder of the population. In the scenario of no 228 

transmission from detected individuals, antigen testing at arbitrarily high frequency 229 

can theoretically prevent all transmissions that would otherwise occur (whereas in the 230 

remainder of our analyses, only some proportion of presymptomatic transmissions 231 

can be prevented), with testing every three days here being sufficient to reduce the 232 

outbreak risk to zero (when �� � 1.5). 233 
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 234 
Figure 3. Effect of the local reproduction number and the extent of transmission following 235 

detection on the outbreak risk under regular antigen testing. A. Infectiousness profiles without 236 

regular antigen testing, assuming a basic reproduction number for local transmissions (in the absence 237 

of testing) of �� � 1.1 (blue), 1.25 (red), 1.5 (orange), 2 (purple), or 2.5 (green). B. The proportion of 238 

transmissions prevented from each infected individual by regular antigen testing (which is independent 239 

of ��). C. The outbreak risk for different values of the (mean) interval between antigen tests, plotted for 240 

each �� value. D. Infectiousness profiles without regular antigen testing, assuming the relative 241 

infectiousness of a detected host (compared to an undetected individual with the same viral load) is 242 

	� � 0 (blue), 0.26 (red; the value used elsewhere in our analyses (44)), or 0.5 (yellow), with �� � 1.5 243 

in all cases. Under these 	� values, the proportions of presymptomatic transmissions (without regular 244 

antigen testing) are 100%, 39% and 25%, respectively. E. The proportion of transmissions prevented 245 

from each infected individual by regular antigen testing, for different values of the (mean) interval 246 

between tests, plotted for each 	� value. F. The outbreak risk for different values of the (mean) interval 247 

between tests, plotted for each 	� value.  248 
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Effect of heterogeneous within-host dynamics and asymptomatic infections 249 

In order to present our multi-scale approach for calculating the outbreak risk in 250 

a straightforward setting we have, up to this point, considered a scenario of identical 251 

within-host viral dynamics for all infected individuals. However, in reality, within-host 252 

dynamics differ between individuals. Our mixed effects within-host model fitting 253 

approach has the advantage of facilitating estimation of the extent of heterogeneity in 254 

within-host model parameters. We therefore conducted an analysis in which we 255 

accounted for such heterogeneity when calculating the localised SARS-CoV-2 256 

outbreak risk (Figure 4), using the generalised outbreak risk formulation in Eq. (2). 257 

We found that accounting for heterogeneity in within-host dynamics leads to a 258 

slightly smaller outbreak risk in the absence of regular antigen testing than in Figure 2 259 

(Figure 4B). The model with heterogeneous within-host dynamics also gives a higher 260 

proportion of transmissions prevented by regular antigen testing compared to the 261 

homogeneous model (for each testing frequency considered; Figure 4C), contributing 262 

to a greater difference in outbreak risk between the two models with regular antigen 263 

testing than without (Figure 4D). For example, the outbreak risk when �� � 1.5 is 264 

0.48 for the heterogeneous model without testing (0.58 for the homogeneous model), 265 

and 0.17 with daily testing (0.32). 266 

We also used the same outbreak risk formulation (Eq. (2)) to account for the 267 

possibility of entirely asymptomatic infections (i.e., some individuals remaining without 268 

symptoms throughout infection; Figure 5). In scenarios with a higher proportion of 269 

total transmissions generated by entirely asymptomatic infected hosts, the proportion 270 

of transmissions prevented by regular antigen testing was found to be higher (Figure 271 

5B). This is because we assumed that asymptomatic hosts remain undetected 272 

throughout infection when antigen testing is not carried out, leading to a greater impact 273 
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of antigen testing on asymptomatic transmissions than on those from individuals who 274 

develop symptoms. This effect is likely responsible for a lower outbreak risk at higher 275 

proportions of asymptomatic transmissions when antigen testing takes place 276 

frequently (Figure 5C). We note that an assumption that 0% of transmissions are 277 

generated by the asymptomatic infected individuals in the population (blue curve in 278 

Figure 5C) is different to assuming that there are no asymptomatic infected 279 

individuals at all (black dashed curve). For example, in the former case, the outbreak 280 

risk will be zero whenever the primary infected individual is asymptomatic, whereas in 281 

the latter case the primary infected individual will not remain asymptomatic throughout 282 

infection.  283 
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 284 
Figure 4. Effect of heterogeneity in within-host dynamics on the outbreak risk under regular 285 

antigen testing. A. Example simulated infectiousness profiles for five infected individuals in the 286 

absence of regular antigen testing, obtained by sampling within-host model parameters using the 287 

estimates of fixed and random effects in Supplementary Table 1 and Supplementary Table 2, 288 

respectively. The expected infectiousness profile (obtained by averaging the individual infectiousness 289 

profiles of a large number of infected individuals) is shown as a black dotted curve. B. The probability of 290 

a major outbreak without antigen testing for different values of the basic reproduction number, ��, 291 

comparing our multi-scale approach, either assuming homogeneous within-host dynamics (blue) or 292 

accounting for heterogeneity (red), and the commonly used formula, 1 � 1/�� (black dashed). C. The 293 

proportion of transmissions per infected individual prevented by regular antigen testing, for different 294 

values of the (mean) interval between tests, plotted for the models with homogeneous (blue) and 295 

heterogeneous (red) within-host dynamics. D. The outbreak risk for different values of the (mean) 296 

interval between tests, for the same scenarios as in panel C.  297 
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 298 
Figure 5. Effect of asymptomatic infections on the outbreak risk under regular antigen testing. 299 

A. Infectiousness profiles for infected individuals who develop symptoms (blue) and those who remain 300 

asymptomatic throughout infection (red), in the absence of regular antigen testing, assuming an overall 301 

basic reproduction number, �� � 1.5, and that entirely asymptomatic hosts represent 20% of infected 302 

hosts and generate 8% of transmissions (45). B. The proportion of transmissions per infected individual 303 

prevented by regular antigen testing, for different values of the (mean) interval between tests, assuming 304 

entirely asymptomatic infected hosts represent 20% of all infected hosts and generate 0% (blue), 8% 305 

(red) or 20% (orange) of transmissions in the absence of antigen testing, and assuming no 306 

asymptomatic infected hosts (black dotted). C. The outbreak risk for different values of the (mean) 307 

interval between tests, for the same scenarios as in panel B.  308 
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Delayed and/or time-limited antigen testing 309 

In most of our analyses of the effect of regular antigen testing on the local 310 

SARS-CoV-2 outbreak risk, we focussed on a scenario in which testing is in place at 311 

the time of virus introduction and continues indefinitely. However, we also generalised 312 

our analytic outbreak risk derivation to scenarios where the infectiousness profile is 313 

calendar time-dependent (Supplementary Note 4). This enabled us to explore how 314 

the effectiveness of antigen testing is reduced if testing is introduced reactively 315 

following the first infection occurring (Supplementary Figure 4A), and/or continues 316 

for only a limited time (Supplementary Figure 4B). We also conducted an analysis in 317 

which we assumed a specified total number of tests to be available to each individual 318 

(on average), and explored the optimal spacing of these tests to minimise the outbreak 319 

risk (for example, 10 tests could be taken daily over 10 days, or once every two days 320 

over 20 days; Supplementary Figure 4C), assuming reactive testing is introduced 321 

when the first infected individual develops symptoms. These analyses therefore 322 

demonstrate how antigen testing strategies can be optimised in settings with limited 323 

testing resources. 324 

  325 
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Discussion 326 

A key challenge for public health policy advisors is estimating the risk that 327 

infectious disease cases introduced into a population will lead to a major local 328 

outbreak. If the local outbreak risk can be calculated in populations with different 329 

characteristics, this will enable limited surveillance and control resources to be 330 

targeted effectively. In this article, we have presented a novel modelling framework for 331 

estimating the local outbreak risk accounting for within-host viral dynamics. 332 

To demonstrate our multi-scale approach in a concrete setting, we focussed 333 

on the risk of local SARS-CoV-2 outbreaks. We used nonlinear mixed effects 334 

modelling to fit a within-host model that has been used extensively to model 335 

SARS-CoV-2 viral dynamics (35–42) to data from 521 individuals with omicron variant 336 

infections (43). The nonlinear mixed effects approach enabled us to quantify the 337 

variability in within-host dynamics between individuals which, in turn, could be used to 338 

characterise heterogeneity in individual infectiousness profiles (describing how the 339 

transmission risk varies during each infection). We then calculated the local outbreak 340 

risk based on these data, assuming either homogeneous or heterogeneous 341 

within-host dynamics, before testing the effect of regular antigen testing. We found 342 

that regular antigen testing can mitigate, but not necessarily eliminate, the outbreak 343 

risk, depending on the frequency of testing (for example, in Figure 2 we estimated an 344 

outbreak risk of 0.58 without testing, 0.43 with testing every two days, and 0.32 with 345 

daily testing) and local transmission characteristics. 346 

Regular antigen testing is an example of an intervention that can be modelled 347 

in greater detail using a multi-scale approach than is possible using a simpler 348 

population-level model. This is because both the probability of a positive test result, 349 

and the impact of detection on transmission, are likely to depend on the viral load 350 
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profile, with the timing of testing important for determining the exact outcome. 351 

Previous studies have used multi-scale models to analyse the effectiveness of antigen 352 

testing for controlling an ongoing outbreak (26–28), but none of those studies 353 

considered the impact of antigen testing on the outbreak risk. 354 

Antigen testing was carried out at large scale in countries including the UK 355 

(46) earlier in the COVID-19 pandemic, but (similarly to other non-pharmaceutical 356 

interventions) has become less commonplace following the roll-out of vaccinations. 357 

However, local outbreak prevention remains important in some specific populations in 358 

the era of living with COVID-19, for example in care homes due to a high proportion of 359 

vulnerable individuals, and our analyses of antigen testing have ongoing relevance to 360 

such populations (the UK government continues to provide free tests to care homes 361 

(47)). Furthermore, while we used within-host data for the omicron SARS-CoV-2 362 

variant, our methodology and qualitative findings will be applicable if a future 363 

SARS-CoV-2 variant, or other viral pathogen, necessitates wider use of 364 

non-pharmaceutical interventions. 365 

In the absence of antigen testing, accounting for heterogeneity in within-host 366 

dynamics between different hosts generally gave rise to a lower outbreak risk estimate 367 

compared to that obtained under the assumption of homogeneous within-host 368 

dynamics, while the estimates using both versions of our multi-scale approach were 369 

higher than a commonly used outbreak risk estimate that does not account for 370 

within-host dynamics (13–19) (Figure 4B). These results are consistent with previous 371 

comparisons of the outbreak risk between models with different infectious period 372 

distributions (20) or offspring distributions (48), although previous studies did not 373 

consider variations in infectiousness during infection. More variability in the total 374 

number of transmissions generated by different individuals typically leads to a lower 375 
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outbreak risk since, for example, the probability of the primary infected individual 376 

generating no transmissions will then be higher. We also found a greater impact of 377 

antigen testing on transmission with heterogeneous than homogeneous within-host 378 

dynamics (Figure 4C), which contributed to a bigger difference in outbreak risk 379 

estimates between the heterogeneous and homogeneous models when antigen 380 

testing is carried out (Figure 4D) than without testing. 381 

Our results highlight that transmission characteristics depending on both the 382 

virus and local population under consideration are important in determining the 383 

outbreak risk and impact of antigen testing. In settings where the reproduction number 384 

for local transmissions is high (e.g., in high-contact environments, or due to a new viral 385 

variant or waning immunity), the outbreak risk may remain high even with a high 386 

testing frequency, so that mitigations in addition to antigen testing would be required to 387 

substantially reduce the risk. Conversely, we found antigen testing to be more 388 

effective when a high proportion of transmissions are presymptomatic, such as in 389 

schools and workplaces (provided symptomatic individuals are instructed to stay at 390 

home). This is because population-wide testing enables infected individuals to be 391 

detected before symptoms, thus preventing presymptomatic transmissions that would 392 

otherwise have occurred. Similarly, when we accounted for entirely asymptomatic 393 

infections (Figure 5), we found a lower outbreak risk under daily testing when a higher 394 

proportion of transmissions are generated by asymptomatic infectors. 395 

Like any modelling study, our analyses involved assumptions and 396 

simplifications. We assumed that infectiousness scales with the logarithm of the viral 397 

load (26,30), with a reduction in transmission risk upon detection (due to detected 398 

individuals staying at home and/or isolating) (44,49,50). However, more complex 399 

within-host models or relationships between viral load and infectiousness, or a delay 400 
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between detection and isolation, would be straightforward to implement in our 401 

multi-scale modelling framework. We also assumed equal viral load thresholds for 402 

infectiousness and for antigen test positivity, but this assumption could be relaxed to 403 

explore how the outbreak risk under regular antigen testing depends on test 404 

sensitivity, which may vary between tests developed by different manufacturers (51). 405 

While our focus here was rapid antigen testing, future work may compare the 406 

effectiveness of antigen and PCR testing for reducing the outbreak risk, particularly 407 

considering a trade-off between test sensitivity and turn-around time that has 408 

previously been explored in the context of controlling an ongoing outbreak (28,30). 409 

Our multi-scale approach for estimating the outbreak risk, accounting for 410 

heterogeneous within-host viral dynamics, could be extended in numerous directions. 411 

We considered a scenario involving a single infected individual arriving in a host 412 

population early in their course of infection. However, it would be straightforward to 413 

consider possibilities such as the primary infected individual entering the population 414 

later in infection, and/or multiple infectious importations occurring. A future study may 415 

also relate heterogeneity in within-host dynamics to specific characteristics such as 416 

age, enabling the outbreak risk to be compared between local populations with 417 

different structures. Other forms of heterogeneity, such as in susceptibility and/or 418 

contact rates, could also be considered. Finally, going forwards, we plan to use the 419 

mathematical results (Supplementary Note 4) underlying our analysis of reactively 420 

introduced antigen testing (Supplementary Figure 4) to explore temporal changes in 421 

the SARS-CoV-2 local outbreak risk, combining our multi-scale approach here with 422 

previous work incorporating time-dependent susceptibility into outbreak risk estimates 423 

(11) (for example, a booster vaccination campaign followed by waning immunity could 424 

be considered). 425 
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In summary, we have developed a multi-scale modelling framework in which 426 

within-host viral dynamics models can be used to inform estimates of the risk of 427 

infectious disease outbreaks and to analyse the impact of pre-emptive control. 428 

Applying our approach to estimate the risk of local SARS-CoV-2 outbreaks, we found 429 

that regular antigen testing of the local population can reduce, but not eliminate, the 430 

outbreak risk, depending on the frequency of testing as well as transmission 431 

characteristics that are likely to vary temporally and between different populations. 432 

Additionally, we found that it may be important to account for details such as 433 

asymptomatic infection and heterogeneity in within-host dynamics to assess the 434 

effectiveness of antigen testing accurately. We hope that this research will help to 435 

guide pre-emptive control and mitigate the risk of outbreaks due to a range of viruses. 436 

  437 
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Methods 438 

Study data 439 

We analysed published viral load data from 521 individuals with symptomatic 440 

infections due to the omicron SARS-CoV-2 variant (43). For each individual in the 441 

dataset, the results and timing (relative to a recorded symptom onset date, including 442 

some tests carried out prior to symptom onset) of at least three RT-qPCR tests were 443 

available. The median number of tests per individual was 15. Viral load values 444 

(converted from Ct values) were recorded for positive tests. 445 

 446 

Within-host model and parameter estimation 447 

We used a simple within-host model of SARS-CoV-2 viral dynamics (35–42), 448 

given by 449 

d�d� � ����, 
d�d� �  �� � !�, 

where ���
 and ���
 denote, respectively, the proportion of uninfected target cells 450 

(so that ��0
 � 1) and viral load at time since infection �. The parameters �,   and ! 451 

are the rate constant for virus infection, the maximum rate constant for viral replication, 452 

and the death rate of infected cells, respectively. 453 

We estimated the parameters �,   and !, in addition to the incubation period, 454 

����, by fitting the model to the viral load data using a nonlinear mixed effects modelling 455 

approach (amounting to a partial pooling of the data from each individual). Specifically, 456 

the value of the parameter vector, "	 � #�	 ,  	 , !	 , ����,	$, for a given individual, %, was 457 

assumed to be of the form "	 � "
�
 & '�� (where the operations are applied 458 

element-wise). Here, "
�
 is a fixed effect (referred to as the population parameter 459 
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value), and (	 is a random effect, assumed to be normally distributed with mean zero 460 

and covariance matrix ). For simplicity, we assumed the random effects for different 461 

parameters to be independent, with standard deviations *
, *�, *� and *���	
 (i.e., 462 

) � diag�*

� , *�

�, *�
� , *���	

� 
). 463 

In the parameter fitting procedure, we estimated both the fixed effects 464 

(Supplementary Table 1; note that the subscript pop is suppressed) and the standard 465 

deviations of the random effects (Supplementary Table 2). In other words, we 466 

characterised both the population (median) values of model parameters, as well as 467 

variability in those parameters between individuals. The measurement error, ,, in 468 

recorded values of the log viral load, was also estimated. These parameters were 469 

estimated by using the Stochastic Approximation of the Expectation-Maximization 470 

(SAEM) algorithm (52,53) to obtain the parameter values that maximise the likelihood 471 

of the recorded viral load data. We accounted for left censoring of viral load data (i.e., 472 

a negative test result occurring at viral loads below the detection limit of 102.66 473 

copies/ml) in the likelihood. Initial values of estimated parameters were changed 474 

multiple times to confirm the robustness of parameter estimation and ensure a global 475 

maximum of the likelihood was obtained. Additionally, we calculated best-fit estimates 476 

(Empirical Bayes Estimates (53)) of within-host model parameters for each individual 477 

host (Supplementary Figure 1). Fitting was implemented in MONOLIX version 478 

2019R2 (53). 479 

 480 

Detection model 481 

We assumed that infected individuals could be detected in two possible ways: 482 

1. By returning a positive antigen test. 483 

2. By developing symptoms (we assumed previously undetected hosts to be 484 
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detected immediately upon symptom onset). 485 

Supposing that an infected individual conducts an antigen test when their 486 

instantaneous viral load is �, we assumed (similarly to previous work (40,42)) that a 487 

positive test result occurs with probability -���
 � Prob#�0 � ��$. Here, �0  represents 488 

a measured viral load, assumed to be normally distributed on the log scale 489 

(independently of previous viral load measurements) such that log����0
 2490 

3�log����
, ,�
; �� is the detection limit (the choice of �� is described in 491 

Supplementary Table 1); and the value of the measurement error level, ,, was 492 

assumed to be equal to the corresponding quantity that we estimated for PCR testing 493 

(Supplementary Table 1). In other words, a positive test result was assumed to occur 494 

whenever the measured viral load exceeds the detection limit. 495 

In most of our analyses of regular antigen testing, we assumed an 496 

exponentially distributed interval between successive tests, with mean 4 (i.e., a 497 

constant rate of testing; the alternative scenario of a constant interval between tests is 498 

considered in Supplementary Figure 3B). Under this assumption, the probability of 499 

an infected individual being detected by time since infection � is given by 500 

-���
 � 51 � exp 8� 14 9 -�#��:
$d:�

�

; , � < ����;1, � � ����;
>
 

where ��:
 represents the viral load of the specified individual at time since infection 501 

:, and ���� their incubation period (���� can be taken to be infinite to represent an 502 

entirely asymptomatic infection). This expression is derived in Supplementary Note 503 

1. 504 

 505 

Infectiousness model 506 

The infectiousness profile of an undetected host, ?���
, at each time since 507 
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infection, �, was assumed to depend on their viral load, ���
, according to a 508 

prescribed functional relationship. Specifically, we assumed (26,30) 509 

?���
 � @ & maxBlog������

 � log�����
, 0C , 
so that only individuals with a viral load exceeding �� are infectious. We assumed this 510 

infectiousness limit to be equal to the detection limit for antigen testing (i.e., in the 511 

absence of measurement errors, infected individuals will return a positive antigen test 512 

if and only if they are infectious at the time of testing). The choice of the scaling factor, 513 

@, is described below. 514 

We assumed the effective infectiousness (accounting for behavioural factors) 515 

of a detected individual at time since infection � (where � exceeds the time of 516 

detection) to be a factor �� times ?���
 (the choice of ��, which lies between zero 517 

and one, is described in Supplementary Table 1). In the absence of regular antigen 518 

testing, the overall individual infectiousness profile is then 519 

?��
 � D ?���
, � < ����;��?���
, � � ����. > 
When regular antigen testing takes place, supposing the individual under 520 

consideration has been detected by time since infection � with probability -���
, then 521 

their expected infectiousness at time since infection � (accounting for different 522 

possible detection times) is 523 

?��
 � E��-���
 F #1 � -���
$G & ?���
. 
The scaling factor, @, in the expression for ?���
, was chosen to obtain a 524 

specified value of the basic reproduction number, ��, in the absence of regular 525 

antigen testing (except where otherwise specified, we took the default value �� �526 

1.5). Specifically, if the expected infectiousness profile (averaging over individual 527 
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infectiousness profiles if the population is heterogeneous) is ?H��
, then we have (see 528 

Supplementary Note 2 in detail) 529 

�� � 9 ?H��
�

�

d�. 
 530 

Outbreak risk 531 

 Here, we describe our approach for calculating the (local) outbreak risk (the 532 

probability that a major outbreak results from a single newly infected individual being 533 

introduced into an otherwise uninfected population) under the within-host, detection 534 

and infectiousness models described above. A benefit of our approach is that we have 535 

derived equations satisfied by the (local) outbreak risk analytically under a branching 536 

process transmission model, assuming either homogeneous or heterogeneous 537 

within-host dynamics between different infected individuals. These equations are 538 

described below; derivations are given in Supplementary Note 2. The equations 539 

were solved numerically, avoiding the need to run large numbers of stochastic model 540 

simulations to estimate the local outbreak risk. However, we also verified our 541 

analytically derived outbreak risk estimates against simulations of a discrete-time, 542 

individual-based, stochastic epidemic model in Figure 2F (see Supplementary 543 

Figure 2 and Supplementary Note 5 for details). 544 

 545 

Homogeneous population model 546 

First, we considered a simplified scenario in which each member of the 547 

population is assumed to follow the same infectiousness profile, ?��
. In this case, an 548 

analytic argument gives the following implicit equation for the outbreak risk: 549 

-�������� � 1 � exp#���,��� & -��������$, #�1
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where the largest solution between 0 and 1 should be taken. Here, ��,��� is the 550 

reproduction number at the start of the outbreak, accounting for regular antigen testing 551 

(assumed to be in place at the time of pathogen introduction) if carried out, while we 552 

use �� to refer specifically to the basic reproduction number in the absence of regular 553 

antigen testing. This equation has previously been derived in the special case of 554 

constant infectiousness during a fixed infectious period (18), but we show in 555 

Supplementary Note 2 that this equation is valid for any ?��
 (provided there is no 556 

heterogeneity in infectiousness). We also emphasise that while this equation only 557 

depends on ��,���, even in this simplified scenario our multi-scale approach enables 558 

detailed analysis of how interventions such as antigen testing affect ��,��� and 559 

therefore the outbreak risk, which cannot otherwise be captured easily. 560 

We solved Eq. (1) numerically under the parameter values in Supplementary 561 

Table 1 (in particular, using population estimates of the within-host parameters �,  , 562 

! and ����) in order to estimate -�������� in the absence of regular antigen testing. 563 

Then, we explored the effect of antigen testing on -��������, for simplicity averaging 564 

over the exact detection times of different individuals in most of our analyses. Of note, 565 

in Supplementary Figure 3A, we found that explicitly accounting for heterogeneity in 566 

detection times had a very small effect on the -�������� estimates. 567 

 568 

Heterogeneous population model 569 

We also conducted an analysis in which we accounted for heterogeneity in 570 

within-host dynamics between different individuals. In Supplementary Note 2, we 571 

show that if there are J population subgroups, with each infected individual in group 572 

% assumed to follow infectiousness profile ?	��
, then the outbreak risk is the largest 573 

solution between 0 and 1 of 574 
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-�������� � 1 � K L	 & exp#��	 & -��������$�

	��

. #�2

 

Here, L	 represents the proportion of new infections that are in group % (at the start of 575 

the epidemic and neglecting heterogeneity in contact rates between groups), which 576 

simply corresponds to the proportion of the population in group % if there is no 577 

difference in susceptibility between groups, while �	 gives the expected number of 578 

transmissions generated by an infected host in group % over the course of infection (at 579 

the start of the outbreak). We note that Eq. (2) includes as special cases most previous 580 

outbreak risk estimates based on branching process approximations of 581 

compartmental epidemic models (see Supplementary Note 3). 582 

To account for heterogeneous within-host dynamics, we used the estimated 583 

fixed (Supplementary Table 1) and random (Supplementary Table 2) effects to 584 

generate synthetic viral load profiles and incubation periods for J � 10,000 infected 585 

individuals. The infectiousness profile of each individual was obtained (averaging over 586 

possible detection times when analysing regular antigen testing), and then Eq. (2) was 587 

used to estimate the outbreak risk (taking L	 � 1/J for each %). 588 

We also used Eq. (2) when we accounted for entirely asymptomatic infections 589 

(Figure 5). In Figure 5, we assumed that a proportion, L� � 0.8, of infected 590 

individuals develop symptoms, with the remaining proportion, L� � 0.2, remaining 591 

asymptomatic throughout infection (45) (i.e., we took J � 2 in Eq. (2)). For simplicity, 592 

we assumed no difference in within-host model parameters between entirely 593 

asymptomatic hosts and those who develop symptoms, but instead considered 594 

different possible values of the proportion of all transmissions arising from entirely 595 

asymptomatic infectors (in the absence of regular antigen testing), given by 596 
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O � L���L��� F L��� � L�: L� F L�: , 
where : � ��/�� represents the relative overall transmissibility of asymptomatic 597 

infected hosts (where �� and �� represent the expected total number of 598 

transmissions generated by each infected host who develops symptoms and by each 599 

entirely asymptomatic infected host, respectively). Specifically, we considered O  600 

values of 0, 0.08 and 0.2, which were obtained by scaling the infectiousness profiles of 601 

entirely asymptomatic hosts to obtain corresponding :  values of 0, 0.35 (the value 602 

obtained by (45)) and 1, respectively. 603 

Finally, we also used Eq. (2) when we accounted for variability in the exact 604 

detection times of different infected individuals under regular antigen testing, 605 

assuming either an exponentially distributed interval between tests (Supplementary 606 

Figure 3A) or a fixed interval (Supplementary Figure 3B; in this case assuming each 607 

infection time to be uniformly distributed between two testing times). In both cases, we 608 

sampled the detection times of J � 10,000 hosts. 609 

 610 

Delayed and/or time-limited regular antigen testing 611 

In most of our analyses, we focussed on a scenario in which regular antigen 612 

testing is already in place at the time of pathogen introduction and continues 613 

indefinitely. However, we also considered scenarios in which testing is introduced 614 

reactively after an infection occurs within the local population, and/or testing is only 615 

carried out for a limited time period (Supplementary Figure 4). An equation for the 616 

outbreak risk in this scenario is derived in Supplementary Note 4.  617 
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