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Abstract  45 

Background 46 

Heterogeneity in the rate of β-cell loss in newly diagnosed type 1 diabetes patients is poorly 47 

understood and creates a barrier to designing and interpreting disease-modifying clinical 48 

trials. Integrative analyses of complementary multi-omics data obtained after the diagnosis of 49 

T1D may provide mechanistic insight into the diverse rates of disease progression. 50 

Methods 51 

We collected samples in a pan-European consortium that enabled the concerted analysis of 52 

five different omics modalities in data from 97 newly diagnosed patients. In this study we 53 

used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-54 

diagnosis decline in β-cell mass measured as fasting C-peptide. 55 

Results 56 

Two molecular signatures were significantly correlated with fasting C-peptide levels. One 57 

signature showed a correlation to neutrophil degranulation, cytokine signaling, lymphoid and 58 

non-lymphoid cell interactions and G-protein coupled receptor signaling events that were 59 

inversely associated with rapid decline in β-cell function. The second signature was related to 60 

translation and viral infection were inversely associated with change in β-cell function. In 61 

addition, the immunomics data revealed a Natural Killer cell signature associated with rapid 62 

β-cell decline.  63 

Conclusion 64 

Features that differ between individuals with slow and rapid decline in β-cell mass could be 65 

valuable in staging and prediction of the rate of disease progression and thus enable smarter 66 

(shorter and smaller) trial designs for disease modifying therapies, as well as offering 67 

biomarkers of therapeutic effect.  68 

 69 
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Introduction 76 

Type 1 diabetes is an autoimmune disease involving environmental and genetic factors that 77 

trigger immune-mediated pancreatic β-cell dysfunction and destruction that results in insulin 78 

loss and symptomatic hyperglycemia requiring lifelong insulin therapy1. Globally, around 1.2 79 

million people below the age of 20 years have type 1 diabetes, with an annually increasing 80 

incidence of 3% influenced strongly by geography2. Insulin replacement therapy is unable to 81 

fully mimic physiological control of blood glucose and therefore, many people living with type 82 

1 diabetes develop severe disease complications that are directly attributable to prolonged 83 

glycemic exposure3, with markedly reduced life expectancy4. In the face of the disease burden 84 

and unmet need, international consortia are mobilizing to develop disease-modifying therapies. 85 

For example, therapies that maintain even minimal residual C-peptide secretion capacity have 86 

been found to have demonstrable clinical benefit5. An emerging barrier to this effort is disease 87 

heterogeneity. In particular, the rate of decline of β-cell capacity is highly variable, for reasons 88 

that remain unclear. As a result, clinical trial designs for disease-modifying therapies are 89 

necessarily cumbersome, requiring large sample sizes and prolonged observation. In addition, 90 

opportunities for tailored disease-modifying therapies are limited by an unclear understanding 91 

of the factors that drive diabetes progression after diagnosis.  Gaining this knowledge could 92 

provide the attainment for improved participant inclusion in focused designed trials to foster 93 

their success and participant benefit6.  94 

 95 

Studies with this goal conducted to date have typically been constrained by limitations to cohort 96 

size and the number of different data dimensions available for analysis7,8. Thus, it has not been 97 

possible to conduct studies with an emphasis on hypothesis-generating, unbiased approaches, 98 

and integration of data across pathophysiological systems. These require large-scale, inter-99 

disciplinary research efforts, in which carefully curated longitudinal clinical cohorts are aligned 100 

with multi-parametric technology platforms. Such a systems-based approach can address key 101 

questions with less bias and generate novel hypotheses on disease drivers. We used this strategy 102 

in the setting of a pan-European research consortium in which people with newly diagnosed 103 

type 1 diabetes as well as people at risk of developing type 1 diabetes (antibody positive) were 104 

enrolled into a master protocol9 to conduct a prospective study in search of factors that correlate 105 

with the rate of decline in β-cell mass/function. This endeavor was supported by the Innovative 106 

Medicines Initiative-2 Joint Undertaking, where INNODIA was created, being a private-public 107 

partnership of 40 partners in 16 countries. In the natural history study, people with newly 108 

diagnosed type 1 diabetes and unaffected family members are in follow up, allowing deep 109 
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clinical characterization, as well as multi-omics analysis of samples (blood, urine, stool) 110 

collected and analyzed using standardized operating procedures (www.innodia.eu). Here we 111 

report the multi-omics analysis of the ‘first 100’ people with newly diagnosed disease. We 112 

report the existence of latent factors integrated from transcriptomic, small RNA, genomic, 113 

targeted proteomic, lipidomic, metabolomic, and immunomic-level data that show a 114 

relationship to subsequent rates of disease progression and have potential value as stratification 115 

and therapeutic target identification tools.  116 
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Results 117 

C-peptide decline over time 118 

The individual rates of decline in C-peptide levels over time were calculated, defined as the 119 

slope of C-peptide change over 12 months as described in Methods (Supplementary Fig. 1). 120 

Two individuals only had one available C-peptide measurement and were not assigned a group 121 

as C-peptide decline could not be determined. An overall trend of C-peptide decline over time 122 

was observed for the entire cohort (p-value 0.0001) (Fig. 2A). By calculating the C-peptide 123 

slopes using a linear mixed-effect model, the participants were divided into terciles (equal-124 

sized), classified as rapid, slow, and increasing progression groups, yielding three groups with 125 

distinct progression patterns (Fig. 2B). All three progression groups had a similar estimated 126 

baseline C-peptide value (p-value 0.296), but significant C-peptide slopes (p-value < 0.0001). 127 

The clinical features for each of the progression groups are shown in Table 1. 128 

 129 

We further analyzed the relationship between age and C-peptide change over time (Fig. 2C) as 130 

this was the only significant difference between the progression groups (Table 1). Participants 131 

less than ten years old had a significantly lower baseline C-peptide level compared to those 132 

older than ten years (p-value < 0.0001), whereas baseline values did not differ between the 10-133 

18 years and >18 years age groups (p-value 0.85). However, the C-peptide change over time 134 

was not significantly different between the three age intervals (p-value 0.46). This indicated 135 

that age is associated with baseline C-peptide values but the decline in C-peptide over time is 136 

similar for all age groups. In addition, when investigating the distributions of C-peptide decline 137 

rates, children < 10 years old had a significantly different distribution of decline rates than 138 

those aged 10-18 years (p-value 0.0072). However, neither 10-18 year and >18 year groups nor 139 

the >18 year and < 10 year groups had different distributions (p-values 0.075 and 0.7, 140 

respectively) (Supplementary Fig. 2). These findings indicate a degree of association between 141 

the rate of decline and age among children, and as a result, age was included after log 142 

transformation as a covariate in our models to correct for potential effects on the relationship 143 

between C-peptide slopes and ‘omics. 144 

 145 

Evaluating the association of sex with the C-peptide change over time (Fig. 2D) we found no 146 

significant association with baseline C-peptide (p-value 0.64) or slope (p-value 0.16).  147 

 148 

 149 

 150 
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Multi-omics integration analysis 151 

The multi-omics data set overview is shown in Fig. 3A. Missing values, seen predominantly in 152 

the immunomics data set, are disregarded by MOFA and do not affect the decomposition of 153 

the data into latent factors. After training MOFA on the multi-omics data set (Fig. 3B) the latent 154 

factors that capture most of the variance across participants were represented by the mRNA 155 

and miRNA data. MOFA captures latent factors with common variance across the different 156 

data sets, even though certain data types appear to be responsible of most of the captured 157 

variance (Factors 1 to 7). This indicates that certain degree of heterogeneity exists across data 158 

sets, making the integration more challenging. 159 

 160 

Importantly, however, latent factors 15 and 18 were significantly associated (p-values < 0.1 161 

adjusted by Benjamini-Hochberg) with C-peptide slopes (Fig. 3D) but not with age or baseline 162 

C-peptide. The amount of variance captured by latent factors 15 and 18 is 2.62% and 1.84%, 163 

respectively, indicating that the decline of C-peptide over time is not among the major sources 164 

of variance across the participants, but is sufficiently strong to be captured by this method. The 165 

differences in the strength of associations for latent factors 15 and 18 with the progression 166 

groups and C-peptide slopes indicated that latent factor 15 captures a non-linear association 167 

with the progression groups (Fig. 3C), and for latent factor 18 a linear association with the rate 168 

of C-peptide decline (Fig. 3E). As the two factors correlate with C-peptide decline, they may 169 

contain molecular signatures useful for explaining the differences in disease progression 170 

between patients. Therefore, we continued a thorough scrutiny of these factors. 171 

 172 

Differential gene expression analysis 173 

Differentially expressed genes (DEGs) were identified between the different progression 174 

groups, with batch and age groups used as covariates (Fig. 4). P-values were adjusted for 175 

multiple testing using the Benjamini-Hochberg procedure and genes with an adjusted p-value 176 

< 0.1 were reported as differentially expressed genes (DEG). Fig. 4 shows the volcano plots of 177 

the different comparisons together with the genes belonging to latent factors 15 and 18. A total 178 

of 339 DEGs were observed comparing the rapid decline group and the increasing group (Fig. 179 

4A, Supplementary Table 7), 33 DEGs between the rapid and slow decline group (Fig. 4B, 180 

Supplementary Table 8), and 1,205 DEGs between the slow decline group and the increasing 181 

group (Fig. 4C, Supplementary Table 9). Additionally, differential gene expression was 182 

performed for the C-peptide slopes, hence studying the linear change in gene expression with 183 
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respect to the rate of decline of C-peptide over time. Here we found 484 DEGs (Fig. 4D, 184 

Supplementary Table 10).  185 

 186 

More DEGs were observed when comparing the slow and increasing than between rapid and 187 

increasing progression groups, with little overlap between the significant top-ranking genes. 188 

Additionally, very few genes were differentially expressed between rapid and slow progression 189 

groups. Altogether, these results might indicate that even though the rapid and slow progression 190 

groups are more alike, the set of DEGs between these two groups and the increasing group are 191 

not the same. To further confirm this, two additional differential expression analyses were 192 

performed. One between the rapid-slow groups combined versus the increasing group and 193 

another between the slow-increasing groups combined versus the rapid. The analyses showed 194 

that the rapid-slow vs increasing comparison produced 1,804 DEGs (Supplementary Table 11), 195 

while the slow-increasing vs rapid comparison produced 18 DEGs (Supplementary Table 12). 196 

This indicates that the increasing progression group is much more dissimilar in its blood sample 197 

expression profile towards the other two groups at the early stage of type 1 diabetes 198 

manifestation. Therefore, the underlying biological processes involved in the developing 199 

disease progression do not vary much at this early time of the disease manifestation among 200 

people experiencing in the future different degrees of loss of β-cell function. At baseline they 201 

vary significantly more when comparing people experiencing in the future loss of β-cell 202 

function and those experiencing an improvement in β-cell function. 203 

 204 

The similarity between DEGs found by the continuous change in C-peptide levels (n=484) and 205 

DEGs between the rapid and increasing group (n=339) showed an overlap of 209 genes. The 206 

rapid-slow vs increasing DEGs (n=1,804) had a bigger overlap with the continuous C-peptide 207 

levels where 313 of the same DEGs were found. In all cases, the DEGs had the same sign of 208 

their log2 fold changes for both analyses. Therefore, most DEGs were observed for the 209 

continuous change were also found when investigating progression groups.  Nonetheless, we 210 

believe that the linear association of blood gene expression at baseline with the C-peptide 211 

slopes is more informative regarding the disease progression. We observe that change in β-cell 212 

function follows a gradient, so by categorizing participants into groups, we lose the resolution 213 

that the C-peptide slopes are providing.  214 

 215 

 216 

 217 
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Annotation of latent factors 218 

To examine the biological pathways in the two most relevant latent factors, we used gene set 219 

enrichment analysis. This analysis was divided into genes positively regulated in the rapid 220 

decline group and genes negatively regulated in the rapid decline group. Fig. 5 displays the top 221 

15 significant pathways in each of the two associated latent factors (p-values < 0.1 adjusted by 222 

Benjamini-Hochberg). Negatively regulated genes in latent factor 15 are enriched in the 223 

immune system and signaling by G protein-coupled receptors (GPCR) pathways. Of specific 224 

interest are pathways associated with innate immunity, such as neutrophil degranulation, with 225 

high expression of granule proteins (e.g. CTSs, MPO) pointing to the presence of activated or 226 

degranulated neutrophils; and platelet activation, signaling and aggregation (the latter not 227 

shown). Also, several pathways pointing to cytokine signaling and interleukin (e.g. IL-1β) 228 

signaling emerge. Regarding the role of GPCRs, several pathways are associated with latent 229 

factor 15, such as signaling by GPCRs, downstream signaling and GPCR ligand binding.  230 

Positively regulated genes in latent factor 15 are also enriched in immune system pathways, 231 

with again an important contribution of the innate immune system, although here it seems that 232 

the increase is mainly attributed to resting neutrophils, with for instance high expression of 233 

LY96. Collectively these data show that GSEA pathways in innate immunity are mainly 234 

associated with the activation status of the neutrophils, with shift in the balance of resting 235 

neutrophils versus activated or degranulated neutrophils.  236 

 237 

Negatively regulated genes in latent factor 18 are enriched in influenza infection pathways and 238 

mRNA translation pathways, suggesting that viral mRNA replication and translation by host 239 

cell machinery are major pathological features of this association. Positively regulated genes 240 

in latent factor 18 did not show a particular pattern of enrichment.  241 

 242 

Furthermore, the relation of the latent factors’ genes to previous type 1 diabetes publications 243 

was studied. Using the Open Targets database10, a total of 174 genes out of the 668 top genes 244 

(three-fold higher than expected by chance) in the latent factor 15 have been previously 245 

associated with type 1 diabetes (p-value 0.03). On the other hand, the overlap between the top 246 

genes in the latent factor 18 and associated disease genes was not significant. These results 247 

indicate that latent factor 15 is capturing a set of genes composed of known disease targets (e.g. 248 

INSR, NDUFA4, CTSH) as well as potential new candidate genes already detectable in blood 249 

in the early phase of type 1 diabetes.  250 

 251 
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Interpretation of biological networks 252 

Biological networks were constructed for latent factors 15 and 18 separately, based on protein-253 

protein or protein-protein-miRNA interactions (Supplementary Fig. 3 and 4). As the two 254 

network types yielded similar results, we selected the protein-protein-miRNA networks for the 255 

focus of our interpretations. The latent factor 15 network revealed a diverse set of biological 256 

functions (Supplementary Fig. 5), some of them overlapping with the pathways shown in Fig. 257 

5. Immune system responses, signaling by different receptors and lipid metabolism are (widely) 258 

represented in these clusters. Notably there is an enrichment of lipid metabolism pathways as 259 

the lipidomic data also influenced latent factor 15. Some of the genes significantly associated 260 

with the C-peptide slopes also appear in several of the clusters, which further validates the 261 

biological processes captured by the latent factor. The latent factor 18 network was smaller and 262 

had more loosely defined clusters (Supplementary Fig. 6). Nonetheless, it captured a similar 263 

set of biological functions compared to the latent factor 15 network. Eukaryotic/viral mRNA 264 

translation is the main difference between the two networks, which appear as the biggest and 265 

more interconnected cluster of the latent factor 18 network. In this case, only one of the genes 266 

in this network was significantly associated with the C-peptide slopes.  267 

 268 

Immunomics signature 269 

Analysis of immune cell populations identified based on standard markers and their association 270 

with the C-peptide slopes revealed that Natural Killer (NK) cells were significantly associated 271 

after p-value adjustment, (Fig. 6A), with higher levels of NK cells observed in people with 272 

slow disease progression (Fig. 6B). Examination of the relationship between C-peptide slope 273 

and NK cell frequency in individual progression groups indicated the strongest correlation was 274 

observed among rapid progressors (Fig. 6C). Unsupervised analysis of the immunomics data 275 

revealed distinct clusters among the progression groups.  Fig. 7A shows a FlowSOM color-276 

density map of CD16 expression levels with node sizes representing the frequency of cells in 277 

each cluster. Meta-cluster 19 (MC-19) was assigned as the primary NK (CD56loCD16+) subset 278 

based on lineage marker expression and was significantly more abundant in the increasing 279 

versus rapid progression groups (8.8 vs 6.3% p-value=0.013).  Examination of markers of NK 280 

cell activation and differentiation (KLRG1, TIGIT, CD38, and CD57) in the different 281 

progression groups showed higher expression of KLRG1, in the increasing group but lower 282 

levels of CD38. 283 

 284 
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Comparison of the genes associated with latent factor 15 and the leukocyte gene signature 285 

matrix LM2211 revealed an overlap of 52 genes and enrichment in immune cell-specific genes 286 

(p-value 0.0001). The genes were representative of the following five main groups, T-cell 287 

specific, macrophage M1 specific, monocyte specific, neutrophil specific, and eosinophil 288 

specific (Supplementary Fig. 7). In this way, in addition to capturing immune-related pathways, 289 

the latent factor 15 broadly represented immune cell-specific genes. 290 

 291 

Other ‘omics associations with disease progression 292 

The association of factors derived from running MOFA without the transcriptomics data, did 293 

not yield any significant associations with the progression groups nor the C-peptide slopes. We 294 

can draw two conclusions based on these results. Firstly, the variance of the miRNA and 295 

lipidomics captured by latent factor 15 might indicate that these two omics data sets are only 296 

informative of the disease progression in combination with transcriptomics. Interestingly, an 297 

enrichment on lipid metabolism pathways was apparent among the genes associated with latent 298 

factor 15, indicating that these pathways might have an effect of disease progression. This 299 

shows how integration of both lipidomics and transcriptomics data aid in discovering 300 

enrichment in specific pathways. Similarly, the incorporation of transcriptomics and miRNA 301 

data allowed the discovery of enrichment in viral infection pathways. 302 

 303 

Secondly, the main difference between transcriptomics and the other omics data was that it was 304 

determined from whole blood. The remaining omics are collected either from serum, plasma, 305 

or PBMCs. Even though some analytes may give similar results, samples obtained from the 306 

same medium are more easily comparable. Therefore, the disparity between omics that we 307 

observe in the latent factors and in the linear association of each omics data set might be caused 308 

by the source medium. This could be considered both a drawback and an advantage. On one 309 

hand, it is undesirable that this disparity exists because correlated analytes across omics cannot 310 

be studied. This makes the data integration challenging as we cannot observe the joint effect 311 

of multiple omics nor validate whether the analytes associated with the disease progression in 312 

one data type can also be observed in a different one. On the other hand, the heterogeneity 313 

across omics can be seen as complementary information. Each omics data set is capturing a 314 

different source of variation, thus, providing additional information not captured by the other 315 

omics types. Based on the current data, we cannot conclude whether the plasma and serum 316 

omics were not associated with the disease progression due to the medium or the analytes 317 

themselves.  318 

319 
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Discussion 320 

In this study, we identified two latent factors associated with β-cell decline. These factors were 321 

predominantly influenced by transcriptomics, with secondary contributions of miRNA and 322 

lipidomics, respectively. Latent factor 15 revealed an enrichment of immune system pathways, 323 

the most significant being associated with neutrophil degranulation, cytokine signaling, and 324 

immunoregulatory interactions between lymphoid and non-lymphoid cells. Moreover, there 325 

were multiple pathways associated with GPCR signaling events. More detailed GSEA revealed 326 

that disease progression (C-peptide slopes) was associated with an altered balance between 327 

resting and activated/degranulated neutrophils. This is in keeping with previous studies that 328 

showed a temporary decline in the number of circulating neutrophils in people with newly 329 

diagnosed type 1 diabetes, compared to healthy controls, as well as high circulating levels of 330 

neutrophil extracellular traps (NETs)12-14. The previous detection of neutrophils and NETs in 331 

the pancreas of deceased subjects affected by type 1 diabetes, and a correlation between 332 

circulating neutrophil numbers with C-peptide levels in pre-symptomatic subjects (non-333 

diabetic, at-risk) has implicated that activated neutrophils play a pathogenic role in type 1 334 

diabetes15. Our data add significantly to this hypothesis since we show in longitudinal follow-335 

up that the neutrophil profile at diagnosis associates with rate of disease progression.  336 

 337 

Of further interest, GSEA shows platelet activation to be a feature of latent factor 15, linking 338 

our findings to the recent demonstration of a role for activated platelets in the formation of 339 

platelet-neutrophil aggregates (PNAs), which are increased in the circulation of subjects during 340 

the development of type 1 diabetes16.  It is tempting to speculate that activation of GPCR 341 

pathways (also associated with latent factor 15) may play a role in these events since it is a 342 

response to a variety of stimuli (chemokines, cytokines, complement fragments) and can trigger 343 

neutrophil degranulation17.  344 

 345 

In contrast, latent factor 18, which was also associated with β-cell decline, is characterized by 346 

features of enrichment of viral mRNA translation and subsequent translation by the host cell 347 

machinery. There is a considerable body of literature that associates viral infections with early 348 

events in type 1 diabetes development as well as peri-diagnosis events18. As a result, virus 349 

infection has often been cited as an autoimmunity-triggering event as well as a disease-350 

precipitating event. Our findings in the context of the present study design are entirely 351 

consistent with the latter hypothesis, which could be addressed in follow-up viromic studies 352 
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targeted to samples in which both the relevant viral mRNA translation signals and negative 353 

slope of C-peptide decline are prominent. 354 

 355 

Molecular and cellular signatures of adaptive immune responses were by and large not 356 

observed to be associated with β-cell decline in our study, which might at first sight be 357 

considered a surprise, given the strong credentials, at genomic, pathological and mechanistic 358 

levels, for type 1 diabetes being the archetype of an organ-specific autoimmune disease. 359 

However, it is entirely plausible that the detection of such associations is challenging in whole 360 

blood or whole mononuclear cell analyses, both because the disease-relevant, β-cell antigen-361 

specific lymphocytes are rare, and even more importantly, because they may be sequestered at 362 

inflammatory sites. Certainly, smaller scale studies focused on using appropriately sensitive 363 

technologies have identified that the activation and differentiation state of circulating antigen-364 

specific cytotoxic T lymphocytes, for example, correlate with changes in β-cell function after 365 

the diagnosis of type 1 diabetes8. Amongst the lymphocyte studies presented here, our 366 

observation of a prominent NK cell signal related to rapid β-cell decline is of considerable 367 

interest. NK cells have features of both innate and adaptive immune cells and play a key role 368 

in anti-viral responses. Both pro-inflammatory and regulatory functions have been ascribed to 369 

these cells, and functional subtypes can be partially differentiated by surface markers. Previous 370 

studies examining the frequency of NK cells in individuals affected by type 1 diabetes have 371 

consistently reported lower circulating levels of both proinflammatory and regulatory NK cells 372 

when compared to aged-matched non-diabetic subjects19,20,10, potentially reflecting homing to 373 

inflammatory sites in the pancreas. Consistent with this, we observed lower circulating levels 374 

of NK cells (both effector and regulatory subtypes according to surface markers) in the rapid 375 

decline group. Of interest, reduced circulating NK cell levels are also associated with viral 376 

infection, linking this observation to the viral signatures already described. Future functional 377 

studies will be required to explore the pathological implications of these findings, since the 378 

immune phenotyping performed here was limited to expression of CD38 (NK cell activation) 379 

and KLRG1 (an inhibitory receptor associated with an exhausted phenotype).  380 

 381 

Key strengths of the study include (i) the setting of a large, longitudinal natural history study 382 

conducted across multiple European sites according to standardized clinical and laboratory 383 

protocols; (ii) access through the INNODIA network to highly specialized, systems-based 384 

technology platforms for parallel multi-parametric analysis; (iii) leverage of new tools in 385 

integrated multi-omics factor analysis to discover signatures that are significantly associated 386 
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with rate of disease progression for the year following diagnosis. This period of the disease is 387 

important since it represents the phase during which disease-modifying immunotherapies are 388 

typically trialed for their effect on arresting β-cell decline. Factors identifiable at baseline that 389 

associate with faster β-cell decline could be used to conduct shorter and smaller trials (e.g. by 390 

enrollment of a rapid-decline group), an important step towards de-risking the investment 391 

needed to bring disease modifying strategies into clinical use.  392 

 393 

Finally, we want to highlight specificities of the present study that can be interpreted as 394 

limitations or strengths. Our INNODIA natural history collection involves individuals from the 395 

ages of one up to 45 years, and thus includes the whole lifespan of people living with type 1 396 

diabetes. Although this may render interpretation of findings in this clearly heterogenic disease 397 

more complex, it may add to the identification of common factors that drive disease, 398 

irrespective of age. We used fasting C-peptide as read-out for β-cell function rather than 399 

stimulated C-peptide and could demonstrate similar trends in decline of function using this 400 

simple parameter. Although collecting throughout Europe, the population studied is almost 401 

completely white Caucasian, thus limiting the generalizability of the findings to a global 402 

population, where type 1 diabetes is becoming more prevalent in non-Caucasian people. 403 

Confirmation of our observations will therefore be needed in more diverse cohorts. Our work 404 

reports on a small cohort of just under 100 people with newly diagnosed disease. However, we 405 

demonstrate that even in such small numbers, using deeply phenotyped individuals and 406 

standardized operating procedures, application of systems biology techniques can lead to 407 

significant associations. Here we believe that the collaboration between academics, 408 

foundations, industry and people affected by type 1 diabetes and their families within 409 

INNODIA was a unique driver. We created strict protocols for follow up where people could 410 

be convinced to participate with support of materials created by the PAC (People with diabetes 411 

Advisory Committee), we set up a highly standardized sample collection (e.g. even 412 

standardizing the pipet tips for miRNA sample collection) and applied homogeneous 413 

laboratory procedures. Importantly, we brought all data into a GDPR-conform centralized 414 

database, allowing clean data collection and high quality data for input into the analysis.  415 

 416 

In summary, the presented study addressed the drivers of disease heterogeneity in type 1 417 

diabetes by leveraging opportunities presented by a highly integrated clinical network featuring 418 

embedded research platforms with the capability to generate large systems-level datasets. One 419 

of the two factors identified showed correlation to neutrophil degranulation, cytokine signaling, 420 
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lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signaling events, 421 

while the second signature, pathways related to translation and viral infection were inversely 422 

associated with change in β-cell function. The derived latent factors were used to identify 423 

specific signatures, which were further investigated for biomarker opportunities and 424 

mechanistic pathways that correlate with β-cell decline. This shows how multi-omics analysis 425 

can be used as an important foundation for the development and testing of disease-modifying 426 

therapies in the future.   427 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 28, 2023. ; https://doi.org/10.1101/2023.03.22.23287261doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.22.23287261
http://creativecommons.org/licenses/by/4.0/


 16 

Methods 428 

Subjects with type 1 diabetes 429 

For this in depth analysis, we included the first 100 subjects with newly diagnosed (<6 weeks) 430 

type 1 diabetes enrolled in the INNODIA natural history study. Using a consecutive 431 

recruitment approach, subjects were included based on baseline omics data availability, an even 432 

gender distribution and biosample availability, positivity for at least one diabetes-related 433 

autoantibody (GADA, IA-2A, IAA, ZnT8A), and age between one to 45 years. Two subjects 434 

were excluded due to incomplete ‘omics datasets and one following the detection of a MODY 435 

gene mutation.  The final analysis cohort comprised 49 male and 48 female study participants 436 

(Table 1), the average age at diabetes diagnosis of 13.2 years (SD 8.5; two-ten years n=38; ten-437 

18 years n=41, 18-39 years n=18), mean disease duration of 3.9 weeks (SD 1.5) and at baseline 438 

an average total daily insulin dose of 0.51 IU/kg (SD 0.27), HbA1c of 75 mmol/mol (SD 21.3), 439 

fasting C-peptide level of 269 pmol/l (IQR 25.7), fasting glucose level of 7.78 mmol/l (IQR 440 

2.8)  and BMI SDS of 0.327 units (SD 1.1). Fasted C-peptide measurements were made at four 441 

visits (Fig. 1A). To define the rate of C-peptide decline over time, we utilized linear mixed-442 

effect models to fit the log-transformed fasted C-peptide from day of diagnosis to 12 months 443 

(Fig. 1B). The model was fitted using subject-level random effects and the rate of C-peptide 444 

change over time. Mixed-effect models were fit using the lme4 R package21 with an 445 

unstructured random effects variance-covariance matrix. 446 

 447 

Some individuals did not complete all visits. A total of 69 individuals completed the four visits 448 

(baseline, three, six, and 12 months), 21 individuals completed three visits, five individuals 449 

completed two visits, and two individuals completed only the baseline visit (not necessarily 450 

consecutive visits). At each visit HbA1c was measured and stimulated C-peptide response was 451 

determined by mixed meal tolerance test (MMTT) from individuals of at least five years of 452 

age. The islet autoantibodies GADA, IA-2A, IAA, and ZnT8A were quantified with the use of 453 

specific radiobinding assays as described earlier22.  454 

 455 

Targeted serum proteomics by liquid chromatography-mass spectrometry (LC-MS/MS)  456 

Targeted proteomics of baseline serum samples from 91 individuals was performed using 457 

liquid chromatography with selected reaction monitoring (SRM) mass spectrometry (LC-458 

MS/MS) to measure 195 peptides, representing 98 target proteins and retention time markers. 459 

The list of peptides and proteins measured is provided in Supplementary Table 1. 460 
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The samples were reduced, digested, and alkylated, then spiked with isotopically labelled 461 

synthetic analogues of the targets, as previously described23. The batchwise analyses of the 462 

samples were made with the periodic inclusion of three internal QC reference controls. Skyline 463 

software24 was used to both develop the acquisition method and perform primary processing 464 

of the data, including peak integration and quality assessment. The un-normalized data was 465 

subsequently exported and prepared for batch correction and normalization25.  466 

 467 

Whole blood transcriptomics  468 

We performed transcriptome analysis on whole blood samples collected from 92 individuals 469 

as well as four reference RNAs (two anonymous donors) used for normalization and assessing 470 

batch effects across sample pools. Prior to RNA extraction, frozen whole blood PAXgene 471 

samples were thawed at room temperature for 2 hours and subjected to RNA extraction using 472 

PAXgene Blood miRNA Kit (PreAnalytix/QIAGEN, Cat# 763134). Total RNA, including 473 

RNA longer than approximately 18 nucleotides, was purified according to the manufacturer’s 474 

protocol. Sample concentration was measured with a Nanodrop 2000 spectrophotometer and 475 

Qubit Fluorometric Quantitation (Thermo Fisher Scientific).  476 

The quality of the samples was ensured with the Experion Automated Electrophoresis System 477 

(Bio Rad) and Agilent 2100 Bioanalyzer RNA Pico chip. Library preparation and sequencing 478 

were carried out at the Finnish Functional Genomics Centre (FFGC). Before starting library 479 

preparation, ERCC Spike-in Mix 1 (Invitrogen P/N 4456739) was added to 100 ng RNA 480 

according to the kit's protocol. RNAseq libraries were prepared using the TruSeq stranded 481 

mRNA HT kit and protocol # 15031047 (Illumina). The quality and quantity of the amplified 482 

libraries were measured using Advanced Analytical Fragment Analyzer (Agilent) and Qubit 483 

Fluorometric Quantitation, respectively. Pooled libraries were sequenced on an Illumina 484 

NovaSeq 6000 instrument, using 2x50 bp paired-end sequencing. bcl2fastq2 Conversion 485 

Software v2.20.0.422 was used to convert base call files into FASTQ files. The quality of the 486 

raw sequencing reads was checked using the FastQC tool (v. 0.11.14). The sequencing data 487 

preprocessing was carried out using R (v. 3.6.1) and the related Bioconductor module (v. 3.9). 488 

The reads were aligned to UCSC hg38 human reference genome (downloaded from Illumina 489 

iGenomes site https://support.illumina.com/sequencing/sequencing_software/igenome.html) 490 

using Rsubread package (v. 1.34.7) and the same package was used to produce the read counts 491 

for the RefSeq annotated genes. The gene-wise counts per million (CPM) were generated using 492 

the edgeR package (v. 3.26.8). 493 

 494 
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Circulating Small RNAs sequencing 495 

Expression levels of circulating Small RNAs were analyzed from baseline plasma samples of 496 

n=91 subjects on the same sample set adopting two different Next Generation Sequencing 497 

(NGS) approaches: (i) probes-based sequencing focused on miRNAs (targeted) through HTG 498 

EdgeSeq miRNA whole transcriptome assay (Supplementary Table 2); (ii) Small RNAs 499 

sequencing using the QiaSeq miRNA/small RNA library preparation kit (untargeted).  500 

Plasma samples were shipped to HTG Molecular Inc. in order to be analyzed using rigorous 501 

standard procedures. The HTG EdgeSeq miRNA whole transcriptome assay method is an RNA 502 

extraction free approach that exploits quantitative nuclease protection assay chemistry using 503 

sequence-specific nuclease-protection probes (NPPs). This was followed by an NGS step, in 504 

order to allow semi-quantitative analysis of a panel of n=2102 targeted miRNAs (including 505 

n=13 housekeepings, n=5 negative process controls, n=1 positive process control and n=2083 506 

targeted miRNAs) from 15 µL of plasma. HTG EdgeSeq Plasma Lysis buffer was added to 15 507 

µL of each plasma sample. Lysed samples were then transferred to a standard 96-well plate. 508 

The NPPs were added to the lysed samples followed by the addition of S1 nuclease to digest 509 

non-hybridized RNA. The nuclease digestion reaction was then stopped and each processed 510 

sample was used as a template for PCR-based library preparation using specifically designed 511 

primers (tags), which share common sequences complementary to 5’-end and 3’-end “wing” 512 

sequences of the probes and common adapters required for cluster generation on Illumina NGS 513 

platform. Libraries were prepared in accordance with HTG standard procedures, HTG EdgeSeq 514 

PCR processing, and HTG EdgeSeq AMPure cleanup of Illumina Sequencing Libraries. 515 

Libraries concentration was evaluated by the HTG EdgeSeq KAPA Library quantification kit, 516 

and each library was normalized and pooled using the HTG EdgeSeq RUO library calculator. 517 

Then, pooled libraries were denatured in 2 N NaOH and sequenced (final concentration 4 pM) 518 

onto Illumina NextSeq550 platform (High Output kit v.2 cat. FC-404-2005). Data were 519 

returned from the sequencer as demultiplexed FASTQ files. The resulting reads (on average 520 

79% passing filter, corresponding to a total of 8.33x108 passing filter reads) were aligned 521 

referring to miRbase v.20 using HTG Parser software. Raw reads were standardized into CPM 522 

and filtered through the “limma Edge R” R Bioconductor package. For the QiaSeq Small RNA 523 

sequencing, total RNA extraction was performed from 200 µL of plasma through 524 

Serum/Plasma Norgen kit (cat. 55000). Small RNA Libraries were prepared using the QiaSeq 525 

miRNA library kit (cat. 331505) following the manufacturer’s instructions. QiaSeq strategy 526 

assigns Unique Molecular Index (UMI) during reverse transcription step to every mature 527 

miRNA molecule, in order to enable unbiased and accurate Small RNAome-wide 528 
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quantification of mature miRNAs and additional small RNAs by NGS. Libraries quality control 529 

(QC) was performed by quantifying their concentration through QUBIT 3.0 spectrofluorometer 530 

(Qubit™ dsDNA HS Assay Kit, cat. Q32854) and assessing their quality using capillary 531 

electrophoresis in Bioanalyzer 2100 (Agilent High Sensitivity DNA kit cat. 5067-4626). The 532 

quality of libraries was evaluated considering electropherograms showing a peak comprised 533 

between 175 and 185 bp as high quality. Following QC, all libraries were normalized until 2 534 

nM and pooled, denatured in 0.2 N NaOH, and further sequenced (final concentration 175 pM) 535 

using the Illumina NovaSeq 6000 platform (NovaSeq 6000 SP Reagent Kit (100 cycles) 536 

cat. 20027464, NovaSeq XP 2-Lane Kit cat. 20021664, using the XP protocol applying 75x1 537 

single reads). Data were returned from the sequencer as demultiplexed FASTQ files. Resulting 538 

reads (on average 87% passing filter, corresponding to a total of 1.11x109 passing filter reads) 539 

were mapped using QIAGEN Gene Globe data analysis center software, which adopts a 540 

sequential alignment strategy to map to different databases (perfect match to miRbase v.21 541 

mature, miRBase hairpin, noncoding RNA, mRNA and other RNA, and ultimately a second 542 

mapping to miRBase mature, where up to two mismatches are tolerated) using bowtie (bowtie-543 

bio.sourceforge.net/index.shtml). At each step, only mapped sequences were passed to the next 544 

step.  545 

 546 

Plasma Metabolomics (GCxGC-MS)  547 

83 metabolites, covering various amino acids, fatty acids and sugars etc. (Supplementary Table 548 

3), was generated from baseline plasma samples as described before26. In brief, 30 μL blood 549 

samples from 93 participants were spiked with 10 μL of the internal standard mixture (d4-550 

succinic acid, d5-glutamic acid, d8-valine, and d33-heptadecanoic acid.; Sigma Aldrich). 551 

Samples were vortex-mixed and incubated on ice for 30 min and centrifuged (10,000 rpm, 3 552 

min, 4◦C). Finally, 180 µL of the filtered extracts were transferred to glass vials and evaporated 553 

dry before derivatization.  554 

The samples were derivatized using a previously described procedure27, where reactive groups 555 

are converted into trimethysilyl derivates, which increases the volatility of the biomolecules. 556 

The polar metabolites were then analyzed using a Pegasus 4D (LECO; Saint Joseph; USA) 557 

system, which combines two-dimensional chromatographic separation with time-of-flight 558 

(TOF) mass spectrometric detection.  Identifications were assigned using the National Institute 559 

of Standards (NIST) database and Steno Diabetes Center Copenhagen in-house libraries. After 560 

data acquisition, the raw data were pre-processed into a peak table with ChromaTOF (LECO; 561 
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Saint Joseph; USA). Finally, data were post-processed in R by batch correction, truncation of 562 

outliers, and imputation of missing values. 563 

 564 

Plasma Lipidomics (LC-MS)  565 

The lipidome (Supplementary Table 4) was measured from baseline plasma samples of 94 566 

individuals and two unrelated control samples in four replicates following lipid extraction from 567 

a 10 μL plasma sample using a chloroform:methanol (2:2 V/V) lipid extraction method28. Nine 568 

stable isotope labelled and non-physiological lipid species were spiked as internal standards. 569 

(Supplementary Table 5). 570 

Samples were analysed in positive and negative ion modes of ultra-high-performance liquid-571 

chromatography mass-spectrometry (UHPLC-MS; Agilent Technologies; Santa Clara, CA, 572 

USA) at Steno Diabetes Center Copenhagen as described previously29-30. After data 573 

acquisition, the raw data were pre-processed into a peak table with MZmine 2. Finally, data 574 

were post-processed in R by denoising as normalization to internal standards, batch correction, 575 

truncation of outliers, and imputation of missing values. 576 

 577 

Nine stable isotope labelled and non-physiological lipid species were spiked as internal 578 

standards (Supplementary data table 2). 579 

 580 

 581 

PBMC (cryopreserved) multi-dimensional flow cytometry (Multi-FACS) immunomics 582 

The immunome was examined using cryopreserved peripheral blood mononuclear cells 583 

(PBMCs; that were freshly isolated and cryopreserved in Cryostor) from 76 baseline blood 584 

samples (Na-heparin) shipped in liquid nitrogen and processed at a single site by Multi-FACS. 585 

36-marker Multi-FACS Cytek Aurora panel (plus one viability dye) was set up and a specific 586 

flow gating strategy that allowed enumeration of 150 cell populations was applied 587 

(Supplementary Table 6). 588 

All flow data were also analyzed by OMIQ platform (www.omiq.ai), including unbiased 589 

clustering (FlowSOM) and dimensionality reduction (UMAP). In FlowSOM analysis, the 590 

median intensity of 36 markers were used to generate 100 nodes, which were further clusters 591 

as meta-cluster (k=30, grey area on FlowSOM map under randomized speed and Euclidean 592 

distancing metric). FlowSOM map provides a concise representation of the number of cell 593 

types and visualization of the differential marker profiles by color-density. 594 

 595 
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Samples were processed in five batches (between 12 to 16 samples per batch, consisting of a 596 

mixture of samples from each of the five INNODIA immune laboratories) together with two 597 

unrelated control samples in each batch using one 2.5x106 PBMCs per sample except for two 598 

samples where two aliquots were used due to poor percentage of recovery (range from 11.2 to 599 

228.8%, average of 68.1%). Viability assessed by trypan blue ranged between 70 and 100% 600 

(average 94%). An average of 1.51x106 (range 0.54-2.8x106) cells were used for staining. List 601 

of Multi-FACS flow panel antibodies and reagents used is detailed in Supplementary data table 602 

3. PBMCs were first stained using Live/dead blue for 15 min at room temperature, washed with 603 

FACS buffer (PBS with 0.2% BSA and 2mM EDTA), and incubated with Fc receptor blocker 604 

(TruStain FcX Fc; BioLegend) for 10 min at room temperature. Without wash, samples were 605 

stained in a 37˚C waterbath for 15 min using mastermix 1 (containing antibodies against 606 

CXCR3. CD117, CD294/CRTH2, and CD161). Samples were further stained in waterbath for 607 

15 min using mastermix 2 (containing antibodies against CXCR5, ICOS, CCR7, and CCR6), 608 

followed by 30 min at room temperature using mastermix 3 (Supplementary data table 3). 609 

Finally, samples were washed using FACS buffer, then fixed and resuspended in PBS 610 

containing 1% paraformaldehyde (Alfa Aesar). Single colour controls were made using PBMC 611 

for all colours except for CD294, CD117, CD161, and TCRgd where BD mouse or rat comp 612 

beads were used instead due to low cell expression. Single colour controls were subjected to 613 

the same buffer and fixed as the multi-colour stained samples. SpectroFlo QC beads were run 614 

daily and single colour controls were acquired in the reference library, which was subsequently 615 

used for live unmixing during sample acquisition on a Cytek Aurora cytometer. Flow data were 616 

analysed using FlowJo software (an example of the gating strategy is shown in Supplementary 617 

Fig. 8 and checked by an independent reviewer). 618 

 619 

Multi-omics data pre-processing, integration, and analysis 620 

For transcriptomics and miRNA data, the DESeq 2 package31 was used to normalize the counts 621 

using the variance stabilizing transformation (VST). The transcriptomics and miRNA data sets 622 

were filtered for low counts (features with less than 10 counts in total or features with zero 623 

counts in more than 90% of the samples). The proteomics, metabolomics, lipidomics and 624 

immunomics data sets were log2 transformed. The transcriptomics, proteomics, and 625 

immunomics data were corrected for batch effects associated with dataset-specific factors 626 

(sequencing at different days or different handling of the samples) using the limma package in 627 

R. Finally, all the data sets were corrected for age. The age was log-transformed to account for 628 

the growth effect in children (one year difference in adults is not equivalent to one year 629 
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difference in children).  This was necessary due to the high degree of age heterogeneity present 630 

in the cohort and the association of the fasted C-Peptide slopes with age.  631 

 632 

The omics data sets were integrated using the general framework in the Multi-Omics Factor 633 

Analysis (MOFA) package from 201832. MOFA performs a dimensionality reduction of the 634 

omics data into a lower-dimensional latent space (Fig. 1C). The latent factors generated by 635 

MOFA capture sources of global variability across the different omics data sets. Each factor 636 

has an underlying weight for every feature, which can be used to annotate the factors in terms 637 

of omics features, yielding a specific molecular signature for each factor. MOFA was run with 638 

default parameters and 20 latent factors. The model was initialized with different random seeds 639 

yielding similar results, generally only altering the number assigned to each factor associated 640 

with the C-peptide slopes. 641 

 642 
Latent factors were associated with the C-peptide slopes using the Spearman correlation. Other 643 

covariates were also analyzed such as age at baseline and C-peptide at baseline. The association 644 

of the latent factors with the progression groups was calculated using the Kruskal-Wallis test 645 

and each group was compared using a Mann-Whitney U test.  646 

 647 

Gene Set Enrichment Analysis (GSEA)33 was performed in order to better characterize the 648 

genes with the largest weight in the latent factors. This analysis was performed using the 649 

MOFA GSEA function that utilizes a modified version of the principal component gene set 650 

enrichment scheme (PCGSE)34. The Reactome database was the gene set annotation used for 651 

this analysis. The GSEA was performed separately for genes with a positive and negative 652 

weight in each latent factor. This was done to avoid combining genes that are upregulated 653 

(positive weight) and downregulated (negative weight) in the latent factor, as these two groups 654 

of genes might be involved in different biological pathways. The top 15 significant pathways 655 

for each latent factor (positive and negative weights) were selected and grouped by biological 656 

pathway.  657 

 658 

Differential gene expression of individual genes was determined with the DESeq 2 package31. 659 

Models included covariates for the batch variable (different runs) and the age of the people. 660 

Age was encoded as a categorical variable defined in three groups, less than ten years, between 661 

ten and 18 years, and more than 18 years. Differential gene expression was assessed between 662 

rapid and slow groups, rapid and increasing and slow and increasing, respectively.  663 
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 664 

For biological network analysis, two types of interaction networks were constructed. One was 665 

compiled from the STRING35 database to study protein-protein interactions or associations 666 

only. Another network was compiled from the mirTarBase36 (miRNA-gene), which was 667 

combined with the STRING network to study protein-protein-miRNA interactions or 668 

associations. The STRING database was filtered for high-confidence interactions (combined 669 

score above 0.7) and miRNA-gene interactions had to be reported by at least two publications 670 

and two non-high-throughput methods. We decided to focus on genes and miRNAs only 671 

because those were the omics types with higher weights in the most relevant latent factors. 672 

 673 

The association between the biological networks and the latent factors was performed using 674 

the PCSF graph optimization approach. This method allows us to interpret the biological 675 

landscape of the interaction network based on the importance/weight of each gene/miRNA in 676 

the latent factor. The output is a subnetwork that captures interactions between the 677 

genes/miRNAs with a higher importance in the latent factor. In order to select a subset of genes 678 

and miRNAs to construct the network, only genes with normalized absolute weights three-fold 679 

higher than expected by chance and miRNAs with normalized absolute weights two-fold higher 680 

than expected by chance were selected. Grid-search was performed to select the best 681 

parameters based on the network that had a high number of genes/miRNA from the latent factor 682 

while keeping number of genes/miRNA not observed in the latent factor low 683 

(µ=0.005, w=1, b=5000). The final network was constructed using 20 runs with noise to edge 684 

costs (r=0.1) that were combined and clustered using the edge-betweenness algorithm. Gene 685 

set enrichment analysis was performed on the clusters obtained from the network.  686 
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Figures 687 

  688 

Fig. 1. Cohort data and analysis overview. A) The cohort consists of 97 people with newly 689 

diagnosed type 1 diabetes. Multi-omics data were collected at baseline (within six weeks after 690 

diagnosis of type 1 diabetes) and clinical data were collected at baseline and at three, six, and 691 

12 months. B) Participants were divided into three groups based on their change of insulin 692 

secretion levels (fasted C-peptide measurements) from baseline to 12 months. C) Multi-693 

Omics Factor Analysis was performed to obtain an integrated signature across omics data 694 

types followed by differential expression analysis for each omics data type independently.  695 

  696 

Fig. 2: Fasted C-peptide trends over time. Time is represented as days from type 1 diabetes 697 

diagnosis. A) C-peptide values over time for all participants. B) C-peptide values over time 698 

divided into progression groups (progression terciles). C) C-peptide values over time for 699 

different age groups. D) C-peptide values over time for males and females, respectively. 700 

   701 

Fig. 3. A) Overview of the multi-omics data sets, describing the number of features per data 702 

set and the level of missing data (white). B) Latent factors obtained from MOFA, the color 703 

scale represents the variance captured by each of the latent factors indicating the level of 704 

integration of the data types for each factor. C) Association of latent factors 15 and 18 values 705 

with the different progression groups. D) Spearman correlation of latent factors with the 706 

fasted C-peptide slopes, baseline fasted C-Peptide, Age (log scale), and BMI-SDS. P-values 707 

were adjusted by Benjamini-Hochberg. E) Spearman correlation of fasted C-peptide slopes 708 

against latent factor values (15 and 18).  709 

 710 

Fig. 4. Volcano plot of differential gene expression between progression groups. The color 711 

indicates gene membership to either or both associated latent factors.  A) DGE between rapid 712 

and increasing progression groups (339 genes are differentially expressed). B) DGE between 713 

rapid and slow progression groups (33 genes are differentially expressed).  C) DGE between 714 

slow and increasing progression groups (1,206 genes are differentially expressed). D) DGE 715 

for C-peptide slopes (484 genes are differentially expressed). 716 

 717 

Fig. 5. GSEA was performed separately for genes with positive weights in the latent factor 718 

(upregulated in rapid decline) and genes with negative weights in the latent factor 719 
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(downregulated in rapid decline). Pathways are coloured depending on the main pathway 720 

they belong to, according to Reactome. P-values were adjusted using Benjamini-Hochberg. 721 

 722 
Fig. 6. Immunomics association with C-peptide slopes. A) Benjamini-Hochberg adjusted p-723 

value for the linear association of immune cells abundances with the C-peptide slopes 724 

(correcting for batch effects and age groups). B) NK cell levels for the different progression 725 

groups (as a frequency of total live mononuclear cells). C) Spearman correlation of fasted C-726 

peptide slopes versus NK cell frequency for the different progression groups. D) FlowSOM 727 

unbiased cluster analysis on live CD45+ PBMCs of Donor D07 (Increasing, left) and K40 728 

(Rapid, right) highlighting Metacluster-19 (red-circle) as a primary NK (CD56loCD16+) 729 

subset. Colour-density and circle size were overlaid as CD16 intensity and number of events, 730 

respectively. E) Bar charts representing NK marker expression on the selected clusters in 731 

each progression group. 732 

  733 
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Tables 734 

Table 1. Clinical and demographic data for the type 1 diabetes cohort across progression 735 

groups. P-values were calculated using the Kruskal-Wallis test.  736 
 737 
 Rapid 

(N=33) 
Slow 

(N=32) 
Increasing 

(N=32) 
P-value Overall 

(N=97) 

Sex      

Female 20 (60.6%) 15 (46.9%) 13 (40.6%) 0.256 48 (49.5%) 

Male 13 (39.4%) 17 (53.1%) 19 (59.4%)  49 (50.5%) 

Age (years)      

Mean (SD) 11.2 (9.17) 12.9 (7.94) 15.6 (7.94) 0.0125 13.2 (8.49) 

Median (IQR) 
[Min, Max] 

9.60 (8.97) [2.01, 
38.1] 

10.9 (8.68) [2.08, 
36.4] 

13.4 (5.23) [7.57, 
38.8] 

 11.8 (8.08) [2.01, 
38.8] 

Age Intervals      

<10 17 (51.5%) 14 (43.8%) 7 (21.9%) 0.16 38 (39.2%) 

>10-18 11 (33.3%) 12 (37.5%) 18 (56.3%)  41 (42.3%) 

>18 5 (15.2%) 6 (18.8%) 7 (21.9%)  18 (18.6%) 

Disease duration 
(weeks) 

     

Mean (SD) 3.88 (1.52) 3.80 (1.66) 4.10 (1.43) 0.843 3.93 (1.53) 

Median (IQR) 
[Min, Max] 

4.40 (2.50) 
[0.900, 6.40] 

4.35 (2.35) 
[0.900, 6.30] 

4.40 (1.70) 
[0.700, 6.10] 

 4.40 (2.20) 
[0.700, 6.40] 

BMI SDS      

Mean (SD) 0.0719 (1.05) 0.397 (1.02) 0.511 (1.20) 0.153 0.327 (1.10) 

Median (IQR) 
[Min, Max] 

0.0800 (1.19) [-
2.32, 2.47] 

0.350 (1.60) [-
1.56, 2.72] 

0.610 (1.35) [-
2.00, 2.28] 

 0.260 (1.57) [-
2.32, 2.72] 

Missing 1 (3.0%) 0 (0%) 0 (0%)  1 (1.0%) 

Glucose (mmol/l)      

Mean (SD) 8.43 (5.57) 8.42 (5.33) 6.45 (2.20) 0.22 7.78 (4.69) 

Median (IQR) 
[Min, Max] 

7.10 (2.70) [3.70, 
31.5] 

6.70 (2.93) [3.60, 
26.9] 

6.10 (2.25) [3.70, 
13.8] 

 6.40 (2.80) [3.60, 
31.5] 

Insulin dose 
(IU/kg) 

     

Mean (SD) 0.544 (0.279) 0.498 (0.247) 0.498 (0.281) 0.819 0.514 (0.268) 

Median (IQR) 
[Min, Max] 

0.545 (0.291) 
[0.136, 1.46] 

0.468 (0.243) 
[0.108, 1.20] 

0.500 (0.429) 
[0.0359, 1.01] 

 0.500 (0.354) 
[0.0359, 1.46] 

Missing 1 (3.0%) 1 (3.1%) 0 (0%)  2 (2.1%) 
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HbA1c 
(mmol/mol) 

     

Mean (SD) 72.2 (21.4) 74.9 (24.2) 78.0 (18.1) 0.699 75.0 (21.3) 

Median (IQR) 
[Min, Max] 

75.0 (27.3) [8.70, 
119] 

73.0 (29.5) [13.4, 
130] 

80.3 (22.4) [50.0, 
130] 

 77.5 (25.7) [8.70, 
130] 

Missing 1 (3.0%) 1 (3.1%) 1 (3.1%)  3 (3.1%) 

Baseline C-
peptide (pmol/l) 

     

Mean (SD) 235 (183) 248 (185) 324 (263) 0.296 269 (215) 

Median (IQR) 
[Min, Max] 

165 (228) [26.1, 
809] 

240 (204) [15.0, 
986] 

264 (268) [25.8, 
1290] 

 224 (239) [15.0, 
1290] 

12 Month C-
peptide (pmol/l) 

     

Mean (SD) 64.7 (59.8) 194 (137) 432 (206) <0.001 234 (214) 

Median (IQR) 
[Min, Max] 

41.6 (83.5) [11.7, 
222] 

161 (136) [45.8, 
635] 

433 (246) [96.7, 
896] 

 163 (283) [11.7, 
896] 

Missing 7 (21.2%) 9 (28.1%) 5 (15.6%)  21 (21.6%) 

GADA      

Negative 5 (15.2%) 11 (34.4%) 8 (25.0%) 0.199 24 (24.7%) 

Positive 28 (84.8%) 21 (65.6%) 24 (75.0%)  73 (75.3%) 

IA-2A      

Negative 9 (27.3%) 12 (37.5%) 9 (28.1%) 0.615 30 (30.9%) 

Positive 24 (72.7%) 20 (62.5%) 23 (71.9%)  67 (69.1%) 

IAA      

Negative 4 (12.1%) 10 (31.3%)   10 (31.3%)   0.118 24 (24.7%) 

Positive 29 (87.9%) 22 (68.8%)   22 (68.8%)  73 (75.3%) 

ZnT8A      

Negative 12 (36.4%) 10 (31.3%) 14 (43.8%)  0.582 36 (37.1%) 

Positive 21 (63.6%) 22 (68.8%) 18 (56.3%)  61 (62.9%) 

Detectable 
autoantibodies 

     

Mean (SD) 3.09 (0.947) 2.66 (0.902) 2.72 (0.851)   0.0961 2.82 (0.913) 

Median (IQR) 
[Min, Max] 

3.00 (2.00) [1.00, 
4.00] 

3.00 (1.00) [1.00, 
4.00] 

3.00 (1.00) [1.00, 
4.00] 

 3.00 (2.00) [1.00, 
4.00] 

 738 
 739 

  740 
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Other 741 

 742 

Data Availability 743 

The data generated and analysed is person-sensitive as it can be used to identify people based 744 

on their sequence variation and can be accessed in secure environments only. Access to data 745 

can be provided by application to the INNODIA Data Access Committee by emailing 746 

Professor Lut Overbergh (lutgart.overbergh@kuleuven.be). Processed results of GSEA 747 

analysis is available as supplementary material. 748 

 749 

Code Availability 750 

The primary software used for this work was Multi-Omics Factor Analysis (MOFA). The 751 

code for this software is available at https://github.com/bioFAM/MOFA2. 752 
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