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Abstract 
Image-based machine learning holds great promise for facilitating clinical care, however the datasets 

often used for model training differ from the interventional clinical trial-based findings frequently used to 

inform treatment guidelines. Here, we draw on longitudinal imaging of psoriasis patients undergoing 

treatment in the Ultima 2 clinical trial (NCT02684357), including 2,700 body images with psoriasis area 

severity index (PASI) annotations by uniformly trained dermatologists. An image-processing workflow 

integrating clinical photos of multiple body regions into one model pipeline was developed, which we 

refer to as the ‘One-Step PASI’ framework due to its simultaneous body detection, lesion detection, and 

lesion severity classification. Group-stratified cross-validation was performed with 145 deep 

convolutional neural network models combined in an ensemble learning architecture. The highest-

performing model demonstrated a mean absolute error of 3.3, Lin's concordance correlation coefficient 

of 0.86, and Pearson correlation coefficient of 0.90 across a wide range of PASI scores comprising disease 

classifications of clear skin, mild, and moderate-to-severe disease. Within-person, time-series analysis of 

model performance demonstrated that PASI predictions closely tracked the trajectory of physician scores 

from severe to clear skin without systematically over or underestimating PASI scores or percent changes 

from baseline. This study demonstrates the potential of image processing and deep learning to translate 

otherwise inaccessible clinical trial data into accurate, extensible machine learning models to assess 

therapeutic efficacy. 

Introduction 
Psoriasis is a chronic inflammatory disease that damages the skin and impacts several other organ 

systems.1 Psoriasis is driven by a confluence of genetic, immunologic, and behavioral factors and affects 

between 2-4% of the population worldwide with overall prevalence across demographic groups.2 While 

effective systemic and targeted therapies have been developed for psoriasis, non-treatment and 

undertreatment remain significant problems, with over 50% of patients reporting dissatisfaction with 

their treatment.3 

Consensus treatment guidelines for psoriasis use the Psoriasis Area Severity Index (PASI) clinical 

assessment to measure disease severity and provide target values for treatment efficacy.4 The PASI 

assessment is performed by a trained physician evaluating the overall body surface area (BSA) or 

involvement that is affected by psoriatic plaques and assessing the severity of plaques in the categories 

of erythema (redness), induration (thickness), and desquamation (scaling) to generate a composite score 

on a scale of 0–72.5 The PASI score and thresholds for percent change upon treatment (i.e. PASI75, 

PASI100) are routinely used for eligibility criteria and primary endpoints of therapeutic efficacy in 

interventional clinical trials. 

Image-based machine learning workflows to generate PASI scores have potential future use to ease the 

burden of PASI assessment in clinical trial, clinical care, and remote monitoring applications.6 Prior studies 
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have employed image-based machine learning models to perform PASI assessments.7–10 However, these 

efforts have not trained their machine learning models on interventional studies collecting longitudinal, 

standardized imaging data. As a result, machine learning assisted PASI scoring may not accurately measure 

individual’s change upon treatment, potentially hindering deep learning adoption to assess therapeutic 

efficacy in clinical trial and routine clinical practice settings.  

Here, we have used interventional clinical imaging data to train a deep learning workflow, called the ‘one-

step PASI’ framework, to integrate clinical photos of multiple body regions into one model pipeline for 

simultaneous body detection, lesion detection, and lesion severity classification to generate PASI scores. 

Results 

Dataset 
To develop a deep learning workflow for prediction of PASI scores from imaging data, we utilized 2700 

standardized photos captured during UltIMMa-2: a randomized, placebo-controlled phase 3 

interventional trial (NCT02684357) investigating the efficacy of Risankizumab to reduce the severity of 

psoriasis over the course of 16 weeks.11,12 74.8% of study participants achieved 90% reduction in PASI 

score (PASI90) during the first 16 weeks, providing a large dynamic range of PASI scores within individuals.  

This imaging dataset included 60 psoriasis patients with images captured for five or six site visits totaling 

338 visits across all participants. At each visit, site staff used a Nikon D5100 camera to capture 4928x3264 

pixel photos of three key body regions: four photos of upper extremities, two of the trunk, and two of the 

lower extremities (Supplemental Figure 1). Head and neck photos were not collected to preserve subject 

privacy. The three regions were scored in person in a clinical setting by uniformly trained dermatologists 

for region involvement, erythema, induration, and scaling severity. 
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Figure 1. One-step workflow for processing whole-body imaging, training DCNN and evaluation of composite PASI scores.  

To balance the training and testing data sets, images were sorted into training or testing datasets with a 

ratio of 90% training and 10% testing. Images associated with an individual subject were all assigned to 

either the training or testing set, ruling out potential within-subject information leakage between training 

and test sets. The training and testing datasets contained images with a similar distribution of erythema, 

induration, scaling, and involvement (Figure 2).  

 

Figure 2. Distribution of Psoriasis severity scores and involvement (or body surface area) scores in (A) the ground truth 
annotated dataset overall and (B) their distribution between training and test sets.  

 

Image pre-processing and tiling 
To enable the workflow to read a variable number of images from the three different body regions in a 

standardized way, 8 raw images per patient were resized to 128x128 pixels and tiled together in 2x2 grid 

pattern to form a single composite image (Figure 1). Solid black squares filled in missing regions of the 2x2 

composite image grids generated for trunk and lower extremity regions because they each had two 

images. The four upper extremity images completed the 2x2 composite. Black squares contained no 
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features for models to detect, and therefore did not interfere with learning. Sub-images comprising the 

2x2 composite were randomly rotated and their positions within the grid were shuffled to avoid position-

detection bias in the trained PASI scoring model. The output of pre-processing was a set of three 2x2 

composite images, one for each body region, for each clinical visit. Images were also pre-processed with 

randomized brightness and contrast adjustments. Images used for training and testing were in full color, 

but are converted to black and white for demonstration purposes and privacy protection. 

Model training and performance 
Both base and meta learners were validated for PASI scoring accuracy using the test dataset. The mean 

predictions from the five deep convolutional neural networks (DCNNs) in each base-learner were used for 

testing. Learning models were evaluated using mean absolute error (MAE), mean squared error (MSE), 

Lin’s concordance score (CCC), and person correlation coefficient (PCC) (Table 1). 

The resnet34 model.13 demonstrated the best performance as measured by MAE, MSE, and PCC in DCNN 

validation testing. The base-learner models largely outperformed the four meta-learning architectures. 

The best meta-learner was the logistical regression model with ridge regularization, but was ranked 8th 

among all learners.  

 

Model MAE PCC MSE CCC 

resnet34 3.336 0.9 27.191 0.83 

shufflenet_v2_x0_5 3.479 0.896 23.616 0.864 

densenet121 3.507 0.892 27.475 0.835 

resnet152 3.539 0.885 28.499 0.825 

resnet101 3.639 0.866 28.821 0.835 

vgg19_bn 3.676 0.87 30.606 0.826 

resnext50_32x4d 3.709 0.883 30.273 0.812 

meta_learner_ridge 3.781 0.879 30.583 0.812 

mobilenet_v2 3.786 0.886 29.025 0.823 

vgg11_bn 3.788 0.874 31.482 0.806 

Table 1. Top 10 models based on MAE performance. (MAE=mean absolute error; PCC=pearson’s correlation coefficient; MSE= 

mean squared error; CCC=Lin’s concordance correlation coefficient) 

To explore the model’s performance in the test dataset, ground-truth physician PASI scores were plotted 

with the resnet34 PASI score predictions comprising 34 clinical trial visits across 6 subjects (Figure 3). 

There was a strong correlation (p=0.90) across the range of ground-truth PASI scores between 0 and 43.7, 

a range that covers overall psoriasis severity classifications of clear, mild, and moderate-to-severe 

disease.14 To explore the one-step workflow for its capacity to track changes in an individual’s psoriasis 

severity over time, time-series analysis of individuals over the course of the study was performed, 

revealing that one-step PASI estimations closely tracked the trajectory of the physician-based PASI scores 

upon interventional treatment. The best performing model did not systematically over- or underestimate 

PASI scores or the interventional response variable that denotes percent change from baseline (i.e. 

PASI75) (Figure 4).  
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Figure 3. Correlation between the top-performing PASI estimation model (resnet34) predictions on the test dataset relative 
to in-clinic physician PASI scores. 95% CI is shown as dashed-blue lines. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.23.23287628doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.23.23287628
http://creativecommons.org/licenses/by/4.0/


Figure 4. Time-series of top-performing One-Step PASI estimation model (resnet34) predictions relative to in-clinic physician PASI 

scores. The clinical trial endpoint metric, percent change from baseline in the PASI score (e.g. PASI98, PASI92), is listed for the 

model and physician. 

Discussion 
In this study, we developed a ‘one-step’ deep learning framework for multi-image processing and deep 

convolutional neural network (DCNN) training to predict psoriasis area severity index (PASI) scores. This 

framework utilized 2700 images of psoriasis patients’ skin while undergoing treatment in a controlled 

clinical setting to train and test model performance. The best-performing model trained by the framework 

(resnet34) produced PASI predictions demonstrating a strong correlation (Pearson’s r = 0.9) with in-person 

physician scoring and a mean absolute error of 3.3 on the PASI scale of 0 to 72. Importantly, the PASI score 

estimations for individuals over time tracked the trajectory of physician scoring, without systemic over- 

or underestimates of PASI scores at an individual visit or the estimated percent change over time that is 

typically used in clinical trial settings (e.g. PASI75).  

A key component of models from the one-step PASI framework is their training on highly standardized, 

interventional clinical trial data. In contrast to deep learning workflows trained with a large volume of 

cross-sectional images capturing a snapshot in time from a given patient, the UltIMMa-2 trial images allow 

the model to learn in the setting of within-person disease changes from baseline over time. In this dataset, 

individuals often progressed from severe disease to clear skin. Thus, in addition to evaluating single-point 

diagnostic accuracy, we investigated one-step models for their capacity to accurately assess therapeutic 

efficacy. 

PASI scoring requires three different tasks: body detection from background, disease lesion segmentation 

from healthy skin, and severity classification for detected lesions. Other methods use separate DCNNs to 

achieve each of the three tasks. For example, previous work from Li et al. used 86,000 images labeled with 

lesion location for the segmentation. The one-step PASI framework implicitly integrates all three tasks 

into one DCNN model by pre-processing images from multiple body regions into a standard input. This 

allows the model to generalize learning from a relatively small sample size by connecting information 

across multiple body regions. Compared to a benchmark model ResNet-50,10 the resnet34 model trained 

by the one-step PASI framework demonstrated better MAE (3.34 vs 3.50) while also training on fewer 

images (2700 vs. 5205). 

Despite the strong concordance between the one-step PASI predictions and ground truth PASI scores, 

there are limitations of this work. The dataset contained no head and neck region photos. While there are 

regional severity scores for other body regions, the accuracy of facial, head, and neck region scoring is 

unknown. The imaging to generate the dataset was highly standardized so it is unknown how these 

models would perform with non-clinical image capture methods such as a smartphone.  

There was a relatively small sample size used to train the DCNN model. Access to a larger dataset of clinical 

trial imaging would enable more robust DCNN training and allow for assessment of how well these models 

generalize to a larger population. This is particularly important for clinical applications in dermatology, 

where imbalances in skin tone representation in the training set may impart systematic biases in digital 

tools.15,16 We envision this method to be employed on larger datasets in the future to evaluate this 

important limitation. 
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In summary, the one-step PASI deep learning framework trains models can accurately estimate PASI 

scores from clinical imaging. While further work with larger datasets will be needed to generalize this 

approach, this study demonstrates the potential of image processing and deep learning to translate 

otherwise inaccessible clinical trial data into accurate, extensible machine learning models with the 

potential to assess therapeutic efficacy. 

Methods 

Data Pre-processing  
For each subject-visit, 8 raw images were collected: four images of upper extremities, two of the lower 

extremities, and two of the trunk. Images were resized from the raw 4928*3264 pixels to 128*128 pixels. 

Despite pixel reduction, the resized images maintained original ratios to prevent distortion of relative 

involvement scores used for PASI scoring.  

For each of the three body regions, resized photos were stitched together in 2x2 grid pattern to form a 

single composite image. Solid black squares filled in missing regions of the 2x2 composite image grids 

generated for trunk and lower extremity regions because they each had two images. The four upper 

extremity images completed the 2x2 composite. Black squares contained no features for DCNN models to 

detect, and therefore did not interfere with learning. Sub-images comprising the 2x2 composite were 

randomly rotated and their positions within the grid were shuffled to avoid position-detection bias in the 

trained PASI scoring model. The output of pre-processing was a set of three 2x2 composite images, one 

for each body region, for each clinical visit.  

Images were also pre-processed with randomized brightness and contrast adjustments. Images used for 

training and testing were in full color but were converted to black and white for demonstration purposes 

in this manuscript to protect subject privacy.  

Train/Test Splitting  
A group-stratified train-test splitting strategy was applied based on a greedy algorithm. Subject records 

were randomly shuffled into groups in a stepwise fashion, where train or test group assignments were 

made one subject at a time. This minimized scoring imbalances by assessing score distributions after each 

round of sorting. The scaling severity score was used to guide data splitting.  

Scaling (desquamation) was the chosen guiding metric for data splitting because it has the highest 

correlation with other severity dimensions. Our imbalance measure is the average of absolute train-test 

differences in the adjusted percentage out of the total number of records for a given desquamation 

severity label over five labels, where the adjustment accounts for the different sizes of the cohorts. To 

generate the most representative dataset split, random shuffling was done multiple times with different 

random seeds. 

PASI Scoring Algorithm 
PASI scores are generated by 1) scoring the disease severity of multiple body regions and 2) combining all 

regional severity scores into a weighted composite PASI score for the whole body.  

Disease severity is determined by evaluating body regions for the degree of erythema, induration, scaling 

(i.e., desquamation), and lesion body surface area (BSA) (i.e., involvement). A regional composite score is 
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calculated as seen in Equation 1 where 𝐸𝑟𝑒𝑔𝑖𝑜𝑛  𝐼𝑟𝑒𝑔𝑖𝑜𝑛, and 𝑆𝑟𝑒𝑔𝑖𝑜𝑛 are the erythema, induration, and 

scaling severity and 𝐵𝑟𝑒𝑔𝑖𝑜𝑛 is the BSA score for psoriasis lesions. 

𝐶𝑟𝑒𝑔𝑖𝑜𝑛 =  (𝐸𝑟𝑒𝑔𝑖𝑜𝑛 + 𝐼𝑟𝑒𝑔𝑖𝑜𝑛 + 𝑆𝑟𝑒𝑔𝑖𝑜𝑛) ∗ 𝐵𝑟𝑒𝑔𝑖𝑜𝑛                           (Equation 1) 

Next,  a  PASI score is calculated based on a linear combination of the regional composite scores of all four 

individual regions.5 Due to subject privacy protection, there are no head and neck photos in the dataset 

used in this paper. A PASI sub-score without head and neck disease severity is derived using Equation 2. 

𝐶𝑢𝑝𝑝𝑒𝑟, 𝐶𝑡𝑟𝑢𝑛𝑘, and 𝐶𝑙𝑜𝑤𝑒𝑟 are the regional composite score of upper extremities, trunks, and lower 

extremities specifically. 

𝑃𝑤ℎ𝑜𝑙𝑒 = 𝐶𝑢𝑝𝑝𝑒𝑟 ∗ 0.2 + 𝐶𝑡𝑟𝑢𝑛𝑘 ∗ 0.3 + 𝐶𝑙𝑜𝑤𝑒𝑟 ∗ 0.4                        (Equation 2) 

Learning Model Architecture 
The one-step workflow trained a DCNN module with an ensemble learning architecture using the 

prespecified training dataset. This included base-learners with 5-fold cross-validation. 29 pre-trained 

DCNN models were imported from PyTorch packages for use as base learners.17 The complete list of base 

learner models is available in Supplemental table 1.13,18–29 For each of the 29 base-learner DCNN 

architectures, 5 DCNN copies were created. Each of the DCNN copies was fine-tuned with 4 folds (out of 

5 total folds) from the training dataset and subsequently predicts the last fold (1 out of 5 folds).  145 

DCNNs were used across the 29 base learners. Predictions for each sample in the training dataset were 

generated by base-learners and concatenated into one vector input to train the ensemble model. Four 

different logistic regression models were used for the ensemble model. These included logistic regression 

(meta_learner), logistic regression with intercept term (meta_learner_w_intercept), lgosistic regression 

with ridge penalty (meta_learner_ridge), and ridge penalty (meta_learner_ridge_w_intercept). 

The one-step workflow tested the trained model by having each of the 5 DCNN models within the 29 base-

learners make predictions for the full testing dataset. For each image, the mean of the 5 predictions 

generated by each base-learner was calculated. The 29 mean predictions generated for each image were 

concatenated into a vector input to the ensemble model. Finally, the ensemble model predicted the PASI 

score results for the testing dataset.  

Implementation 
A Dell Precision 7550 laptop with an Intel i7-10850H CPU and Nvidia Quadro TRX 4000 graphic card was 

used for this workflow. The pre-trained DCNNs were imported from PyTorch (v.1.9.0),17 with classification 

layers being updated for regression tasks. The training and testing pipeline was implemented with PyTorch 

and PyTorch Lightning (v1.4.0).30 Mean squared error was the loss criterion and the optimizer was the 

stochastic gradient descent (SGD) with momentum set to 0.9. The learning rate was initialized as 0.01 and 

reduced by 0.1 at the plateau. The plateau threshold was set to 0.0001, and the patience was 10. The 

training batch size was 16. Early stopping was applied during the training procedure with patience of 50 

epochs.  
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Supplemental Data  

 

 

 

 

Figure S1. Illustration of eight clinic photos for each visit and the imaging preprocessing steps. The images are transformed to 

grayscale for privacy consideration only. The original full-color images are used to train the models.  
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Table S1: model list of all base and meta learners and their performance on the test dataset.13, 18, 19, 20, 21, 

22, 23, 24, 25, 26, 27, 28, 29  

Model CCC PCC MSE MAE Reference 

alexnet 0.69 0.86 44.22 5.04 Krizhevsky et al. 201421 
Krizhevsky et al. 201722 

vgg11 0.74 0.85 40.3 4.49 Simonyan et al. 201425 

vgg13 0.68 0.87 45.59 4.77 Simonyan et al. 201425 

vgg16 0.67 0.84 46.38 5.13 Simonyan et al. 201425 

vgg19 0.68 0.85 45.51 4.44 Simonyan et al. 201425 

vgg11_bn 0.81 0.87 31.48 3.79 Simonyan et al. 201425 

vgg13_bn 0.79 0.85 35.31 4.07 Simonyan et al. 201425 

vgg16_bn 0.81 0.88 32.65 3.96 Simonyan et al. 201425 

vgg19_bn 0.83 0.87 30.61 3.68 Simonyan et al. 201425 

Resnet18 0.8 0.83 34.28 3.94 He et al. 201613 

Resnet34 0.83 0.9 27.19 3.34 He et al. 201613 

Resnet50 0.79 0.86 34.65 3.92 He et al. 201613 

Resnet101 0.83 0.87 28.82 3.64 He et al. 201613 

Resnet152 0.82 0.88 28.5 3.54 He et al. 201613 

Resnext50_32x4d 0.81 0.88 30.27 3.71 Xie et al. 201728 

wide_resnet50_2 0.78 0.89 34.25 4.05 Zagoruyko et al. 201629 

wide_resnet101_2 0.8 0.88 32.7 4.12 Zagoruyko et al. 201629 

squeezenet1_0 0.4 0.8 88.39 6.44 Iandola et al. 201620 

squeezenet1_1 0.74 0.86 38.01 4.58 Iandola et al. 201620 

densenet121 0.84 0.89 27.47 3.51 Huang et al. 201719 

densenet169 0.8 0.85 34.13 3.86 Huang et al. 201719 

googlenet 0.81 0.86 31.5 3.92 Szegedy et al. 201526 

shufflenet_v2_x0_5 0.86 0.9 23.62 3.48 Ma et al. 201623 

shufflenet_v2_x1_0 0.78 0.87 34.58 4.38 Ma et al. 201623 

mobilenet_v2 0.82 0.89 29.03 3.79 Sandler et al. 201824 

mobilenet_v3_large 0.76 0.86 36.88 4.15 Howard et al. 201918 

mobilenet_v3_small 0.73 0.85 40.04 4.49 Howard et al. 201918 

mnasnet0_5 0.61 0.79 52.46 5.52 Tan et al. 201927 

mnasnet1_0 0.22 0.83 98.28 7.24 Tan et al. 201927 

meta_learner 0.82 0.88 30.19 3.79  

meta_learner_w_intercept 0.82 0.88 30.42 3.8  

meta_learner_ridge 0.81 0.88 30.58 3.78  

meta_learner_ridge_w_intercept 0.81 0.88 30.87 3.8  
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