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Objectives: Many meta-research studies have investigated rates and predictors of data and code sharing in 

medicine. However, most of these studies have been narrow in scope and modest in size. We aimed to 

synthesise the findings of this body of research to provide an accurate picture of how common data and code 

sharing is, how this frequency has changed over time, and what factors are associated with sharing. 

Design: Systematic review with meta-analysis of individual participant data (IPD) from meta-research studies. 

Data sources: Ovid MEDLINE, Ovid Embase, MetaArXiv, medRxiv, and bioRxiv were searched from 

inception to July 1st, 2021. 

Eligibility criteria: Studies that investigated data or code sharing across a sample of scientific articles 

presenting original medical and health research. 

Data extraction and synthesis: Two authors independently screened records, assessed risk of bias, and 

extracted summary data from study reports. IPD were requested from authors when not publicly available. 

Key outcomes of interest were the prevalence of statements that declared data or code were publicly available, 

or ‘available on request’ (declared availability), and the success rates of retrieving these products (actual 

availability). The associations between data and code availability and several factors (e.g., journal policy, 

data type, study design, research subjects) were also examined. A two-stage approach to IPD meta-analysis 

was performed, with proportions and risk ratios pooled using the Hartung-Knapp-Sidik-Jonkman method for 

random-effects meta-analysis. Three-level random-effects meta-regressions were also performed to evaluate 

the influence of publication year on sharing rate. 

Results: 105 meta-research studies examining 2,121,580 articles across 31 specialties were included in the 

review. Eligible studies examined a median of 195 primary articles (IQR: 113-475), with a median 

publication year of 2015 (IQR: 2012-2018). Only eight studies (8%) were classified as low risk of bias. 

Useable IPD were assembled for 100 studies (2,121,197 articles), of which 94 datasets passed independent 

reproducibility checks. Meta-analyses revealed declared and actual public data availability rates of 8% (95% 

CI: 5-11%, 95% PI: 0-30%, k=27, o=700,054) and 2% (95% CI: 1-3%, 95% PI: 0-11%, k=25, o=11,873) 

respectively since 2016. Meta-regression indicated that only declared data sharing rates have increased 

significantly over time. For public code sharing, both declared and actual availability rates were estimated to 

be less than 0.5% since 2016, and neither demonstrated any meaningful increases over time. Only 33% of 

authors (95% CI: 5-69%, k=3, o=429) were estimated to comply with mandatory data sharing policies of 

journals. 

Conclusion: Code sharing remains persistently low across medicine and health research. In contrast, 

declarations of data sharing are also low, but they are increasing. However, they do not always correspond 

to the actual sharing of data. Mandatory data sharing policies of journals may also not be as effective as 

expected, and may vary in effectiveness according to data type - a finding that may be informative for 

policymakers when designing policies and allocating resources to audit compliance.  
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Data collection, analysis, and curation, each play 

integral roles in the research lifecycle across most 

scholarly fields, including medicine and health. It is 

also well recognised that archived research products 

like raw data and analytic code are valuable 

commodities to the broader medical research 

community. Among other things, greater access to raw 

data, analytic code and other materials that underly 

research findings provides researchers with 

opportunities to strengthen their methods, validate 

discovered findings, answer questions not originally 

considered by the data creators, accelerate research 

through the synthesis of existing datasets, and educate 

new generations of medical researchers [1]. While 

there are many valid challenges with sharing research 

materials (particularly navigating privacy 

considerations and time and resource burdens), in 

recognition of the benefits, funders and publishers of 

medical research have been carefully and continuously 

increasing the pressure on medical researchers over 

the last two decades to maximise the availability of 

such products for other researchers [2-6]. Recent 

examples include the United States government 

advising its federal funding agencies to update their 

public access policies before the end of 2025 to require 

that all federally funded research publications and 

supporting data are freely and immediately available 

[7]. 

While policy changes have fuelled optimism that data 

and code sharing rates in medicine will increase, 

important questions remain around what the culture of 

sharing is like currently, how it has evolved over time, 

how successful stakeholder policies are at instigating 

sharing, and when researchers are observed to share, 

how often useful data are made available. Many meta-

research studies in medicine have aimed to address 

these questions, however, most have been small in size 

and narrow in scope, focussing on specific research 

participants (e.g., human participants [8], animals [9]), 

data types (e.g., gene expression data [10], modelling 

data [11]), study designs (e.g., clinical trials [12], 

systematic reviews [13]), and outcomes (e.g., data and 
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code sharing declarations [14], data ‘FAIRness’ [15]). 

Therefore, the objectives of this review are to 

synthesise the findings of this research to establish an 

accurate picture of how common data and code sharing 

is in medicine, assess compliance with stakeholder 

policies on data and code availability, as well as 

explore what factors are associated with sharing. We 

anticipate that the findings of this review will highlight 

several areas for future policymaking and meta-

research activities. 

METHODS 

Protocol and registration 

We registered our systematic review on May 28th, 

2021 on the Open Science Framework (OSF), prior to 

commencing the literature search [16], and 

subsequently prepared a detailed review protocol [17]. 

We report seven deviations from the protocol in 

Supplementary Table 1. As the research subjects of 

interest were scientific publications, ethics approval 

was not required for this research. The findings of this 

review are reported in accordance with the Preferred 

Reporting Items for Systematic reviews and Meta-

Analyses (PRISMA) 2020 statement [18] and its IPD 

extension [19]. We summarise key aspects of the 

methods below; for further details, please refer to the 

review protocol [17].  

Eligibility criteria 

Any study in which researchers investigated the 

prevalence of, or factors associated with, data or code 

sharing (termed “meta-research studies”) across a 

sample of published scientific articles presenting 

original medical or health-related research findings 

(termed “primary articles”) was eligible for inclusion 

in the review. No restrictions were placed on the 

publication location (e.g., preprint server, peer-

reviewed journal) or the format (e.g., conference 

abstract, research letter) of either group. Nor were 

restrictions placed on the strategy used to identify and 

select primary articles, the type of data assessed (e.g., 

trial data, review data) or the level of sharing assessed 

(e.g., partial versus complete sharing). Furthermore, 

we included studies that used either manual or 

automated methods to assess data and code sharing 

provided it involved some examination of the body 

text of sampled primary articles. Exclusion criteria for 
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this review included meta-research studies that 

investigated data or code sharing: as a routine part of 

a systematic review and IPD meta-analysis; among 

scientific articles outside of medicine and health; or 

via avenues other than journal articles (e.g., clinical 

trial registries).  

Information sources and search strategy 

On July 1st, 2021, we searched Ovid MEDLINE, Ovid 

Embase, and the medRxiv, bioRxiv, and MetaArXiv 

preprint servers to identify potentially relevant studies 

indexed from database inception up to the search date. 

The full search strategies, bibliographic citation files, 

as well as snapshots of the medRxiv and bioRxiv 

databases are available on the project’s OSF page [20]. 

Details on the development of the search strategy are 

outlined in the review protocol [17]. In addition to the 

database searches, other preprint servers (PeerJ, 

Research Square) and relevant online resources (Open 

Science Framework, aspredicted.org and 

connectedpapers.com) were searched to locate 

additional published, unpublished and registered 

studies of relevance to the review. Backward and 

forward citation searches of meta-research studies 

meeting the inclusion criteria were also performed 

using citationchaser on August 30th, 2022 [21]. 

Finally, potentially relevant studies recommended by 

colleagues, discovered through collaborations, and 

seen at meta-research conferences were also screened 

for eligibility. No language restrictions were imposed 

on any of the searches. 

Study selection 

Results from all main database and preprint server 

searches were imported into Covidence (Covidence 

systematic review software, Veritas Health Innovation, 

Melbourne, Australia) and deduplicated. For the 

preprint searches, if a version of an eligible meta-

research study was discovered in a peer-reviewed 

journal, it was included in place of the original preprint. 

All titles, abstracts, and full-text articles were then 

screened for eligibility in Covidence by DGH and 

another author (HF, ARF, or KH) independently, with 

disagreements resolved via discussion between 

authors, or by a third author if necessary (MJP). All 

literature identified by the additional preprint and 

online searches were screened against the eligibility 

criteria by one author (DGH). When multiple reports 

on the same dataset were identified, we used data from 

the most up-to-date report. A spreadsheet containing 

all screening decisions is available on the project’s 

OSF page [20]. 

Data collection 

Once a meta-research study was found to be eligible, 

one member of the team (DGH) determined whether 

sufficiently unprocessed article-level IPD and article 

identifiers (e.g., digital object identifiers (DOIs), 

PubMed identifiers (PMIDs), article titles) for the 

included primary articles were publicly available. For 

meta-research studies where complete IPD were not 

available (i.e., no data or partial data had been shared), 

the corresponding author was contacted and asked if 

they would provide the complete or remaining IPD. If 

meta-research authors responded that they were either 

unable or unwilling to share, we then asked whether 

they would calculate the summary statistics necessary 

for the review. For meta-research authors who were 

unable or refused to provide summary data for the 

review, did not respond, or did not provide the 

promised IPD by the census date of December 31st, 

2022, summary data reported in the meta-research 

papers were independently extracted by two authors 

(DGH; MJP), with discrepancies resolved through 

discussion. A list of all the data that were extracted 

from each meta-research study for the review can be 

found on the project’s OSF page [20]. 

Assessments of risk of bias 

The risk of bias of included meta-research studies was 

assessed using a tool designed based on methods used 

in previous Cochrane Methodology reviews [22, 23]. 

The tool included four domains: i) sampling bias, ii) 

selective reporting bias, iii) article selection bias, and 

iv) the risk of errors in the accuracy of reported 

estimates (Supplementary Table 2). Each meta-

research article was independently assessed by DGH 

and one other author (KH or ARF), with discrepancies 

resolved via discussion, or a third author (MJP) if 

necessary. Where domains were rated as unclear, 

clarification was sought from meta-research authors. 

Given the purpose of the tool was to differentiate 

between studies at a high risk of bias from those with 

a low risk, a study was only classified as low risk of 

bias if all criteria were assessed as low risk. We did 

not assess the likelihood of publication bias affecting 
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the findings of the review (e.g., using a funnel plot), 

nor did we assess certainty in the body of evidence, as 

available methods are not well suited for methodology 

reviews such as ours. 

IPD integrity checks and harmonisation 

When complete IPD were obtained for a meta-research 

study, one author (DGH) performed the following 

integrity checks prior to harmonising the data: i) an 

evaluation of the completeness of the dataset (e.g., 

whether any variables or values were missing), ii) a 

check of the validity of the dataset (e.g., presence of 

out-of-range values, incorrectly coded values) and iii) 

a check that the overall sample size and data and/or 

code sharing rates as stated in the report could be 

exactly reproduced (note that the checks for an 

included study led by the first author of this review 

(Hamilton et al 2022 [15]) were performed by another 

author (HF)). In instances where any of these checks 

failed, clarification was sought from the meta-research 

authors. We also checked for, and removed duplicate 

rows in datasets (i.e., checked if the same primary 

articles were sampled more than once). Additionally, 

for meta-research studies that sampled primary articles 

across multiple scientific disciplines, Digital Science’s 

Dimensions platform (https://app.dimensions.ai) was 

used to identify which were medical and health-related 

using their automated 2020 Australia and New 

Zealand Standard Research Classification (ANZSRC) 

Fields of Research (FOR) Codes classification service 

[24]. When primary articles were not indexed in 

Dimensions, the first author (DGH), who has close to 

a decade of experience working as an allied health 

professional, clinical trial coordinator and medical 

researcher, classified articles as being medical or 

health-related or not. Furthermore, for meta-research 

studies with sample sizes less than 500, primary 

articles not assigned medical FOR codes by the 

Dimensions platform were manually reviewed and 

recoded if deemed false negatives. 

Once the IPD checks were complete, one author 

(DGH) then manually extracted and reclassified 

required data in line with the study’s codebook. When 

all available IPD had been assembled and harmonised, 

datasets were then merged and the extent of 

overlapping primary articles between meta-research 

studies was assessed for each outcome of interest by 

checking for duplicate DOIs and PMIDs in R (R 

Foundation for Statistical Computing, Vienna, Austria, 

v4.2.1) using the duplicated function. We decided to 

keep data originating from primary articles that were 

flagged as having been sampled by more than one 

meta-research study only for the study with the highest 

score for the fourth risk of bias domain (i.e., lowest 

risk of errors in the accuracy of reported estimates), or 

in the event of a tie, the overall lowest risk of bias 

judgement, or the most recent publication date. More 

details on the scoring system developed to resolve 

overlap can be found on the project’s OSF page. For 

eligible meta-research studies where summary data 

were only available from study reports, but primary 

study identifiers were known, information from 

overlapping primary articles was removed from the 

meta-research studies that shared complete IPD. For 

meta-research studies where both primary study 

identifiers and article-level data were unavailable, we 

assessed the likelihood of overlap with other meta-

research studies by comparing: i) outcome data 

collected, ii) primary article date range and iii) 

sampled journals. 

Outcomes of interest 

The following four pre-specified outcome measures 

for both research data and code availability were of 

primary interest to the review:  

i) the prevalence of primary articles where authors 

declared that their data or code are publicly 

available (‘declared public availability’);  

ii) the prevalence of primary articles in which meta-

researchers verified that data or code were indeed 

publicly available (‘actual public availability’);  

iii) the prevalence of primary articles where authors 

declared their data or code are privately available 

(i.e., “available on request” statements) 

(‘declared private availability’), and;  

iv) the prevalence of primary articles in which meta-

researchers confirmed that study data or code 

were released in response to a private request 

(‘actual private availability’).  

‘Actual public availability’ represented the results of 

the most intensive investigation of an availability 

statement by meta-researchers (e.g., checks that 

reported URLs were functional, that data could be 
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freely downloaded and opened, that datasets were 

complete, that reported results could be independently 

reproduced). We also required data to be immediately 

available for it to be classified as actually publicly 

available (i.e., did not accept ‘intention to share’ and 

‘under embargo’ statements), and took the strictest 

definition of actual availability when alternatives were 

available (i.e., if a study assessed both partial and 

complete sharing, we took the results of the ‘full’ data 

availability). Further information on how we defined 

‘actual availability’ as well as all our other outcome 

measures can be found in the review protocol and the 

study codebook on the project’s OSF page [20].  

In addition to the primary outcome measures, we also 

included eight secondary outcome measures:  

i) the prevalence of formalised sections within 

primary articles dedicated to addressing data 

and/or code availability;  

ii) the association between the presence of a data 

availability statement and public sharing of data 

in primary articles;  

iii) the association between the presence of a code 

availability statement and public sharing of 

research code in primary articles;  

iv) the association between a journal’s policy on data 

sharing (any ‘mandatory posting’ policy versus 

other policy) and public sharing of research data 

in primary articles;  

v) the association between a journal’s policy on data 

sharing (‘make available on request’ policy 

versus other non-mandatory policy) and private 

sharing of research data in primary articles;  

vi) the association between study design (clinical 

trial versus non-trial) and public sharing of data 

in primary articles; 

vii) the association between the subjects of the 

research (human participants versus non-human 

participants) and public sharing of data in primary 

articles, and; 

viii) the association between public sharing of 

research data and the sharing of code in primary 

articles. 

Statistical analysis 

A ‘two-stage’ approach to IPD meta-analysis was used, 

whereby summary statistics were computed from 

available IPD, abstracted from included study reports, 

or obtained directly from meta-research authors, then 

pooled using conventional meta-analysis techniques. 

We calculated proportions and 95% confidence 

intervals (CI) for all prevalence outcomes. Where 

possible, we calculated risk ratios with 95% 

confidence intervals for all association outcomes. For 

primary outcome measures, we considered the 

methodological characteristics of the included studies 

to determine which were appropriate for aggregation 

and decided that we would pool studies that met the 

following criteria: i) did not use non-random sampling 

methods, ii) did not restrict primary article evaluations 

to specific journals, preprint servers, funders, 

institutions, or data types, and iii) reported outcome 

data on primary articles published after 2016. These 

criteria were specifically chosen to minimise biasing 

of estimates (i.e., reduce upward or downward biasing 

of pooled estimates due to the overrepresentation of 

studies of journals with mandatory sharing policies, 

certain study designs, etc), and to provide a modern 

picture of data and code sharing (i.e., an estimate of 

sharing since the introduction of the FAIR principles 

[25]). The same criteria were applied to secondary 

outcome measures and subgroup analyses unless 

specified otherwise.  

We pooled prevalence estimates by first stabilising the 

variances of the raw proportions using arcsine square 

root transformations, then applied random-effects 

models using the Hartung-Knapp-Sidik-Jonkman 

method which has shown to be preferable to the 

DerSimonian and Laird method when including a 

small number of studies, and when including studies 

with differing sample sizes [26]. The same approach 

was also used for meta-analyses of risk ratios; however, 

no transformations were used, and the ‘treatment arm’ 

continuity correction proposed by Sweeting et al 2004 

[27] was applied to studies reporting zero events in a 

single group (double zero-cell events were excluded 

from the main analysis). Statistical heterogeneity was 

assessed via visual inspection of forest plots, the size 

of the I2 statistics and their 95% confidence intervals, 

and via 95% prediction intervals (PI) where more than 

four studies were included. Data deduplication, 

preparation, analysis and visualisation was performed 

in R (R Foundation for Statistical Computing, Vienna, 

Austria, v4.2.1) using the meta (v5.5) [28], metafor 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.23287607doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23287607
http://creativecommons.org/licenses/by-nc/4.0/


DG HAMILTON1,2, K HONG3, H FRASER1, A ROWHANI-FARID3, F FIDLER1,4 & MJ PAGE5 6 

(v3.8) [29] and altmeta (v4.1) [30] packages. Risk of 

bias plots were created using robvis [31]. The Python 

(v3.10.7) client Dimcli (v0.9.9.1) was used to access 

Dimensions Analytic’s API and retrieve required 

primary article meta-data (e.g., DOIs, PMIDs, 

ANZSRC FOR codes). All R and Python scripts are 

publicly available on the project’s OSF page [20].  

Subgroup and sensitivity analyses 

We planned to conduct the following subgroup 

analyses to investigate whether prevalence estimates 

of public data sharing differed depending on i) the data 

type, or whether primary articles: ii) were subject to 

any mandatory sharing policies by the funders of the 

research or not, or iii) posted a preprint prior to 

publication or not. Furthermore, we also investigated 

the influence of publication year on data and code 

sharing rates by fitting three-level mixed-effects meta-

regression models on arcsine-transformed proportions. 

A multi-level model was used to account for 

dependencies between effect estimates due to some 

studies contributing multiple yearly estimates. Due to 

substantially differing levels of variation between the 

pre- and post-2014 periods, to preserve assumptions of 

homoscedasticity we only modelled changes in 

sharing rates from 2014 onwards.  

We also performed sensitivity analyses to assess 

changes in pooled estimates when excluding meta-

research studies that i) were rated as high or unclear 

risk of bias, ii) did not provide IPD for the review, iii) 

were at high risk of overlap with other meta-research 

studies, iv) did not assess compliance with the FAIR 

principles, v) did not manually assess primary articles 

and vi) did not examine COVID-19-related research. 

Finally, we also examined differences in pooled 

proportions and risk ratios when using generalised 

linear mixed models (GLMMs) to aggregate findings, 

which have been specifically recommended in 

situations when the probability of the event of interest 

is rare [32,33]. Such methods also circumvent the need 

to add arbitrary continuity corrections to zero events, 

which can produce biased results when most cases are 

zero events, and group sample sizes are highly 

imbalanced [27]. For meta-analyses of risk ratios, we 

report the results of analyses both excluding and 

including studies with no events in both groups. 

RESULTS 

Study selection and IPD retrieval 

The search of Ovid MEDLINE, Ovid Embase and the 

medRxiv, bioRxiv and MetaArXiv preprint servers, 

once deduplicated, identified 4,952 potentially eligible 

articles for the review, of which 4,736 were excluded 

following the screening of titles and abstracts. Of the 

remaining 216 articles, full-text articles were retrieved 

for all papers, and 70 were adjudicated as eligible for 

the review. Furthermore, the additional searches 

revealed another 44 eligible reports for inclusion, 

resulting in a total of 114 eligible meta-research 

studies examining a combined total of 2,254,031 

primary articles for the review [8-15,34-142].  

Following confirmation of eligibility, we searched for 

publicly available IPD for the 114 meta-research 

studies. Of these studies, 70 had already made 

complete IPD publicly available (61%), 20 studies had 

posted partial IPD (18%), and 24 had not publicly 

shared any IPD (21%), with three of the latter articles 

declaring upfront that IPD could not be shared. Of the 

70 complete datasets that were originally posted 

publicly, 60 (86%) were deposited into data 

repositories, 36 (51%) had a DOI, 26 (37%) provided 

a data dictionary, and 14 (20%) applied a license to the 

data. Most data were archived in Microsoft Excel 

(N=33, 47%) or CSV (N=25, 36%) formats, with a 

minority of meta-researchers storing their data in 

PDFs (N=5, 7%) and Microsoft Word documents 

(N=3, 4%).  

Of the 40 meta-research studies that had not posted 

complete IPD, did not state in the study report that data 

could not be released, and had publicly available 

contact information, we contacted all authors and 

asked them to share article-level IPD for the review. 

We received 32 responses to our 40 requests (80%), of 

which 20 meta-researchers (50%) shared the required 

IPD by the census date. The median time taken to 

receive IPD was 7 days (range: 0-216 days). For the 

20 articles where complete IPD was not assembled, 10 

studies had useable IPD and/or summary data. The 

nine studies that were eligible for the review but could 

not be included in the quantitative analysis are outlined 

in Supplementary Table 3. They are also included in 

relevant forest plots, without providing usable data for 

the meta-analysis. Ultimately, 108 reports of 105 
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meta-research studies collecting information from a 

total of 2,121,580 primary articles were included in the 

quantitative analysis [8-15,34-133], with complete 

IPD available for 90 studies, a combination of partial 

IPD and summary data for 10 studies, and only 

summary data available for 5 studies. Refer to Figure 

1 for the full PRISMA flow diagram. 

Study characteristics 

Summary information on the 105 meta-research 

studies that are included in the quantitative analysis of 

this review is outlined in Table 1. Eligible meta-

research studies examined a median of 195 primary 

articles (IQR: 113-475; sample size range: 10-

1,475,401), with a median publication year of 2015 

(IQR: 2012-2018, publication date range: 1781-2022). 

Meta-research studies assessed data and code sharing 

across 31 specialties. Most commonly, studies were 

interdisciplinary, examining several medical fields 

simultaneously (N=17, 16%), followed by 

biomedicine and infectious disease (each N=10, 10%), 

general medicine (N=9, 9%), addiction medicine, 

clinical psychology, and oncology (each N=5, 5%). 

Eleven studies (10%) examined COVID-19-related 

articles. Additionally, most meta-research studies did 

not set any restrictions concerning data types (N=63) 

or journals of interest (N=56). However, when data 

restrictions were imposed, they were most often 

limited to trial data (N=16), sequence data (N=6), gene 

expression data and review data (each N=5). When 

journal restrictions were incorporated, the scope was 

most often limited to papers published in ‘high impact’ 

journals (variably defined by authors) (N=18), one or 

two journals of interest (N=10 and 5 respectively), or 

multiple journals subjectively deemed relevant to a 

field (N=7). Of the 105 meta-research studies, 31 and 

4 also evaluated compliance with journal data and 

code sharing policies, respectively. However, none of 

the meta-research studies examined compliance with 

policies instituted by medical research funders or 

institutions. 

In total, 95 and 58 meta-research studies, respectively, 

examined the prevalence of public data and code 

sharing in primary articles, with five studies 

examining how compliant publicly shared data was 

with the FAIR principles. In contrast, 10, 4 and 2 

studies, respectively, assessed whether study data,  

code, or both data and code could be retrieved in 

response to a private request (i.e., actual private 

availability). Of these 16 studies, the stated reasons 

underpinning requests were: to perform a re-analysis 

(N=6), for a meta-research study (N=5), to populate a 

registry (N=1), to validate their findings (N=1) and for 

interest and coursework (N=1), with the remaining 

two not reporting what reason they gave. Of the 14 

meta-research articles that shared the request 

 

N %

Primary articles examined

   Median (IQR) 195 113 to 475

Primary article publication year

   Median (IQR) 2015 2012 to 2018

Specialty

   Multidisciplinary 17 16%

   Biomedicine 10 10%

   Infectious diseases 10 10%

   General medicine 9 9%

   Addiction medicine 5 5%

   Clinical psychology 5 5%

   Oncology 5 5%

Outcome of interest

   Data sharing only 46  44%

   Code sharing only  5  5%

   Data and code sharing  54  51%

Coding method

   Manual 82 78%

   Automated 8 8%

   Both manual and automated 3 3%

   Unclear 7 7%

Data restrictions*

   No restrictions 63 60%

   Trial data 16 15%

   Sequence data 6 6%

   Systematic review data 5 5%

   Microarray data 5 5%

   Other 12 11%

Journal restrictions

   No restrictions 56 53%

   High impact 17 16%

   Single journal 10 10%

   Hand-selected 7 7%

   Preprint server(s) 5 5%

   Other 10 10%

*Percentages do not add up to 100% due to multiple answers being possible

Table 1. Characteristics of the included studies (N=105). The 

underlying data can found be at https://osf.io/dyqjw.

Table 1. Characteristics of the included studies (N=105). 

The underlying data can found be at https://osf.io/ca89e.
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   Figure 1. PRISMA 2020 and PRISMA-IPD flow diagram. 
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templates they used, 12 meta-researchers provided 

primary article authors with an honest account of why 

they wished to source data and/or code, whereas two 

used deception. 

Risk of bias assessment 

The overall and individual results of the risk of bias 

assessments are reported in Supplementary Figures 1 

& 2. Most eligible meta-research studies were judged 

favourably on the first risk of bias domain (sampling 

bias), having randomly sampled primary articles from 

populations of interest, or assessed all eligible articles 

identified by their literature searches (N=95, 90%). In 

contrast, a minority of meta-research studies were 

judged to be at low risk of selective reporting bias 

(N=45, 42%) and article selection bias (N=24, 23%) 

(i.e., shared study protocols and information on which 

primary articles were excluded and why). Similarly, 

only half of meta-research studies (N=54, 51%) were 

judged to have used a primary article coding strategy 

considered to be at low risk of errors. Ultimately, only 

eight studies (8%) were classified as low risk of bias 

for all four domains. 

IPD integrity checks 

In total, 100 meta-researchers’ datasets (90 complete 

and 10 partial) were obtained for the review. For the 

90 complete datasets, sample sizes, as well as data 

and/or code sharing rates reported in study reports, 

were reproduced in all but five cases (94%), with the 

reasons for irreproducibility being due to simple 

typographical errors in the report (N=2), unclear data 

filtering steps (N=2) and an error in the meta-

researchers’ code (N=1). For the ten partial datasets, 

we were able to independently verify sample sizes and 

sharing estimates for all but one case due to the receipt 

of an incorrect version of the data. 

Of the 105 included meta-research studies examining 

2,121,580 primary articles, we were able to retrieve 

identifying details (i.e., DOIs, PMIDs) for 2,121,197 

primary articles (99.98%) from 100 studies (95%). 

After the removal of non-medical articles and 

duplicate articles observed within each of the 100 

datasets, we were left with 1,849,828 primary articles 

with which to explore the extent of overlap between 

eligible studies. Of these 1,849,828 primary articles, 

we observed that 704,310 (38%) were flagged as 

having been sampled by more than one included meta-

research study (some articles being repeatedly 

sampled by up to five studies). Notably, articles 

examined by the three largest studies by Serghiou et al 

[14], Colavizza et al [43] and Federer et al [50] were 

implicated in 681,595 of the 704,310 flagged cases 

(96.77%). Further, for some studies, all sampled 

primary articles had been completely assessed by other 

included studies (e.g., Sumner et al [122], Strcic et al 

[121]), whereas others demonstrated zero overlap (e.g. 

Rufiange et al [9]) (see Supplementary Figure 3 for 

further details).  

For the five meta-research studies where identifying 

details for the primary articles were unavailable, only 

a single study was deemed to be at high risk of overlap 

[73]. Furthermore, for the nine meta-research studies 

excluded from the quantitative analysis, 127,985 of the 

132,451 observations (97%) would have come from 

two meta-research studies of articles published in 

PLOS One, which would have had a high risk of 

overlap with the included studies by Serghiou et al 

[14], Colavizza et al [43] and Federer et al [50]. Given 

the likelihood of high overlap, our inability to include 

these nine meta-research studies in the quantitative 

analyses is unlikely to have influenced our results. 

Public data and code sharing rates 

Combination of eligible studies in a random-effects 

meta-analysis suggests that 8% of medical articles 

published since 2016 declare data to be publicly 

available (95% CI: 5-11%, 95% PI: 0-30%, k = 27 

studies, o = 700,054 primary articles, I2 = 96%; Figure 

2) and 2% actually share data publicly (95% CI: 1-3%, 

95% PI: 0-11%, k = 25, o = 11,873, I2 = 90%; Figure 

3). Despite the included meta-research studies 

following similar methodologies, we do note high 

statistical heterogeneity for both analyses, with 

influence analyses showing that the greatest 

contributors to between-study heterogeneity for 

declared data sharing were the high precision findings 

of Uribe et al [125] and Serghiou et al [14], who used 

automated coding strategies. For actual data sharing, 

the high estimate by Hamilton et al [15], who assessed 

partial sharing of data rather than complete, was also a 

large contributor to between-study heterogeneity.  

For public code sharing, declared and actual code 

sharing rates since 2016 are estimated to be 0.3% (95% 

CI: 0-1%, 95% PI: 0-8%, k = 26, o = 707,943, I2 = 
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Figure 2. Declared public data sharing rates since 2016. 

Figure 3. Actual public data sharing rates since 2016. 
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89%; Figure 4) and 0.1% (95% CI: 0-0.3%, 95% PI: 

0-1%, k = 21, o = 3,843, I2 = 52%; Figure 5), 

respectively. Like declared data sharing rates, despite 

similar methodologies, declared code sharing 

estimates were also associated with high statistical 

heterogeneity. Again, influence analyses revealed high 

precision estimates from Uribe et al [125] and 

Serghiou et al [14], in addition to the high estimate by 

Kobres et al [78], who evaluated the sharing of model 

code from Zika virus forecasting and prediction 

research, were the biggest contributors to between-

study heterogeneity. 

Private data and code sharing rates 

In contrast to declarations of public availability, 

‘available upon request’ declarations were not 

commonly observed in primary articles published 

since 2016 for data (2%, 95% CI: 1-4%, 95% PI: 0-

10%, k = 23, o = 3,058, I2 = 80%) or code (0%, 95% 

CI: 0-0.1%, 95% PI: 0-0.5%, k = 22, o = 2,825, I2 = 

0%) (refer to Supplementary Figures 4 & 5 for forest 

plots). For actual private data and code availability 

rates, we could not combine the findings of eligible 

meta-research studies due to methodological 

differences, particularly in journal restrictions (i.e., 

policy differences), as well as the type of data being 

requested, both of which are explored via subgroup 

analyses below.  

Overall, we observed that success rates in privately 

obtaining data and code from authors of published 

medical research ranged between 0-37% (k = 12, I2 = 

88%) and 0-23% (k = 5, I2 = 94%) respectively (Figure 

6). However, we note that when authors who declared 

data and code to be ‘available on request’ were asked 

for these products by meta-researchers, the upper 

limits of success increased to 100% (k = 7, I2 = 83%) 

and 43% (k = 4, I2 = 86%) respectively. In comparison, 

when requests for data and code were made to authors 

who did not include a statement concerning 

availability, success rates dropped to between 0-30% 

(k=7, I2 = 65%) and 0-12% (k=3, I2 = 89%) 

respectively. Lastly, and unsurprisingly, we also note 

that attempts to obtain data from authors explicitly 

declaring it to be unavailable were associated with a 

0% sharing rate (k = 2, I2 = 0%). See Supplementary 

Figure 6 for the full results. Interestingly, we also 

noted during the IPD deduplication process that two of 

four primary article authors who were asked to share 

data by two independent meta-research teams on two 

separate occasions responded differently, providing 

some anecdotal evidence that requestor and requestee 

characteristics likely also play a role in success. 

Secondary outcomes 

Insufficient data were available to evaluate the first 

three secondary outcome measures (i.e., outcomes 

concerning data and code availability statements), due 

to only a single study recording information about both 

the prevalence of statements and journal policies 

across a random sample of articles [15]. Similarly, 

very few meta-research studies recorded information 

on compliance with multiple data sharing policies 

across random samples of primary articles. This 

review was therefore also unable to evaluate the fourth 

and fifth secondary outcomes measures (i.e., direct 

comparison of mandatory and ‘share on request’ 

policies with non-mandatory data sharing policies).  

However, for journals implementing mandatory data 

sharing policies, we estimate that 65% of primary 

articles (95% CI: 36-88%, 95% PI: 2-100%, k = 5, o = 

28,499, I2 = 99%) declared data to be publicly 

available and 33% actually shared data (95% CI: 5-

69%, k = 3, o = 429, I2 = 93%). In contrast, we estimate 

the success rate for retrieving data from authors 

subject to ‘share on request’ policies to be 21% (95% 

CI: 4-47%, k = 3, o = 166, I2 = 30%). For comparison, 

declared and actual data sharing rates under 

‘encourage’ systems are estimated to be 17% (95% CI: 

0-62%, k = 6, o = 1,010, I2 = 98%) and 8% (95% CI: 

0-48%, k = 3, o = 284, I2 = 90%) respectively. 

Similarly, declared and actual sharing rates for articles 

published in journals with no sharing policy are 

estimated to be 17% (95% CI: 0-59%, k = 4, o = 686, 

I2 = 95%) and 4% (95% CI: 0-95%, k = 2, o = 198, I2 

= 83%) respectively. Refer to Supplementary Figure 7 

for the results of declared and actual public code 

sharing rates according to journal policies.  

We were able to assess the last three secondary 

outcomes. Our data suggest that triallists are 31% less 

likely to declare data are publicly available in 

comparison to non-triallists (RR: 0.69, 95% CI: 0.45-

1.07, 95% PI: 0.12-4.13, k = 23, I2 = 0%). However, 

when examining actual data sharing, neither group 

appears more or less likely to share their data than the 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.23287607doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23287607
http://creativecommons.org/licenses/by-nc/4.0/


DG HAMILTON1,2, K HONG3, H FRASER1, A ROWHANI-FARID3, F FIDLER1,4 & MJ PAGE5 12 

 

 

  
Study

Random effects (GLMM method)

Random effects (HKSJ method)

Prediction interval

Heterogeneity: I
2
 = 89%, t

2
 = 0.01, p < 0.01

Evans 2019

Fladie 2019a

Hardwicke 2021

Johnson 2019

Rauh 2020

Rauh 2022

Sherry 2020

Wallach 2018

Walters 2019

Wright 2020

Anderson 2019

Ascha 2022

Hughes 2022

Johnson 2021

Rauh 2021

Sofi−Mahmudi 2022

Uribe 2022

Serghiou 2021a

Anderson 2020

Smith 2020

Serghiou 2021b

Fladie 2019b

Adewumi 2020

Okonya 2020

Hamilton 2022

Kobres 2019

Source

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

Paper

Coding

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Auto

Both

Manual

Manual

Manual

Auto

Manual

Manual

Manual

Manual

Manual

ROB

High

High

Low

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

Events

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

1

1

1

5732

1

2

1

10

21

Total

707943

133

121

49

103

168

113

140

52

116

108

83

159

122

128

129

11

7502

207

150

138

697532

106

154

72

274

73

0 0.1 0.2 0.3 0.4 0.5

Proportion

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

0.01

0.04

0.29

95%−CI

[0.00; 0.01]

[0.00; 0.01]

[0.00; 0.08]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.07]

[0.00; 0.04]

[0.00; 0.02]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.07]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.04]

[0.00; 0.02]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.26]

[0.00; 0.00]

[0.00; 0.03]

[0.00; 0.04]

[0.00; 0.04]

[0.01; 0.01]

[0.00; 0.05]

[0.00; 0.05]

[0.00; 0.07]

[0.02; 0.07]

[0.20; 0.40]

(random)

−−

100.0%

4.0%

3.9%

3.2%

3.8%

4.1%

3.9%

4.0%

3.2%

3.9%

3.9%

3.7%

4.1%

3.9%

4.0%

4.0%

1.5%

4.7%

4.2%

4.1%

4.0%

4.7%

3.8%

4.1%

3.5%

4.3%

3.6%

Weight

Reported public code sharing (Since 2016; No restrictions)

Study

Random effects (GLMM method)

Random effects (HKSJ method)

Prediction interval

Heterogeneity: I
2
 = 52%, t

2
 < 0.01, p < 0.01

Evans 2019

Fladie 2019a

Hardwicke 2021

Johnson 2019

Okonya 2020

Rauh 2020

Rauh 2022

Sherry 2020

Smith 2020

Walters 2019

Wright 2020

Anderson 2019

Ascha 2022

Hughes 2022

Johnson 2021

Rauh 2021

Anderson 2020

Fladie 2019b

Riedel 2020

Adewumi 2020

Louderback 2022

Source

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

IPD

Coding

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

Manual

ROB

High

High

Low

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

High

Events

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

10

2

7

Total

3843

133

121

49

103

72

168

113

140

138

116

108

83

159

122

128

129

150

106

1052

154

499

0 0.02 0.04 0.06 0.08 0.1

Proportion

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.01

0.01

0.01

0.01

95%−CI

[0.00; 0.01]

[0.00; 0.00]

[0.00; 0.01]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.07]

[0.00; 0.04]

[0.00; 0.05]

[0.00; 0.02]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.04]

[0.00; 0.02]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.03]

[0.00; 0.04]

[0.00; 0.05]

[0.01; 0.02]

[0.00; 0.05]

[0.01; 0.03]

(random)

−−

100.0%

4.6%

4.4%

2.3%

3.9%

3.1%

5.3%

4.2%

4.8%

4.7%

4.3%

4.1%

3.4%

5.2%

4.4%

4.5%

4.6%

5.0%

4.0%

9.9%

5.1%

8.4%

Weight

Actual public code sharing (Since 2016; No restrictions)

Figure 4. Declared public code sharing rates since 2016. 

Figure 5. Actual public code sharing rates since 2016. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.23287607doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23287607
http://creativecommons.org/licenses/by-nc/4.0/


REVIEW OF DATA AND CODE SHARING RATES IN MEDICINE 13 

other (RR: 0.96, 95% CI: 0.53-1.72, 95% PI: 0.15-5.95, 

k = 19, I2 = 0%) (see Figure 7). We also estimate that 

researchers using data derived from human 

participants are also 35% less likely to declare data to 

be publicly available than researchers working with 

non-human participants (RR: 0.65, 95% CI: 0.42-0.99, 

95% PI: 0.12-3.61, k = 19, I2 = 57%). However, this 

decreased likelihood became more pronounced when 

examining actual data sharing rates (RR: 0.44, 95% 

CI: 0.24-0.81, 95% PI: 0.05-3.57, k = 16, I2 = 28%) 

(see Figure 8). Lastly, we estimate that researchers 

who declare that their data are publicly available are 

eight times more likely to declare code to be available 

also (RR: 8.03, 95% CI: 2.86-22.53, 95% PI: 0.33-

194.43, k = 12, I2 = 32%). Additionally, researchers 

who are verified to have made data available are 

estimated to be 42 times more likely than researchers 

who withheld data to share code as well (RR: 42.05, 

95% CI: 12.15-145.52, 95% PI: 0.94-1879.62, k = 7, 

I2 = 0%) (Supplementary Figure 8).  

Subgroup analyses 

Insufficient data were available to evaluate whether 

prevalence estimates of public data sharing differed 

depending on whether primary articles were subject to 

any mandatory sharing policies by the funders of the 

research or posted as a preprint prior to publication. 

However, we did observe that both declared and actual 

public data sharing rates significantly differed 

according to the data type, with the highest rates of 

actual data sharing occurring among authors working 

with sequence data (57%, 95% CI: 12-96%, k = 3, o = 

444, I2 = 86%), review data (6%, 95% CI: 0-77%, k = 

2, o = 372, I2 = 75%) then trial data (1%, 95% CI: 0-

6%, k = 3, o = 235, I2 = 6%) (Supplementary Figures 

9 & 10). Additionally, we also observed substantial 

differences in compliance rates with journal policies 

depending on the data type (Table 2). For example, 

estimates from a single study by Page et al [97] 

showed that actual data sharing rates among 

systematic review authors decreased from 28% for 

mandatory sharing policies, to 1% and 0% for 

encourage and no policy systems, respectively. 

Whereas in the context of sequence and gene 

expression data, decreases in actual sharing rates 

between mandatory policies (67% and 43%), 

encourage policies (57% and 43%) and no policy (46% 

and NA) were much less apparent. 

Finally, changes in public data and code sharing rates 

over time were investigated by fitting three-level 

mixed-effect meta-regression models to arcsine- 

Figure 6. Overall success rates of private requests for data and code from published medical research. (SEM = 

structural equation modelling, NA = Summary data not available) 
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Figure 7. Association between trial design and data sharing (actual availability). 

Figure 8. Association between research participants and data sharing (actual availability). 
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transformed data (refer to Supplementary Table 4 for 

the full results). Publication year was found to be a 

significant moderator of declared data sharing rates 

(β=0.017, 95% CI: 0.008-0.025, p=0.0001, between-

study I2 = 91%, within-study I2 = 9%) but not actual 

data sharing rates (β = 0.004, 95% CI: -0.005-0.013, p 

= 0.3589, between-study I2 = 75%, within-study I2 = 

3%). Specifically, we note an estimated rise in 

declared data sharing rates from 4% in 2014 (95% CI: 

2-6%, 95% PI: 0-18%) to 9% in 2020 (95% CI: 6-12%, 

95% PI: 0-26%). Refer to Figure 9 for a bubble plot 

comparing declared data sharing rates and actual 

sharing rates over time. Comparatively, both declared 

and actual code sharing rates did not appear to have 

meaningfully increased over time. 

Sensitivity analyses 

The results of the sensitivity analyses of the primary 

outcomes are reported in Table 3. For public data and 

code sharing outcomes, meta-analysis of prevalence 

rates using GLMMs did not result in any substantial 

changes to combined estimates in comparison to the 

standard inverse-variance aggregation methods. 

Similarly, limiting analyses to meta-research studies in 

which authors manually coded articles (i.e., removal 

of meta-research studies that used automated or 

unclear coding methods) did not result in any 

meaningful changes. When limiting analyses to meta-

research studies where summary data were only 

derived from available IPD, no changes were observed 

to the declared data availability analysis. Insufficient 

data were available to evaluate whether findings from 

meta-research studies that assessed compliance with 

FAIR or were classified as low risk of bias resulted in 

meaningful changes to pooled estimates. Similarly, 

with respect to the impact of overlapping primary 

articles, removing the only meta-research study that 

was deemed to be at risk of overlapping with other 

% 95% CI 95% PI k I
2 % 95% CI 95% PI k I

2

No data restrictions

   No policy 17%* 0-59% NA 4 95% 4%* 0-95% NA 2 83%

   Encourage policy 17%* 0-62% 0-100% 6 98% 8%* 0-48% NA 3 90%

   Mandatory policy 65%* 36-88% 2-100% 5 99% 33%* 5-69% NA 3 93%

Sequence data

   No policy - - - - - 46%* 0-100% NA 2 94%

   Encourage policy - - - - - 57%* 15-94% NA 2 0%

   Mandatory policy - - - - - 67%* 45-86% NA 3 70%

Gene expression

   No policy 23% 11-42% NA 1 NA - - - - -

   Encourage policy 30% 19-44% NA 1 NA 43% 31-55% NA 1 NA

   Mandatory policy 69%* 0-100% NA 2 93% 43%* 0-100% NA 2 53%

Trial data

   No policy 0%* 0-46% NA 2 72% - - - - -

   Encourage policy 0%* 0-5% NA 3 24% - - - - -

   Mandatory policy 55%* 40-70% NA 2 0% 56% 33-77% NA 1 NA

Systematic review data

   No policy 5%* 2-8% NA 2 0% 0% 0-4% NA 1 NA

   Encourage policy 3%* 0-100% NA 2 87% 1% 0-4% NA 1 NA

   Mandatory policy 62%* 0-100% NA 2 92% 28% 16-44% NA 1 NA

*Pooled estimate from random-effects meta-analysis

Actual data sharing
Policy

Table 2. Subgroup analysis: Declared and actual public data sharing rates according to data type and journal policy.

Declared data sharing

Table 2. Subgroup analysis: Declared and actual public data sharing rates according to data type and journal 

sharing policy.            

  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.22.23287607doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23287607
http://creativecommons.org/licenses/by-nc/4.0/


DG HAMILTON1,2, K HONG3, H FRASER1, A ROWHANI-FARID3, F FIDLER1,4 & MJ PAGE5 16 

included meta-research studies had no impact on any 

of the analyses. Lastly, we estimate declared and 

actual public data sharing rates for studies 

investigating COVID-19 (including both preprints or 

peer-reviewed publications) to be 9% (95% CI: 0-57%, 

k=3, o = 7,804, I2 = 95%) and 11% (95% CI: 0-76%, 

k=3, o = 934, I2 = 84%) respectively. Both of which 

compare favourably to our best estimates for declared 

(8%) and actual data sharing (2%) since 2016. The 

findings of the sensitivity analyses of secondary 

outcomes and subgroup analyses are reported in 

Supplementary Table 5. Most notably, we observed 

stronger associations between data and code sharing 

when including studies with no events in both groups. 

DISCUSSION 

Principal findings of the review 

In this, the first systematic review and IPD meta-

analysis of this topic, we used multiple data sources 

and analytic methods to investigate public and private 

availability of data and code in the medical and health 

literature. We also examined several factors associated 

with sharing. Aggregation of the findings of 27 meta-

research studies (which themselves examined 700,054 

primary articles) suggests that on average, only 8% of 

medical papers published since 2016 declare that their 

data are publicly available. Additionally, meta-

analysis of 25 meta-research studies (examining 

11,873 articles), suggests that only 2% of medical 

papers published since 2016 will have verifiably 

shared their data. In comparison, estimated declared 

and actual code sharing rates since 2016 were even 

lower, with both estimated to be less than 0.5%, with 

little changes over time. The prediction intervals from 

our analyses are also relatively precise, suggesting that 

we now have very good estimates of data and code 

sharing for medical and health research since 2016.  

In contrast to public availability rates, the overall 

success rate of privately obtaining data from authors 

of published medical research was observed to range 

between 0-37%. However, the range of success 

became much more variable when the scope was 

limited to requests made to authors who declared their 

data to be ‘available on request’. For private requests 

Figure 9. Bubble plot of declared (A) and actual (B) data sharing rates by publication year with fitted meta-

regression lines, 95% confidence intervals and 95% prediction intervals. Circles are scaled relative to the natural 

log of the sample size. 
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for code, overall success rates ranged between 0-23%, 

and increased to 0-43% when examining requests that 

were mad e to authors that declared code to be 

available on request. These findings are consistent 

with similar research conducted in fields outside of 

medicine [140, 143-147]. Finally, while data were not 

available to assess compliance with funder and 

institutional data sharing policies, we did observe 

varying compliance rates with journal data sharing 

policies, particularly depending on the data type. 

Review findings in context 

When examining similar research conducted in other 

scientific fields, declared data and code sharing rates 

in medicine appear to be higher than some fields (e.g., 

Humanities, Earth Sciences and Engineering [14]), but 

lower than others (e.g., Experimental Biology [144, 

148], Hydrology [149]). One common explanation for 

the differences between these sharing rates is that 

researchers in fields outside of the medical, health, 

behavioural and social sciences are more likely to 

make data available as they do not typically need to 

Table 3. Sensitivity analyses for primary outcomes. 

% 95% CI 95% PI k I
2 % 95% CI 95% PI k I

2

Public data sharing

   Low ROB - - - - - - - - - -

   Provided IPD 7% 5-10% 0-25% 26 96% 2% 1-3% 0-11% 25 90%

   Assessed FAIR 5% 0-50% NA 3 98% 4% 0-43% NA 3 98%

   Manually coded articles 9% 5-12% 0-31% 24 90% 2% 1-3% 0-12% 23 90%

   COVID-19 9% 0-57% NA 3 95% 11% 0-76% NA 3 84%

   HKSJ method 8% 5-11% 0-30% 27 96% 2% 1-3% 0-11% 25 90%

   GLMM method 7% 5-10% 1-34% 27 95% 2% 1-3% 0-15% 25 91%

Public code sharing

   Low ROB - - - - - - - - - -

   Provided IPD 0.2% 0-0.4% 0-2% 25 86% 0.1% 0-0.3% 0-1% 21 52%

   Assessed FAIR 0.9% 0-12% NA 3 93% - - - - -

   Manually coded articles 0.3% 0-1% 0-9% 23 82% 0.1% 0-0.3% 0-1% 21 52%

   COVID-19 9% 0-50% NA 3 82% 2% 1-3% NA 2 0%

   HKSJ method 0.3% 0-1% 0-8% 26 89% 0.1% 0-0.3% 0-1% 21 52%

   GLMM method 0.2% 0-1% 0-12% 26 91% 0.2% 0-0.9% 0-3% 21 0%

Private data sharing

   Low ROB 0% 0-2% NA 1 NA - - - - -

   Provided IPD 2% 1-4% 0-10% 23 80% - - - - -

   Assessed FAIR 12% 9-16% NA 1 NA - - - - -

   Manually coded articles 2% 1-4% 0-10% 23 80% - - - - -

   HKSJ method 2% 1-4% 0-10% 23 80% - - - - -

   GLMM method 2% 2-4% 0-12% 23 67% - - - - -

Private code sharing

   Low ROB 0% 0-2% NA 1 NA - - - - -

   Provided IPD 0% 0-0.1% 0-0.5% 22 0% - - - - -

   Assessed FAIR 0.7% 0-2% NA 1 NA - - - - -

   Manually coded articles 0% 0-0.1% 0-0.5% 22 0% - - - - -

   HKSJ method 0% 0-0.1% 0-0.5% 22 0% - - - - -

   GLMM method 0.1% 0-0.4% 0-0.5% 22 0% - - - - -

Table 3. Sensitivity analyses for primary outcomes.

Declared data sharing Actual data sharing

CI – confidence interval, PI – prediction interval, k – number of included studies, HKSJ – Hartung-Knapp-Sidik-Jonkman method for random-effects meta-analysis, GLMM – 

generalised linear mixed-models, ROB – risk of bias, IPD – individual participant data
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navigate privacy protections associated with the 

collection and sharing of data from human participants 

[150]. Our results support this notion, finding that 

medical researchers studying data from human 

participants were 66% less likely to actually make 

their data publicly available than those using data 

derived from non-human participants. This 

discrepancy has likely become more pronounced over 

time since the implementation of national and 

international protection laws imposing strong 

restrictions on the processing of personal medical data, 

like the US’ Health Insurance Portability and 

Accountability Act (HIPAA) and the European 

Union’s 2018 General Data Protection Regulation 

(GDPR) [151, 152].  

We also note examples of differences in data sharing 

rates between medical and non-medical researchers 

working with the same human-derived data types. For 

example, in the context of human mitochondrial and 

Y-chromosomal data, Anagnostou and colleagues 

[153] observed different data sharing rates between 

medical genetics (64%) and forensic genetics (90%) 

researchers. Follow up work by the same authorship 

team reported that the discrepancies between sharing 

rates may be due to differences in cultures concerning 

the value of openness and transparency, as opposed to 

burdens associated with navigating privacy constraints 

[153]. 

Potential implications of our findings 

Our findings raise some important implications for 

researchers and policymakers. At a journal 

policymaking level, our findings suggest that overall, 

blanket mandatory data sharing policies do not appear 

to work well in medicine and health [8,146,154]. Other 

research suggests suboptimal compliance with 

mandatory sharing policies may also apply to research 

funders as well [155]. Furthermore, we also note such 

policies may vary in their effectiveness according to 

the data type. For example, our findings suggest that 

mandatory sharing policies might be an effective 

measure in incentivising triallists and systematic 

reviewers to share data but may be less effective at 

motivating researchers working with sequence and 

gene expression data to share, given the high levels of 

sharing under non-mandatory policies. Consequently, 

it may be in policymakers’ interest to periodically 

audit compliance with such policies, possibly triaging 

audits by data type, and strengthening policing if 

substantial non-compliance is detected. Enforcement 

of policies in this setting could range from simple 

checks of common issues (e.g., that links are present 

and functional [156]), up to confirming that data can 

be freely downloaded and are well-annotated, 

complete and sufficiently unprocessed. 

Given average data sharing rates remain low, the 

medical research community could consider trialling 

additional incentives to increase the rate and quality of 

data sharing. For example, some commonly proposed 

strategies, beyond implementation of policies 

mandating sharing, include: open science badges, data 

embargoes, data publications, novel altmetrics, as well 

as changes to funding schemes to allow applicants to 

budget for data archival costs, and academic hiring and 

promotion criteria to reward sharing [87,157,158]. 

While such strategies have long been suggested by 

important medical research stakeholders such as the 

United States National Academy of Medicine [159], as 

previous research has noted, in medicine, there are 

more opinion pieces on the lack of incentives for 

researchers to share data than there have been 

empirical tests of these incentives. Consequently, the 

effectiveness of most of these strategies in medicine 

remain an open area of inquiry [157].  

Finally, we also observed that useful data are not only 

difficult to retrieve from medical researchers, but also 

difficult to retrieve from meta-researchers who are 

interested in studying the very topic of data sharing; a 

phenomenon that we are not the first to lament [160]. 

As such, the results of our review also extend concerns 

with regards to suboptimal archival practices, beyond 

the medical research community to the meta-research 

community as well. We have also uncovered 

substantial amounts of research duplication among 

meta-research studies examining open science 

practices in medicine and health. Consequently, we 

recommend that less research attention be paid to 

estimating overall data and code sharing rates in 

medicine, particularly between 2014 and 2020. 

Strengths and limitations of the study 

Our review has many methodological advantages over 

previous research in this area. Firstly, as data and code 

sharing are relatively rare events, IPD meta-analysis 
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allowed us to bring together many imprecise findings 

to yield more precise estimates. Furthermore, retrieval 

of useful IPD from 95% of included studies has 

allowed us to conduct several data quality checks, 

identify and remove substantial amounts of redundant 

assessments, perform subgroup analyses not possible 

when conducting a meta-analysis of aggregate data, as 

well as minimise the risk of data availability biases. 

Second, the meta-analyses of our primary and 

secondary outcomes included more studies than the 

average meta-analysis of prevalence and rare events 

[161,162], reducing the risk of power issues, as well as 

making our review the largest analysis of ‘actual’ data 

and code sharing rates to our knowledge. Similarly, we 

had more than double the recommended number of 

estimates per covariate for our meta-regression 

analyses, minimising the risk of issues such as 

overfitting [163]. Third, the review included 

robustness checks using generalised linear mixed 

models, which have been recommended over 

conventional meta-analyses of arcsine-transformed 

proportions [164]. The use of GLMMs also allowed 

for analysis of studies with zero events in both groups 

which can alter conclusions in some circumstances 

[165], as well as circumvent the need to add arbitrary 

continuity corrections when meta-analysing risk ratios 

which can bias results [27]. 

Nevertheless, our review was not without limitations. 

First, we may have missed relevant literature due to 

challenges in designing the search strategies (e.g., lack 

of controlled vocabulary, variations in the way meta-

research studies described themselves) and limiting 

searches to predominantly English-language databases. 

Second, we were unable to include the findings of nine 

studies due to the inability to source IPD or useable 

summary data. However, given 97% of primary 

articles examined by the excluded studies were at high 

risk of overlap with studies that were included in the 

analysis, we do not think their omission would have 

substantially altered our findings. Third, only one 

author performed IPD checks and harmonisation. 

Fourth, we assumed that authors will always declare 

in-text when data and/or code have been made publicly 

available, which previous studies have shown is not 

always the case [92]. However, this appears to be an 

uncommon practice, and therefore was unlikely to 

have significantly impacted our results. Finally, 

despite efforts to ensure studies were clinically 

homogeneous, our meta-analyses of proportions 

demonstrated high levels of statistical heterogeneity. 

However, given three-quarters of published meta-

analyses of proportions report I2 values greater than 

90% [161], the statistic’s usefulness for assessing 

heterogeneity in this context is debated. Consequently, 

evidence synthesis researchers have recommended 

greater priority be placed on visually inspecting forest 

plots and prediction interval widths instead [161].  

Therefore, while we acknowledge these high I2 values, 

given the consistency of study methods and reported 

estimates (refer to Figure 5 for an illustrative example), 

we do not believe these values indicate concerning 

levels of variability in this context. 

Unanswered questions and future research 

We note several questions that have not been answered 

by our review. Our review was unable to comment on 

compliance rates with mandatory sharing policies 

introduced by medical research institutions and 

funders as we could not find relevant meta-research on 

this question. Furthermore, while we were able to 

explore how sharing rates differed according to data 

type, our analyses were restricted to a limited number 

of studies effectively examining four types of data 

(trial data, systematic review data, gene expression 

data and sequence data). Consequently, we were 

unable to establish precise estimates for compliance 

rates, nor comment on sharing rates for the myriad of 

other types of data that medical researchers have 

discussed with respect to data sharing. For example, 

model data [166], imaging data [167], flow cytometry 

data [168], spectroscopic data [169], diffraction data 

[170,171], and qualitative data [172] to name a few. 

Both are areas worthy of future empirical meta-

research. 

With regards to future research, we hope that the data 

that we have collected and harmonised for this review 

will serve as a useful resource to track changes in data 

and code sharing in medicine beyond 2020, as well as 

explore other factors that we were unable to assess 

(e.g., association between preprinting practices and 

sharing) or had not considered (e.g., association 

between career stage and sharing [173]). However, as 

we have been able to establish precise estimates of 

public data and code sharing rates, we do not think 
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additional research that examines high-level data and 

code sharing rates in medicine between 2014-2020 is 

warranted. 

CONCLUSION 

The results of the current review suggest that while 

increasing numbers of medical and health researchers 

are stating that their data are publicly available, 

declaration rates remain uncommon, and not all 

declarations lead to the stated data. In contrast, code 

sharing rates remain persistently low across medicine. 

We also note large variability in success rates in 

privately obtaining data and code from authors of 

published medical research. While no data were 

available to evaluate the effectiveness of funder and 

institutional policies on data sharing, assessments of 

journal policies suggest that mandatory sharing 

policies are more effective than non-mandatory 

policies, as well as may demonstrate varying success 

rates according to the data type - a finding that may be 

informative for policymakers when designing policies 

and allocating resources to audit compliance. 
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