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Abstract  

 

Background: Epigenetic scores (EpiScores) can provide blood-based biomarkers of 

lifestyle and disease risk. Projecting a new individual onto a reference panel would 

aid precision medicine and risk communication but is challenging due to the 

separation of technical and biological sources of variation with array data. 

Normalisation methods can standardize data distributions but may also remove 

population-level biological variation. 

 

Methods: We compared two independent birth cohorts (Lothian Birth Cohorts of 

1921 and 1936 – nLBC1921 = 387  and nLBC1936 = 498) with DNA methylation assessed 

at the same chronological age (79 years) and processed in the same lab but in 

different years and experimental batches. We examined the effect of 15 

normalisation methods on a BMI EpiScore (trained in an external cohort of 18,413 

individuals) when the cohorts were normalised separately and together. 

 

Results: The BMI EpiScore explained a maximum variance of R2=24.5% in BMI in 

LBC1936 after SWAN normalisation. Although there were differences in the variance 

explained across cohorts, the normalisation methods made minimal differences to 

the estimates within cohorts. Conversely, a range of absolute differences were seen 

for individual-level EpiScore estimates when cohorts were normalised separately 

versus together. While within-array methods result in identical BMI EpiScores 

whether a cohort was normalised on its own or together with the second dataset, a 

range of differences were observed for between-array methods. 

 

Conclusions: Using normalisation methods that give similar EpiScores whether 

cohorts are analysed separately or together will minimise technical variation when 

projecting new data onto a reference panel. These methods are especially important 

for cases where when raw data and joint normalisation of cohorts is not possible or 

is computationally expensive.     
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Introduction 

There is an increasing focus on the application of epigenetic biomarkers in large 

cohort studies for health research [1]. For example, DNA methylation (DNAm)-based 

predictors – epigenetic scores or EpiScores – of adiposity, smoking, alcohol 

consumption (traits which typically suffer from measurement error due to recall bias), 

and protein levels may help to stratify individuals into risk groups and predict disease 

outcomes [2,3].  

 

However, DNAm data sourced from different populations and lab environments can 

have technical and biological variation that is difficult to partition. Normalising DNAm 

datasets can account for technical variation but may remove meaningful biological 

variation. Understanding the impact of normalisation is vital if future studies are to 

integrate multiple methylation datasets or project new individuals onto existing 

datasets. Recent work has also described heterogeneity when applying different 

normalisation methods to replicate samples from the same individual [4] . That study 

showed considerable variation in the normalisation pipeline that yielded the highest 

intraclass correlations for 41 different EpiScores. 

 

The Illumina Infinium HumanMethylation450 and EPIC arrays assess methylation 

genome-wide [5,6] and are widely used by cohort studies. Following a whole-

genome amplification step, probes hybridize to target CpG sites and fluorescent 

markers signal methylation status. The arrays measure methylation using two probe 

types (Type I and Type II). Type I probes have two 50bp probes for each CpG site, 

one of which hybridizes to the methylated site (M) and the other to the unmethylated 

site (U). Type II probes are a single probe with two different dye colours to 

differentiate between M and U states.  

 

Quantile normalisation (QN) is a nonlinear transformation that ensures the array-

wide distributions of CpG values are identical by replacing the raw CpG values with 

the mean of all CpG features with the same rank [6]. QN can be used to correct bias 

due to differences between methylated and unmethylated dye intensities (dye bias 

correction) and bias due to Type I and Type II probe differences (between-array 

normalisation). In addition, background adjustment can control for the offset between 

Type I and Type II probe intensities. In addition to QN, which utilises information 

across samples, within-array (i.e. sample-indepedent) approaches also exist. These 

approaches include subset within-array normalisation (SWAN), which reduces the 

difference in distributions between Type I and Type II probes, based on a random 
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subset of biologically similar probes [7]; beta-mixture quantile (BMIQ) normalisation, 

which performs adjustment on Type II probes, transforming their distribution to one 

more similar to Type I probes [8]; peak-based correction (PBC), a correction method 

which rescales Type II probe distributions on the basis of Type I probe data [9];  and 

normal-exponential out-of-band (Noob) normalisation, which performs background 

correction and dye-bias equalisation [10].  

 

If technical noise across different datasets can be accounted for, new samples or 

datasets can be normalised individually rather than re-normalising all data together, 

which is computationally expensive. Here, we apply various quantile normalisation 

methods to two independent cohorts of age-matched older adults (considered 

separately and jointly) to determine which approach performs best for the projection 

of an individual or individuals onto a reference dataset. 

 

Results 

Fifteen normalisation approaches [7,10,11] were ranked among three datasets (the 

Lothian Birth Cohort of 1921 (LBC1921), the Lothian Birth Cohort of 1936 

(LBC1936), and LBC1921 + LBC1936 combined; Figure 1) [12]. Methylation was 

assessed on the Illumina 450k array in two separate experiments. First, samples 

from 387 individuals from LBC1921 taken between 1999 and 2001 at mean age 79.1 

(SD = 0.58) years were processed. Second, samples from 498 individuals from 

LBC1936 taken between 2014 and 2017 at mean age 79.3 (SD = 0.62) years were 

processed. The combined cohort contained 885 individuals. Pre-normalisation 

filtering steps are described in the Methods.  

 

While no single method consistently ranked highest under the three metrics 

considered (DMRSE, GCOSE, seabird – Methods), daten2 and naten performed 

well overall (Supplementary Figures 1-2). Poorer performances were observed for 

the Tost method, PBC and unnormalised (raw) data, based on the three 

wateRmelon metrics. 

  

DNAm-based BMI Prediction by normalisation method 

Pearson correlations between observed BMI and a BMI epigenetic score (EpiScore; 

trained in an independent cohort of 18,413 individuals using elastic net regression – 

Methods) are shown in Figure 2 and Supplementary Table 1 for all normalisation 

methods. The mean correlations were 0.34 (SD 0.02) for LBC1921 and 0.47 (SD 

0.01) for LBC1936 – the maximum correlation was 0.49 (incremental R2 = 24.5% 
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when comparing linear regression models of log(BMI) against age and sex with/out a 

BMI EpiScore) for the SWAN normalisation method in LBC1936.  

 

Prediction Robustness Metrics Assessment 

While the choice of normalisation method had little effect on the EpiScore 

correlations with actual BMI, differences amongst the normalisation methods were 

present when looking into deviations in EpiScore predictions for individuals. Figure 3 

shows the mean absolute difference in EpiScores for each normalisation method. 

For all EpiScore predictions, the within-array methods (SWAN, Noob, PBC and 

BMIQ) had no mean difference because they are entirely sample-wise methods (i.e., 

normalisation is specific to each sample). Of the other methods, nanet was the best 

performing with a mean absolute difference in the predicted BMI EpiScores (0.002 

units of log(BMI) adjusted for age, sex, and genetic PCs – approximately 0.01 kg/m2 

after de-scaling, Appendix 1) for LBC1921 participants when normalised separately 

and together with LBC1936. Figure 4 highlights the similarity in EpiScores for the 

nanet-normalised data compared to nasen (the between-array methods with the 

smallest and largest mean absolute differences, respectively) for LBC1936.    

 

Discussion 

The removal of technical noise from DNAm datasets is essential for more reliable 

predictions of a new individual onto a reference dataset [13]. Optimal normalisation 

methods should give similar predictions irrespective of whether a dataset has been 

normalised independently or jointly with a potential reference dataset.  

 

Here, we showed that, for the generation of BMI EpiScores, between-array methods 

such as nanet and danet yield similar predictions irrespective of whether the input 

data was normalised with the reference dataset. As expected, within-array methods 

showed no differences in predictions between datasets. A range of correlations was 

observed between phenotypic BMI and the BMI EpiScores using these methods, 

with SWAN performing well in both cohorts. While within-array methods result in a 

zero mean absolute difference, they also guarantee that no batch-level effects are 

taken into account. Perhaps reflecting this, Noob yielded the second-lowest 

correlation between BMI and the EpiScore in LBC1921 and the jointly normalised 

cohorts. In contrast, nanet and danet gave both high correlations and low mean 

absolute differences. A common feature between these methods is the application of 

dye-bias correction to Type I and Type II probes together.  
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When projecting EpiScores for a new individual/cohort, between-array normalisation 

methods that don’t perform dye-bias correction (e.g., nasen, dasen, naten) gave 

greater differences in EpiScores when the new cohort was normalised on its own 

versus jointly with the second, reference population. Whether Type I or Type II 

probes were normalised separately or together did not seem to have a clear effect 

on EpiScore robustness. Technical noise due to dye bias was therefore the main 

cause of discrepancies for the BMI EpiScores robustness.  

 

While no single best normalisation method is clearly highlighted, we identified 

strengths of normalisation techniques that will generalize well to a new dataset. 

Methods that do not correct for dye bias appear to have limited utility. This finding is 

important for the potential deployment of DNAm prediction tools in the healthcare 

community. Ideally, studies would not have to re-normalise a dataset every time new 

volunteers or patients are entered, which is both time consuming and 

computationally expensive.  

 

There are also some general limitations around prediction that need to be 

considered. Firstly, the BMI EpiScore was trained and tested in Scottish populations. 

Its correlation with observed BMI differed substantially across the two LBC studies, 

despite minimal heterogeneity in age and background. Differences are also likely to 

exist when EpiScores are applied to more diverse populations (e.g., wider age 

ranges, different social backgrounds and ancestries), though the tightly-matched age 

range across both test cohorts reported here is valuable in that cross-cohort 

comparisons were not confounded by age differences. EpiScore predictors for more 

complex traits or diseases risk scores could also be trained [2].  

 

Most existing EpiScore analyses have focused on relative differences within a cohort 

or analysis batch [1]. By applying and comparing a variety of normalisation 

approaches, we suggest individuals or cohorts could be reliably projected onto a 

reference panel. This will enable users to generate methylation-based scores and 

risk percentiles for a variety of traits and diseases.  

 

Methods 

 

Lothian Birth Cohorts (LBC) of 1921 and 1936 - DNAm Quality Control 

DNAm data was assessed using the Illumina 450k array for 499 individuals from the 

LBC1936 and 436 individuals from the LBC1921 [12]. Prior to normalisation, each 
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sample went through a number of filtering checks. P-values to quantify signal 

reliability (detection P-values) were computed for each CpG probe. Probes which 

had more than 1% of samples with a P-value greater than 0.05 were removed (7,366 

LBC1921 probes were removed, 1,495 LBC1936 probes were removed) Individual 

samples where more than 1% of probes had a detection P-value greater than 0.05 

were removed (49 LBC1921 samples, 1 LBC1936 sample removed) Finally, we 

removed probes with a bead count of less than three in more than 5% of samples 

(191 LBC1921 probes removed, 362 LBC1936 probes removed). Following quality 

control, there were 445,962 remaining probes common across all datasets. There 

were 387 individuals remaining in the LBC1921 cohort and 498 individuals remaining 

in the LBC1936 cohort. The combined cohort had 885 individuals. 

 

Normalisation Methods 

Fifteen normalisation methods from the Minfi and WateRmelon packages [7,10,11] 

were applied to LBC1921, LBC1936, and the combined LBC dataset with the 

pipeline depicted in Figure 1.  

 

WateRmelon is an R package that implements several QN methods with systematic 

nomenclature described in [11]. Methods which start with a ‘d’ apply background 

adjustment (‘n’ indicates no adjustment). The third letter specifies whether between-

array normalisation was performed to Type I and II probes separately (‘s’), together 

(‘t’), or not at all (‘n’). The final letter indicates whether dye-bias correction was 

applied to Type I and II probes separately (‘s’), together (‘t’), or not at all (‘n’). A 

description of the difference between normalisation methods is shown in 

Supplementary Table 2. 

 

Minfi is an R package [14] that contains two additional normalisation techniques, 

Noob and SWAN. Normal-exponential out-of-bound (Noob) is a within-sample 

background correction method with dye-bias normalisation for DNAm arrays [10]. 

Noob uses a normal-exponential convolution method to estimate background 

distributions by measuring non-specific fluourescence based on out-of-band Type I 

(i.e. probes in the opposite colour channel - Cy3 vs Cy5), Subset-quantile within 

array normalisation (SWAN) consists of two steps [7]. The first step takes a subset of 

probes, defined to be biologically similar based on CpG content, and determines an 

average quantile distribution from this subset. The second step adjusts the 

intensities of the remaining probes by linear interpolation onto the distribution of the 

subset probes.  
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In addition to the wateRmelon and Minfi functions, we applied 3 widely-cited 

methods in our comparison: BMIQ, peak-based correction and subset quantile 

normalisation [8, 9, 15]. BMIQ (a within-array method) first fits a 3-state beta mixture 

model (0%. 50% and 100% methylation) for Type I and Type II probes separately, in 

which probes are assigned to the state with maximum probability. This is followed by 

normalisation of Type II probes to the distributiuons of Type I probes in the same 

group. Peak-based correction independently estimates M-value peaks for Type I and 

Type II probes, followed by rescaling of the Type II assays to match the estimates 

obtained for Type I assays. Subset quantile normalisation (Tost method), normalises 

signal from Type II assays based on a set of Type I “anchor” probes, which are 

considered to be more reliable and stable. 

 

Normalisation assessment metrics 

Three previously published performance metrics were considered [11]. Differentially 

Methylated Regions Standard Error (DMRSE) measures the variation at sites 

defined as uniparentally methylated regions with an expected β value of 0.5. The 

standard error is computed by dividing the standard deviation of differentially 

methylated region β values by the square root of the number of samples. Genotype 

Combined Standard Error (GCOSE) examines highly polymorphic SNPs which have 

three genotypes: heterozygous or homozygous with the major or minor allele. This 

metric clusters observations into the three groups based on genotype and computes 

a mean-squared error for each cluster, then averages the three means. Finally, the 

Seabird metric computes the area under the curve (AUC) for a predictor trained on 

sex differences on the X chromosome, of which one is hypermethylated in females. 

Each of the normalisation metrics was ranked on each of the three metrics; the ranks 

were then averaged to compute a mean overall rank. 

 

DNAm predictor of BMI  

A DNAm predictor of body mass index (BMI) was derived using elastic net penalised 

regression (α = 0.5) on 18,413 participants from the Generation Scotland study [16]. 

The lambda value that minimised the mean error in a 10-fold cross validation 

analysis resulted in a weighted linear predictor containing 3,506 CpGs (see 

Supplementary Table 3). As the Generation Scotland DNAm resource was 

generated using the EPIC array, CpGs were first subset to the 445,962 sites that 

were common to the 450k array and that passed QC in the LBC analyses. They 

were further pruned to the 200,000 most variable CpG features (ranked by standard 
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deviation) to avoid a memory allocation error in the elastic net model. R’s biglasso 

package was used to implement an elastic net regression model [17–19]. The input 

to the model was a 200,000 x 18,413 matrix containing the CpG M-values for each 

individual. The target variable was the residuals from a linear regression model of 

log(BMI) adjusted for age, sex and 10 genetic principal components. The distribution 

of BMI in the two LBC studies and Generation Scotland are presented in 

Supplementary Figure 3. 

 

Prediction and Robustness 

Predictions of BMI were performed on both LBC datasets and the combined LBC 

dataset. An individual’s BMI was predicted by weighting their CpG values by the 

CpG weights from the Generation Scotland elastic net model. Overall model 

prediction performance was evaluated by Pearson’s correlation coefficient. 

 

Prediction robustness measures a normalisation method’s invariance to datasets 

being normalised independently, or jointly with another dataset. Robustness was 

calculated as the mean absolute difference between the independent and joint 

predictions across all individuals. The goal is to identify how the test datasets 

behave when predictions are made using data normalised jointly or separately. 

Small mean differences indicate normalisation methods that provide similar outputs 

irrespective of the data being normalised separately or together. Normalisation 

methods with large mean absolute differences result in inconsistent predictions 

depending on whether new individuals are normalised jointly with previous data or 

not. 
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Availability of Data 

According to the terms of consent for Generation Scotland (GS) participants, access 

to data must be reviewed by the GS Access Committee. Applications should be 

made to access@generationscotland.org. 

 

Lothian Birth Cohort data are available on request from the Lothian Birth Cohort 

Study, University of Edinburgh (https://www.ed.ac.uk/lothian-birth-cohorts/data-

access-collaboration). Lothian Birth Cohort data are not publicly available due to 

them containing information that could compromise participant consent and 

confidentiality. 

 

All code is available with open access at the following GitHub repository: 

https://github.com/marioni-group/DNAm_EpiScore_Projections 
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Figure 1: Schematic of normalisation pipeline, model training, and prediction steps. 
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Figure 2: Violin plot showing the distribution of Pearson correlations between 

observed BMI and the BMI EpiScore across normalisation methods. Dots within the 

violin plots are individual normalisation method estimates. 
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Figure 3: Bar plot comparing mean absolute value difference in BMI EpiScores 

between separately and jointly normalised cohorts. 
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Figure 4: Measured BMI and BMI EpiScores in LBC1936 for the nanet (lowest MAD) 

and nasen (highest MAD) normalisation methods after normalising the LBC1936 

data on its own and then jointly with LBC1921. Actual BMI (kg/m2) is plotted for 

individuals in ascending order of their LBC1936 EpiScore values (Panels A-B). BMI 

EpiScores are plotted against individuals in ascending order of their EpiScore values 

for the LBC1936-only dataset (red line) and together with LBC1921 (black line; 

Panels C-D).  
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Supplementary Table 1: Correlations between measured BMI and the BMI 

EpiScore in LBC1921, LBC1936 and LBC1921 + LBC1936 (Combined) for every 

normalisation method. The largest value in each column is highlighted in bold. 

 

Pearson Correlation 
Normalisation 
Method LBC1921 LBC1936 Combined 
BMIQ 0.319 0.484 0.432 
danen 0.338 0.484 0.439 
danes 0.353 0.469 0.426 
danet 0.339 0.469 0.433 
dasen 0.352 0.472 0.428 
daten1 0.347 0.473 0.431 
daten2 0.342 0.47 0.432 
PBC 0.329 0.481 0.435 
nanes 0.357 0.468 0.428 
nanet 0.349 0.464 0.431 
nasen 0.356 0.472 0.431 
naten 0.351 0.468 0.433 
Noob 0.311 0.478 0.423 
SWAN 0.337 0.494 0.445 
Tost 0.300 0.439 0.407 
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Supplementary Table 2. WateRmelon normalisation method descriptions. 

 

 Description of Normalisation Methods 

Normalisation Background 

Adjustment 

Between-Array 
normalisation 

Dye-Bias 
Correction 

naten None Type I/II together None 

nanet None None Type I/II together 

nanes None None Type I/II 
separately 

nasen None Type I/II 
separately 

None 

danet Adjusted None Type I/II together 

danes Adjusted None Type I/II 
separately 

dasen Adjusted Type I/II 
separately 

None 
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Supplementary Table 3: Model Weights 

2023-03-03_Table_S3.csv 
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Supplementary Figure 1: Heatmaps of normalisation method ranks for the DMRSE, 

GCOSE and Seabird metrics. 
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Supplementary Figure 2: Individual scores for the DMRSE, GCOSE and Seabird 

metrics across normalisation methods applied to LBC1921, LBC1936 and both 

cohorts combined. 
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Supplementary Figure 3: Density plot of BMI (kg/m2) in the Lothian Birth Cohort 

1921, the Lothian Birth Cohort 1936, and Generation Scotland. 
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Appendix 1: Converting BMI EpiScores back to the original (BMI kg/m2) scale.   

 

The following formula was used to rescale the BMI EpiScores: 

 

x1 � mean�� � 	SD�� x BMI����� 

x2 � coef�����	�
� � 	coef��� x age����� � 	coef��
 x sex����� 

������� � exp 	�1 � �2� 

 

Where lm is the residual from the model log(BMI) ~ age + sex in the training set 

(Generation Scotland), test is the corresponding test sample (LBC1921, LBC1936 or  

Combined), and coef is the set of coefficients from the model lm. 

 

 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 22, 2023. ; https://doi.org/10.1101/2023.03.22.23287572doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23287572
http://creativecommons.org/licenses/by/4.0/

