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Abstract 5 

Background and Aims   6 

Anti-TNF treatment failure in patients with inflammatory bowel disease (IBD) is common and 7 

frequently related to low drug concentrations.  8 

In order to identify patients who may benefit from dose optimisation at the outset of anti-TNF 9 

therapy, we sought to define epigenetic biomarkers in whole blood at baseline associated with anti-10 

TNF drug concentrations at week 14.   11 

 12 

Methods   13 

DNA methylation from 1,104 whole blood samples from the Personalised Anti-TNF Therapy in 14 

Crohn’s disease (PANTS) study were assessed using the Illumina EPIC Beadchip at baseline, weeks 14, 15 

30 and 54. We compared DNA methylation profiles in anti-TNF-treated patients who experienced 16 

primary non-response at week 14 and were not in remission at week 30 or 54 (infliximab n = 99, 17 

adalimumab n = 94) with patients who responded at week 14 and were in remission at week 30 or 18 

54 (infliximab n = 99, adalimumab n = 93).  19 

  20 

Results 21 

Overall, between baseline and week 14, we observed 4,999 differentially methylated probes (DMPs) 22 

annotated to 2376 genes following anti-TNF treatment. Pathway analysis identified 108 significant 23 

gene ontology terms enriched in biological processes related to immune system processes and 24 

responses.  25 

Epigenome-wide association (EWAS) analysis identified 323 DMPs annotated to 210 genes at 26 

baseline associated with higher anti-TNF drug concentrations at week 14. Of these, 125 DMPs 27 
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demonstrated shared associations with other common traits (proportion of shared CpGs compared 28 

to DMPs) including body mass index (23.2%), followed by CRP (11.5%), smoking (7.4%), alcohol 29 

consumption per day (7.1%) and IBD type (6.8%). EWAS of primary non-response to anti-TNF 30 

identified 20 DMPs that were associated with both anti-TNF drug concentration and primary non-31 

response to anti-TNF with a strong correlation of the coefficients (Spearman’s rho = -0.94, p < 0.001). 32 

Conclusion 33 

Baseline DNA methylation profiles may be used as a predictor for anti-TNF drug concentration at 34 

week 14 to identify patients who may benefit from dose optimisation at the outset of anti-TNF 35 

therapy.   36 
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Introduction 37 

Anti-TNF therapies remain the most effective treatment to induce and maintain remission in 38 

patients with Crohn’s disease1,2. Successful treatment leads to mucosal healing, reduced surgeries, 39 

and improvements in quality of life3. Unfortunately, anti-TNF treatment failure is common, with a 40 

quarter of patients experiencing primary non-response, and one-third of initial responders losing 41 

response by the end of the first year
4
.  42 

In the Personalised Anti-TNF Therapy in Crohn’s Disease study (PANTS), whilst loss of response was 43 

associated with the formation of anti-drug antibodies that were predicted by carriage of the HLA-44 

DQA1*05 haplotype and mitigated by concomitant immunomodulator use, the only modifiable 45 

factor associated with primary non-response at week 14 was low anti-TNF drug concentration5,6.   46 

In this regard early dose optimisation reportedly improves anti-TNF response rates7,8. Whilst the 47 

biology of non-response is complex, an ability to predict primary non-response may inform 48 

treatment choice and identify individuals who may benefit from dose optimisation during induction 49 

therapy.  50 

Heterogeneity of response to anti-TNF therapies has led to a drive to understand the molecular 51 

mechanisms underlying treatment failure in anti-TNF therapy. Increased mucosal expression of 52 

oncostatin M (OSM)9,10 and triggering receptor expressed on myeloid cells (TREM-1)11,12 have been 53 

identified as potential biomarkers predicting non-response to anti-TNF treatment. Drawing 54 

conclusions across studies is difficult, however, due to differences in study design, improvements in 55 

experimental and computational methods through time and critically, confounding by cellular 56 

heterogeneity with contradictory results between whole blood and intestinal biopsies13. Clinical 57 

translation of tissue biomarkers has also further been limited by accessibility and processing costs14. 58 
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DNA methylation, an epigenetic modification to DNA, can influence gene expression via disruption of 59 

transcription factor binding and recruitment of methyl-binding proteins that initiate chromatin 60 

compaction and gene silencing15,16. Despite being traditionally regarded as a mechanism of 61 

transcriptional repression, DNA methylation is actually associated with both increased and 62 

decreased gene expression17, and other genomic functions including alternative splicing and 63 

promoter usage18. DNA methylation can be influenced by both genetic19 and environmental 64 

factors20, changing with age21 and exposures such as cigarette smoking22. The development of 65 

standardised assays for quantifying DNA methylation across the genome at single-base resolution in 66 

large numbers of samples has enabled researchers to perform epigenome-wide association studies 67 

(EWAS) aimed at identifying methylomic variation associated with exposures and traits23. EWAS 68 

analyses are inherently more complex to design and interpret than genetic association studies; the 69 

dynamic nature of epigenetic processes means that a range of potentially important confounding 70 

factors (including tissue or cell type, age, sex, and lifestyle exposures) need to be considered in 71 

between-group comparisons
24

.   72 

Previous studies of DNA methylation using whole blood or individual purified cell types have 73 

identified differentially methylated positions (DMPs) between patients with active and inactive IBD 74 

and healthy controls25,26. Pharmacoepigenomics is the application of epigenetics to understand 75 

interindividual differences in the response to therapeutic drugs27. DNA methylation sites from whole 76 

blood have been identified as effective biomarkers predicting treatment response to methotrexate 77 

and anti-TNF in patients with rheumatoid arthritis28,29.   78 

In this study we used a powerful intra-individual study design to identify changes in DNA 79 

methylation associated with anti-TNF drug treatment, profiling 385 patients at baseline and weeks 80 

14, 30 and 54 post treatment initiation. In order to identify patients who may benefit from dose 81 
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optimisation at the outset of anti-TNF therapy, we also sought to define epigenetic biomarkers in 82 

whole blood at baseline associated with anti-TNF drug concentrations at week 14. We identify 83 

widespread differences in DNA methylation induced by anti-TNF drug treatment and show that 84 

baseline DNA methylation profiles can predict anti-TNF drug concentration at week 14. 85 

 86 

Methods 87 

Study design 88 

The PANTS study is a UK wide, multicentre, prospective observational cohort reporting the 89 

treatment failure rates of the anti-TNF drugs infliximab (originator, Remicade [Merck Sharp & 90 

Dohme, Hertfordshire, UK] and biosimilar, CTP13 [Celltrion, Incheon, South Korea]), and adalimumab 91 

(Humira [AbbVie, Cambridge, MA]) in 1610 anti–TNF-naïve patients with Crohn’s disease. 92 

(Supplementary Table 1) 93 

Patients were recruited between February 2013 and June 2016 at the time of first anti-TNF exposure 94 

and studied for 12 months or until drug withdrawal. Eligible patients were aged ≥ 6 years with 95 

objective evidence of active luminal Crohn's disease involving the colon and/or small intestine. 96 

Exclusion criteria included prior exposure to, or contraindications for the use of, anti-TNF therapy. 97 

The choice of anti-TNF was at the discretion of the treating physician and prescribed according to 98 

the licensed dosing schedule. Study visits were scheduled at first dose, week 14, and at weeks 30 99 

and 54. Additional visits were planned for infliximab-treated patients at each infusion and for both 100 

groups at treatment failure or exit.  101 

Treatment failure endpoints were primary non-response at week 14, non-remission at week 54, and 102 

adverse events leading to drug withdrawal.    103 
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We used composite endpoints using the Harvey Bradshaw Index (HBI) in adults and the short 104 

paediatric Crohn’s disease activity index (sPCDAI) in children, corticosteroid use, and CRP to define 105 

primary non-response (Supplementary Figure 1). Remission was defined as CRP of ≤3 mg/L and HBI 106 

of ≤4 points (sPCDAI ≤15 in children), without corticosteroid therapy or exit for treatment failure. 107 

Variables recorded at baseline were patient demographics (age, sex, ethnicity, comorbidities, height 108 

and weight and smoking status) and IBD phenotype and its treatments (age at diagnosis, disease 109 

duration, Montreal classification, prior medical and drug history, and previous Crohn’s disease-110 

related surgeries). At every visit, disease activity score, weight, current therapy and adverse 111 

events were recorded.    112 

Blood and stool samples were collected at each visit and processed through the central laboratory at 113 

the Royal Devon & Exeter NHS Foundation Trust (https://www.exeterlaboratory.com/) for 114 

haemoglobin, white cell count, platelets, serum albumin, CRP, anti-TNF drug and anti-drug antibody 115 

concentrations, and faecal calprotectin, respectively.  116 

DNA methylation processing 117 

Genomic DNA was extracted from peripheral whole blood using the Qiagen Qiasymphony DNA DSP 118 

midi kit (Qiagen, Ca, USA). Following sodium bisulfite conversion with the Zymo Research EZ-DNA 119 

Methylation kit (Zymo Research, CA USA), DNA methylation was quantified across the genome using 120 

the Illumina Infinium HumanMethylationEPIC (EPIC) BeadChip (Illumina Inc, CA, USA). To negate any 121 

methodological batch effects, individuals were randomised across experimental batches and 122 

samples from the same individual were processed together across all experimental stages. 123 

Data pre-processing and quality control checks 124 
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Raw Illumina EPIC data were imported into R (version 3.6.0) using the bigmelon package (v1.12.0)30. 125 

Quality control (QC) checks were performed using the bigmelon (v1.12.0)30 and minfi (v1.32.0)31 R 126 

packages. They included the following steps: we first removed samples by 1) checking median 127 

methylated and unmethylated signal intensities and excluding samples with low intensities (<500) (3 128 

samples excluded), 2) assessing bisulphite conversion efficacy of each sample and excluding samples 129 

with a conversion rate < 80% (9 samples excluded), 3) using the 59 single nucleotide polymorphism 130 

(SNP) probes present on the EPIC array to confirm all matched samples from the same individual 131 

were genetically identical and to check for sample switches or duplications (12 samples excluded), 4) 132 

comparing intensity values from probes located on the X and Y chromosomes to autosomes to 133 

identify sex mismatches (10 samples excluded), 5) visually inspecting the first six principal 134 

components and excluding outliers (none identified), 6) using the pfilter function in the bigmelon 135 

(v1.12.0) package to exclude samples where >1% of probes had a detection p-value >0.05 (none 136 

identified). We subsequently removed probes by 7) using the pfilter function in the bigmelon 137 

(v1.12.0) package to exclude probes with a bead count <3 or 1% of samples with a detection p-value 138 

> 0.05 (8313 probes) and 8) removal of cross-hybridising probes and those containing a SNP (73,239 139 

probes). Following QC, quantile normalisation was carried out and 784,105 probes were taken 140 

forwards for analysis after exclusion of probes on the Y chromosome.  141 

Sample size and statistical methods 142 

Sample size calculations from the whole PANTS cohort have been reported previously5. For this 143 

analysis, we selected whole blood samples from a subset of 385 participants treated with infliximab 144 

and adalimumab aged >16 years, with a baseline CRP ≥4 mg/L and/or calprotectin >100 µg/g who 145 

experienced primary non-response at week 14 and non-remission at week 30 or 54 (n = 99 and 94, 146 

respectively), and an equal number of participants as a comparator group who were classified with 147 
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primary response at week 14 and subsequent remission (n = 99 and 93, respectively) for DNA 148 

methylation profiling. 149 

Statistical analyses were undertaken in R 4.1.3 (R Foundation for Statistical Computing, Vienna, 150 

Austria). We included patients with missing clinical variables in analyses for which they had the 151 

necessary data and have specified the sample size for each variable. Continuous data are reported as 152 

median and interquartile range, and discrete data as numbers and percentages.  Fisher’s exact and 153 

Mann-Whitney U tests were used to identify differences in baseline characteristics between 154 

infliximab-treated and adalimumab-treated patients. Comparative tests were two-tailed and p value 155 

< 0.05 were considered significant unless otherwise stated.  156 

DNA methylation was analysed using beta values, the ratio of methylated intensity to the overall 157 

intensity at each CpG site, which represents the proportion methylation at each site. Because they 158 

influence methylation, a priori, we sought to define DNA methylation changes through the course of 159 

the study due to ageing, cigarette smoking and cell composition. Smoking scores were calculated 160 

using a weighted sum approach based on previously published smoking-associated methylation 161 

probes
32

. Epigenetic age was predicted using 353 CpG sites as described by Horvath
21

. Individual cell 162 

proportions of CD4+T cells, CD8+T cells, B cells, granulocytes, and monocytes in each whole blood 163 

sample were estimated using the Houseman reference-based algorithm implemented with functions 164 

in minfi (v1.32.0)
31

 package. Linear mixed effects models, including time on anti-TNF (study visits in 165 

weeks) as a fixed effect and modelling individual participants with a random intercept, were used to 166 

determine if epigenetic age, smoking behaviour or cell composition were associated with anti-TNF 167 

treatment.   168 

EWAS analyses of anti-TNF treatment, anti-TNF drug concentration and primary non-response were 169 

conducted using linear mixed effects models in this within-subject study, where anti-TNF type and 170 
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cell proportions were adjusted for as fixed effects while a random effect (random intercept) was 171 

used to capture the individual level effects. Study visits in weeks, reflecting the duration of anti-TNF 172 

treatment, was included as an interaction term in the model. Patients treated with infliximab and 173 

adalimumab were analysed together to increase the power to detect shared effects. An empirically-174 

derived p value < 9 x 10-8 was considered significant to control for multiple testing33. Pathway 175 

analysis with annotations to Gene Ontology (GO) terms was performed using the gometh () function 176 

in missMethyl (v1.28.0)34 package, which controls for bias arising due to multiple genes being 177 

annotated to a single CpG, and multiple CpGs annotated to a single gene. DMPs were searched in 178 

the EWAS catalog35 (http://www.ewascatalog.org/,  assessed on 15/12/2022) to look for 179 

associations with other common traits. A false discovery rate (FDR) of < 0.05 was considered 180 

significant for pathway analysis and associations in the EWAS catalog. We sought overlapping DMPs 181 

associated with drug levels and primary non-response and correlation of coefficients was 182 

determined using Spearman’s test.  183 

Ethical and role of the funding source 184 

The sponsor of the study was the Royal Devon and Exeter NHS Foundation Trust. The South West 185 

Research Ethics committee approved the study (REC Reference: 12/SW/0323) in January 2013.  The 186 

funders of this study had no role in study design, data collection, data analysis, data interpretation, 187 

or writing of the report. The corresponding author had full access to all the data in the study and had 188 

final responsibility for the decision to submit for publication. 189 

190 
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Results 191 

Summary of PANTS DNA methylation dataset 192 

DNA methylation was quantified across the genome in 1,104 whole blood DNA samples from 385 193 

individuals across four study visits (baseline, week 14, week 30, week 54) from the PANTS cohort. 194 

Following a standard quality control pipeline (see Methods), our final dataset included 784,105 DNA 195 

methylation sites quantified in 1,062 samples from 385 participants (Supplementary Figure 1). 87 196 

participants provided samples at all four study visits and the median number of samples per 197 

participant was 3 (interquartile range [IQR] 2 – 3) (Supplementary Table 2).  198 

Overall, 51.7% (199/385) of participants were female, with a median age of 35.7 years (IQR 26.3 - 199 

50.3). 21.2% (81/382) of participants were current smokers and 30.6% (117/382) were former 200 

smokers. The median disease duration was 2.2 years [IQR 0.6 - 9.6] and 50.9% (196/385) and 35.3% 201 

(136/385) of participants were treated with a concomitant immunomodulator and steroids at 202 

baseline, respectively. In total, 51.4% (198/385) of participants were treated with infliximab and 203 

48.6% (187/385) with adalimumab (Table 1). Median infliximab (3.30 mg/L vs 8.09 mg/L, p < 0.001) 204 

and adalimumab (7.70 mg/L vs. 13.35 mg/L, p < 0.001) drug concentrations at week 14 were lower in 205 

patients who experienced primary non-response, as previously observed in the wider cohort5. 206 

(Supplementary Figure 2). 207 

Anti-TNF treatment is associated with altered blood cell proportions using measures derived from 208 

DNA methylation data 209 

A number of robust statistical classifiers have been developed to derive estimates of environmental 210 

exposures such as tobacco smoking32, biological age21 and the proportion of different blood cell 211 

types36 from whole blood DNA methylation data.   212 
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As expected, current and former tobacco smokers had a higher DNA methylation-derived smoking 213 

score at baseline (former smokers 0.2 [IQR -2.0 - 4.1], p < 0.001 and current smokers 6.6 [IQR 3.3 - 214 

9.5], p < 0.001) when compared to never smokers (-2.3 [IQR -3.8 - -1.0]). Over the duration of the 215 

study, DNA methylation smoking score increased (effect size per week 0.019, p < 0.001). When 216 

compared to current smokers, the trajectory of DNA methylation smoking score changed 217 

significantly in former (effect size per week -0.010, p = 0.003), but not current smokers (effect size 218 

per week -0.004, p = 0.262) (Supplementary Figure 3) When stratified by response to anti-TNF 219 

treatment, following anti-TNF treatment, there was no difference in the trajectory of smoking scores 220 

of current smokers (effect size per week - 0.006, p = 0.433) or former smokers (effect size per week - 221 

0.0001, p = 0.986) between those who experienced primary non-response compared to those who 222 

did not.  223 

The epigenetic age of participants measured using the Horvath multi-tissue clock was highly 224 

correlated with chronological age of participants at study entry (r = 0.95, p < 0.001). Over the course 225 

of the study following anti-TNF treatment, epigenetic age changed with time (effect size per week 226 

0.002, p < 0.001). When stratified by response to anti-TNF treatment, however, there was no 227 

difference in the trajectory of change in epigenetic age (effect size per week 0.003, p = 0.71). 228 

(Supplementary Figure 4)  229 

To understand the immune cell changes following anti-TNF treatment, cell proportion estimates 230 

were derived from DNA methylation data. Over time, following anti-TNF treatment, there was a 231 

significant increase in the derived proportions of CD4 T cells (effect size per week 0.0013, p < 0.001), 232 

CD8 T cells (effect size per week 0.0005, p < 0.001), B cells (effect size per week 0.0004, p < 0.001) 233 

and NK cells (effect size per week 0.0001, p = 0.015). (Figure 1) In contrast, the proportion of 234 

monocytes (effect size per week -0.0001, p = 0.025) and granulocytes (effect size per week -0.0023, 235 

p < 0.001) decreased significantly. In patients who experienced primary non-response, the increase 236 
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in proportion of B cells (effect size per week -0.0002, p < 0.001) and CD4 T cells (effect size per week 237 

-0.0004, p = 0.048) were less marked over time when compared to those who responded. There was 238 

no difference in the change of proportion of granulocytes (effect size per week 0.0002, p = 0.571).  239 

Changes in biological processes of the immune pathways occur following anti-TNF treatment  240 

Across all patients, 4,999 DMPs (p < 9 x 10-8) annotated to 2,376 unique genes were associated with 241 

anti-TNF treatment (infliximab or adalimumab) regardless of response (Table 2, Figure 2). These 242 

DMPs were significantly enriched for sites becoming hypomethylated over time (63.5% 243 

[3,176/4,999], p < 0.001). Of treatment-associated DMPs annotated to genes (n = 3,504 [70.1%]), the 244 

majority were located in the gene body (67.1% [2,351/3,504]) (Supplementary Figure 5) representing 245 

a significant enrichment compared to the background distribution of probes on the EPIC array 246 

(67.1% vs 29.5%, p < 0.001). The top-ranked DMP associated with anti-TNF treatment was 247 

cg11047325 annotated to the SOCS3 gene, involved in the negative regulation of the JAK-STAT 248 

pathway and thought to play a role in modulating the outcome of infections and autoimmune 249 

diseases
37

 (effect size per week 0.0008, p = 1.91 x 10
-41

).  250 

Gene ontology (GO) analysis of genes annotated to treatment-associated DMPs identified 108 251 

significant biological pathways (Supplementary Table 3) further implicating the immune response 252 

(immune system process (GO: 0002376, FDR < 0.001), immune response (GO: 0006955, FDR < 253 

0.001), and immune system development (GO:0002520, FDR < 0.001)) alongside pathways related to 254 

blood cell differentiation (haematopoietic or lymphoid organ development (GO:0048534, FDR < 255 

0.001) and haemopoiesis (GO: 0030097, FDR < 0.001)) (Supplementary Figure 6).  256 

DNA methylation in infliximab and adalimumab treated patients 257 
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Next, we performed an epigenome-wide association study (EWAS) to identify any DMPs associated 258 

with anti-TNF treatment type. Overall, there were no significant DMPs at baseline between anti-TNF 259 

naïve Crohn’s disease patients who were subsequently treated with infliximab or adalimumab. 260 

Irrespective of primary non-response status, we observed 13 DMPs annotated to 9 genes with 261 

significantly different trajectories following treatment with infliximab compared to adalimumab. The 262 

top-ranked DMPs between treatments included cg03446165 [annotated to MMP25] (effect size per 263 

week -0.0004, p = 6.78 x 10-10), cg12229367 (effect size per week -0.0003, p = 1.54 x 10-9) and 264 

cg04790662 [annotated to PAG1] (effect size per week -0.0005, p = 2.82 x 10-9). (Supplementary 265 

Table 4)  266 

DNA methylation differences at baseline are associated with anti-TNF drug concentration 267 

following treatment  268 

We sought to determine if DNA methylation difference at baseline prior to the start of anti-TNF 269 

treatment were associated with anti-TNF drug concentrations at week 14. We identified 323 DMPs 270 

annotated to 210 genes at baseline associated with anti-TNF drug concentrations at week 14 (Table 271 

3, Figure 3). The top ranked DMP was cg23320029 annotated to the TNIK gene (effect size 0.0555, p 272 

= 4.62 x 10-15), encoding the TRAF2 and NCK-interacting kinase, a key regulator in the Wnt signalling 273 

pathway implicated in the modulation of immune response during inflammation38. GO analysis of 274 

genes annotated to DMPs associated with anti-TNF drug concentration at week 14, however, did not 275 

identify any FDR (FDR < 0.05) significant pathways.  276 

We intersected the list of DMPs predicting anti-TNF drug concentration following treatment with the 277 

EWAS catalog35 to identify overlaps with DNA methylation differences associated with other traits 278 

and diseases, finding that 125 (38.7%) DMPs have been previously associated with other common 279 

traits (Supplementary Table 5). The most common shared association (proportion of shared CpGs 280 
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compared to DMPs) was with an EWAS of body mass index (23.2%), followed by CRP (11.5%), 281 

smoking (7.4%), alcohol consumption per day (7.1%) and IBD type (6.8%). The associations with 282 

these common traits all had an opposite direction of effect to anti-TNF drug concentration in our 283 

cohort; CpG sites associated with a higher BMI and increased CRP were associated with lower anti-284 

TNF drug concentrations, in keeping with the known associations with anti-TNF drug concentration 285 

and treatment outcomes5.  286 

To understand if there was a relationship between anti-TNF drug concentration at week 14 and anti-287 

TNF treatment response, we performed an EWAS of primary non-response to anti-TNF, and 288 

identified 48 DMPs annotated to 36 genes at baseline. Of these, 20 DMPs were associated with both 289 

anti-TNF drug concentration and primary non-response to anti-TNF (Supplementary Table 6). These 290 

DMPs include cg27216853 [CYS1] (effect size to drug concentration -0.0371 vs effect size to primary 291 

non-response 0.0245), cg23606775 [CLSTN1] (-0.0220 vs 0.0133) and cg18138532 [UPF2] (-0.0273 vs 292 

0.0157). Overall, there was a strong correlation of the coefficients (Spearman’s rho = -0.94, p < 293 

0.001) (Figure 4), suggesting a relationship between DMPs associated with lower anti-TNF drug 294 

concentration and primary non-response. 295 

Longitudinal changes in DNA methylation differ in patients with primary non-response to anti-TNF 296 

treatment 297 

Following anti-TNF treatment, intra-individual changes in DNA methylation was significantly 298 

different between those who experienced primary non-response to anti-TNF compared to those 299 

who did not at 5 DMPs. These sites were cg07839457 [annotated to NLRC5] (effect size per week -300 

0.0007, p = 1.92 x 10-13), cg11047325 [annotated to SOCS3] (-0.0007, p = 3.70 x 10-11), cg15022400 301 

[annotated to TRIM69] (-0.0003, p = 3.39 x 10-9), cg25867318 [annotated to STAT3] (-0.0004, p = 302 

6.06 x 10-8) and cg08950751 [annotated to AIP] (-0.0003, p = 6.82 x 10-8) (Supplementary Table 7). 303 
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The top ranked DMP following anti-TNF treatment cg11047325 annotated to SOCS3 involved in 304 

regulation of the JAK-STAT pathway was again identified. 305 

Discussion  306 

Key results 307 

In whole blood, we observed almost 5,000 DMPs annotated to >2,000 genes that are associated with 308 

anti-TNF therapy, with the genes annotated to these sites being enriched for biological processes 309 

related to immune system processes. 323 DMPs annotated to 210 genes were associated with anti-310 

TNF drug concentration at week 14 and we observed an overlap between differentially methylated 311 

probes associated with drug concentrations and primary non-response. 312 

Interpretation 313 

It is perhaps unsurprising, that treatment with the anti-TNF monoclonal antibodies infliximab and 314 

adalimumab led to a significant number of differentially methylated probes across multiple genes 315 

that were enriched in immune system pathways. Overall, however, only 13 DMPs were found when 316 

comparing infliximab- and adalimumab-treated patients, suggesting that there is an anti-TNF 317 

treatment class effect and that both drugs exert a similar effect upon levels of DNA methylation. A 318 

similar conclusion was made from a study of patients with rheumatoid arthritis treated with several 319 

different anti-TNFs including adalimumab, certolizumab, etanercept, golimumab and infliximab, with 320 

no DMPs were identified between different anti-TNF subtypes39. 321 

The immune cell changes and intracellular signalling pathways in peripheral blood and intestinal 322 

tissue following treatment with anti-TNF in patients with IBD is still unclear40. Unlike a previous study 323 

of 14 patients with IBD41, following anti-TNF treatment, we did not observe a change in derived 324 

granulocyte proportions between non-responders and responders, but noted differences in B cells 325 
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and CD4 T cells. Derived cell proportions at baseline were, however, not useful as a biomarker of 326 

anti-TNF non-response.  327 

About a third (38.7%) of the DMPs associated with low drug concentrations were linked to other 328 

common traits including body mass index, smoking, and CRP that in the PANTS cohort were 329 

associated with drug concentration and anti-TNF treatment failure
5
. It is plausible that these DMPs 330 

could be used as blood biomarkers independent of clinical traits to predict inter-individual variability 331 

in anti-TNF drug concentration, allowing early effective anti-TNF dose prescribing. Our findings that 332 

the DMPs were enriched in gene bodies may suggest a more complex mechanism apart from gene 333 

transcription in their role underlying anti-TNF treatment response. The role of gene body 334 

methylation is still widely debated, and while they have been associated with the regulation of gene 335 

expression, they have a more complex role in suppressing aberrant gene transcription and regulating 336 

alternative splicing42. With the advancement of single-cell sequencing technologies, the study of 337 

specific cell types in both disease specific intestinal tissue43 and peripheral whole blood44perhaps 338 

based on our data focussing on the role of B- and CD4+ T cells, may provide further insights into the 339 

molecular mechanisms underlying anti-TNF treatment failure.  340 

Whilst there was a strong correlation of effect between DMPs associated with lower drug 341 

concentration at week 14 and primary non-response, the modest effect sizes mean that these 342 

markers are unlikely to be useful as a diagnostic predictor of primary non-response in individual 343 

patients. Why primary non-response is so difficult to predict in patients with IBD is unclear. Few of 344 

the so-called precision medicine biomarkers to facilitate the right drug, to the right patient, at the 345 

right time have been replicated or translated to clinical care. There are a number of possible reasons 346 

for this. Firstly, the challenges of defining primary non-response in the absence of endoscopic 347 

outcome data. In the PANTS study, we used a pragmatic composite outcome closely linked to 348 

routine clinical care that included patient symptoms assessed using a validated severity scores and 349 
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serum CRP. However, there is poor concordance between symptoms and biomarkers and mucosal 350 

inflammation. Patients with Crohn’s disease may also complain of symptoms suggestive of active 351 

disease because of overlapping irritable bowel syndrome, bile acid malabsorption and or small 352 

intestinal overgrowth. Further interpretation of potential markers across studies is challenging due 353 

to differences in study design, inclusion criteria, improvements in experimental and computational 354 

methods over time, and critically confounding by sampling of different tissues and cellular 355 

heterogeneity. These challenges may explain why we were unable to replicate here the previous 356 

associations with oncostatin M (OSM)9,10 and triggering receptor expressed on myeloid cells (TREM-357 

1)11,12 identified as potential biomarkers predicting non-response to anti-TNF treatment.  Our data 358 

argues against the presence of a single epigenetic biomarker in whole blood with clinical utility. 359 

Our observations that higher DNA methylation epigenetic smoking score and smoking status, and 360 

epigenetic age of participants and chronological age were highly positively correlated internally 361 

validates our DNA methylation processing and quality control methods supporting subsequent 362 

findings against clinical outcomes. Interestingly, increase in smoking score was observed in all groups 363 

regardless of smoking status over time, but was significantly less in former smokers compared to 364 

never smokers. Prior longitudinal studies of DNA methylation changes following smoking cessation 365 

have reported conflicting results37,38, although varying follow-up times and the study of different 366 

populations makes it difficult to compare across studies. Whether the DNA methylation changes 367 

following smoking cessation have an impact on anti-TNF drug concentration or outcomes in patients 368 

with Crohn’s disease requires further investigation.   369 

Limitations and generalisability 370 

We acknowledge some important limitations of our work. First, our outcome data could be 371 

strengthened with endoscopic outcomes. However, we observed a significant association between 372 
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clinical outcomes at week 14 and week 54 and faecal calprotectin, which has been shown to closely 373 

correlate with endoscopic findings. Second, we measured DNA methylation from whole blood which 374 

is likely to be confounded by differences in individual cell proportions. Although we included derived 375 

cell proportions as a covariate in our statistical models, this is unlikely to fully control for cellular 376 

changes which may be better controlled for by expanded panels of blood cell types or single-cell 377 

analyses. Whether similar changes also occur in the target tissues in the small and large intestine is 378 

unknown. Third, our findings should be validated in an independent cohort prior to translation into 379 

clinical practice.  380 

The PANTS study recruited patients from across the UK, and we believe our findings will be 381 

generalisable to patients with Crohn’s disease treated with an anti-TNF across other western 382 

populations. Further work is required to determine if these findings are found in other non-western 383 

populations, and indeed in other populations of patients with IBD such as those with ulcerative 384 

colitis, and in non-IBD patients treated with an anti-TNF.  385 

Conclusion  386 

Baseline DNA methylation profiles may be used as a predictor for anti-TNF drug concentration at 387 

week 14 to identify patients who may benefit from dose optimisation at the outset of anti-TNF 388 

therapy.  389 

  390 
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Figure Legends 619 

Figure 1: Change in derived cell proportions following treatment with anti-TNF. Predicted derived 620 

cell proportions over time estimated from the regression analysis is represented in solid blue lines, 621 

and observed cell proportions in faded lines. P value represents the change in individual cell 622 

proportions over time. 623 

 624 

Figure 2: Manhattan plot of CpG sites associated with change over time following anti-TNF drug 625 

exposure regardless of treatment outcome. The top 10 differentially methylated probes with 626 

annotations are labelled in the plot. The grey horizontal line represents the significant p value 627 

threshold of 9 x 10-8. 628 

 629 

Figure 3: Manhattan plot of CpG sites at baseline associated with anti-TNF drug concentration at 630 

week 14. The top 10 CpG sites with their associated gene annotations are labelled in brackets. The 631 

grey horizontal line represents the significant p value threshold of 9 x 10-8. 632 

 633 

Figure 4: Coefficients of DMPs associated with anti-TNF drug concentration at week 14 and primary 634 

non-response. Coefficients represent the beta values of each CpG from linear mixed effects model to 635 

each outcome. Spearman’s rho correlation of the coefficients calculated for those that were 636 

associated with both anti-TNF drug concentration and primary non-response, and the remaining that 637 

were only significant to anti-TNF drug concentration. Abbreviations: PNR = primary non-response.  638 
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Variable Level adalimumab infliximab Overall p 

n 187 198 385  

Age at first dose 37.19 (26.56 - 

51.15) 

35.25 (25.57 - 

49.49) 

35.69 (26.34 - 

50.26) 

0.466 

Sex Female 47.06% (88/187) 56.06% (111/198) 51.69% (199/385) 0.083 

Male 52.94% (99/187) 43.94% (87/198) 48.31% (186/385) 

Ethnicity White  94.12% (176/187) 94.95% (188/198) 94.55% (364/385) 0.933 

South 

Asian 

2.14% (4/187) 2.02% (4/198) 2.08% (8/385) 

Other 3.74% (7/187) 3.03% (6/198) 3.38% (13/385) 

Smoking history Current 17.20% (32/186) 25.00% (49/196) 21.20% (81/382) 0.163 

Ex 33.33% (62/186) 28.06% (55/196) 30.63% (117/382) 

Never 49.46% (92/186) 46.94% (92/196) 48.17% (184/382) 

Disease duration 2.80 (0.61 - 9.53) 2.08 (0.53 - 9.52) 2.17 (0.56 - 9.53) 0.483 

Montreal location 

classification 

L1 31.52% (58/184) 29.44% (58/197) 30.45% (116/381) 0.956 

L2 25.54% (47/184) 26.90% (53/197) 26.25% (100/381) 

L3 42.39% (78/184) 43.15% (85/197) 42.78% (163/381) 

L4 0.54% (1/184) 0.51% (1/197) 0.52% (2/381) 

Montreal 

behaviour 

classification 

B1 59.24% (109/184) 63.96% (126/197) 61.68% (235/381) 0.035 

B2 35.33% (65/184) 25.38% (50/197) 30.18% (115/381) 

B3 5.43% (10/184) 10.66% (21/197) 8.14% (31/381) 

Immunomodulator 

use at baseline 

TRUE 52.94% (99/187) 48.99% (97/198) 50.91% (196/385) 0.476 

Steroid use at 

baseline 

TRUE 29.41% (55/187) 40.91% (81/198) 35.32% (136/385) 0.019 

C-reactive protein (mg/L) 8.00 (4.00 - 19.50) 12.00 (5.00 - 32.00) 10.00 (5.00 - 24.00) 0.013 

HBI score 5.00 (3.00 - 8.00) 6.00 (3.00 - 9.50) 5.00 (3.00 - 9.00) 0.256 

Faecal calprotectin (ug/g) 307.00 (159.50 - 

599.00) 

481.00 (251.00 - 

881.50) 

365.00 (188.00 - 

726.00) 

0.001 

Haemoglobin (g/L) 129.50 (120.00 - 

140.00) 

125.00 (112.00 - 

135.00) 

128.00 (116.00 - 

137.00) 

0.002 

White cell count (x 109 cells 

per L) 

7.90 (6.20 - 10.20) 8.56 (6.60 - 10.70) 8.23 (6.40 - 10.40) 0.166 

 639 

Table 1: Characteristics at baseline of participants stratified by type of anti-TNF 640 

  641 
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CpG chr pos Relation 

to Island 

Gene name Gene group Coefficient (per 

week) 

P value 

cg11047325 17 76354934 Island SOCS3 Body 0.0008 1.91E-41 

cg17501210 6 166970252 OpenSea RPS6KA2 Body 0.0007 1.40E-38 
cg19748455 17 76274856 OpenSea LOC100996291 TSS1500 0.0008 2.55E-37 
cg00840791 19 16453259 OpenSea   0.0011 1.02E-35 
cg12992827 3 101901234 OpenSea   0.0010 2.23E-33 

cg04051206 17 17750855 OpenSea TOM1L2 3'UTR 0.0005 4.19E-31 
cg03546163 6 35654363 N_Shore FKBP5 5'UTR 0.0012 4.87E-31 
cg01526748 3 191930926 OpenSea FGF12 Body -0.0005 1.97E-30 
cg13074526 17 76274743 OpenSea LOC100996291 TSS200 0.0008 2.32E-30 
cg18608055 19 1130866 OpenSea SBNO2 Body 0.0008 4.57E-30 
 642 

Table 2: Top 10 differentially methylated probes associated with anti-TNF treatment over time  643 
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CpG chr pos 

Relation 

to Island 

Gene 

name 

Gene 

group 

Coefficient (per 

week) P value 

cg23320029 3 171004750 OpenSea TNIK Body 0.0555 4.62E-15 

cg16500036 7 68983906 OpenSea 
 

-0.0409 1.61E-14 

cg18513344 3 195531298 OpenSea MUC4 Body 0.0299 4.90E-14 

cg21635197 6 135405808 OpenSea 
 

0.0389 8.71E-13 

cg22870160 1 231830793 OpenSea DISC1 Body -0.0376 1.23E-12 

cg03403209 16 29666641 OpenSea 
 

-0.0247 1.51E-12 

cg07856599 1 227151843 OpenSea ADCK3 Body -0.0411 6.82E-12 

cg01950011 8 37396511 OpenSea 
 

-0.0213 8.00E-12 

cg27216853 2 10205672 OpenSea CYS1 Body -0.0371 8.79E-12 

cg02011576 3 38060265 OpenSea PLCD1 Body -0.0387 8.82E-12 

 644 

Table 3: Top 10 differentially methylated probes at baseline associated with anti-TNF drug 645 

concentration at week 14646 
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 647 
Figure 1: Change in derived cell proportions following treatment with anti-TNF. Predicted derived 648 

cell proportions over time estimated from the regression analysis is represented in solid blue lines, 649 

and observed cell proportions in faded lines. P value represents the change in individual cell 650 

proportions over time. 651 

 652 
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 653 
Figure 2: Manhattan plot of CpG sites associated with change over time following anti-TNF drug 654 

exposure regardless of treatment outcome. The top 10 differentially methylated probes with 655 

annotations are labelled in the plot. The grey horizontal line represents the significant p value 656 

threshold of 9 x 10-8. 657 
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 658 

Figure 3: Manhattan plot of CpG sites at baseline associated with anti-TNF drug concentration at 659 

week 14. The top 10 CpG sites with their associated gene annotations are labelled in brackets. The 660 

grey horizontal line represents the significant p value threshold of 9 x 10
-8

. 661 
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 662 

Figure 4: Coefficients of DMPs associated with anti-TNF drug concentration at week 14 and primary 663 

non-response. Coefficients represent the beta values of each CpG from linear mixed effects model to 664 

each outcome. Spearman’s rho correlation of the coefficients calculated for those that were 665 

associated with both anti-TNF drug concentration and primary non-response, and the remaining that 666 

were only significant to anti-TNF drug concentration. Abbreviations: PNR = primary non-response.  667 
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