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Abstract 
 
The 100,000 Genomes Project (100KGP) diagnosed a quarter of recruited affected participants, 

but 26% of diagnoses were in genes not on the chosen gene panel(s); with many being de novo 

variants of high impact. However, assessing biallelic variants without a gene panel is 

challenging, due to the number of variants requiring scrutiny. We sought to identify potential 

missed biallelic diagnoses independent of the gene panel applied using GenePy - a whole gene 

pathogenicity metric. 

 

GenePy scores all variants called in a given individual, incorporating allele frequency, zygosity, 

and a user-defined deleterious metric (CADD v1.6 applied herein). GenePy then combines all 

variant scores for individual genes, generating an aggregate score per gene, per participant. We 

calculated GenePy scores for 2862 recessive disease genes in 78,216 individuals in 100KGP. For 

each gene, we ranked participant GenePy scores for that gene, and scrutinised affected 

individuals without a diagnosis whose scores ranked amongst the top-5 for each gene. We 

assessed these participants’ phenotypes for overlap with the disease gene associated 

phenotype for which they were highly ranked. Where phenotypes overlapped, we extracted 

rare variants in the gene of interest and applied phase, ClinVar and ACMG classification looking 

for putative causal biallelic variants. 

 

3184 affected individuals without a molecular diagnosis had a top-5 ranked GenePy gene score 

and 682/3184 (21%) had phenotypes overlapping with one of the top-ranking genes. After 

removing 13 withdrawn participants, in 122/669 (18%) of the phenotype-matched cases, we 
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identified a putative missed diagnosis in a top-ranked gene supported by phasing, ClinVar and 

ACMG classification. A further 334/669 (50%) of cases have a possible missed diagnosis but 

require functional validation. Applying GenePy at scale has identified potential diagnoses for 

456/3183 (14%) of undiagnosed participants who had a top-5 ranked GenePy score in a 

recessive disease gene, whilst adding only 1.2 additional variants (per individual) for 

assessment. 

 
 

Introduction 
 
The 100,000 Genomes Project was a UK government funded research project led by Genomics 

England (GEL) to sequence 100,000 whole genomes for families predominantly presenting with 

rare disease.1 The project utilised a phenotype to genotype approach, whereby genome 

sequencing data were filtered using a pre-selected PanelApp2 gene panel or panels chosen by 

Genomics England based on the Human Phenotype Ontology (HPO)3 terms recorded at 

recruitment.1; 4 The project was completed in 2020 and yielded an overall diagnostic rate of 

~25% across all rare disease categories.1; 5 However, as ever-increasing numbers of researchers 

gained access to anonymised whole genome sequencing data from the 100,000 Genomes 

Project, additional diagnoses were made using methods that extended variant analysis beyond 

gene panels across more coding and non-coding regions, which have subsequently been 

returned to participants.4 As of 2022, 26% of all diagnoses returned by the 100,000 Genomes 

Project were from diagnoses not on the pre-selected gene panel applied, with many being 

pathogenic de novo coding variants.4; 5 However, assessing other variants such as biallelic 

variants is more burdensome, particularly without the use of gene panels due to the sheer 
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number of variants that require scrutiny. This is because many are inherited from unaffected 

relatives and are carried at non-trivial allele frequencies in population databases. Furthermore, 

biallelic variation is often hard to interpret especially for compound heterozygotes where one 

variant may be pathogenic, and another may be a copy number variant, non-coding variant, or 

other variant of uncertain significance. This is where gene panels show their greatest utility 

since they can help narrow down variants to clinically relevant genes.2 However, this approach 

must be balanced against the potential of missing diagnoses outside of the original gene panel 

applied. 

 

We sought to identify potential missed biallelic diagnoses in recessive disease genes 

independently of the gene panel applied using a whole genome pathogenicity metric called 

GenePy, pronounced “Jenni-pea (d͡ʒˈɛnɪpˌiː)”. GenePy (https://github.com/UoS-HGIG/GenePy-

1.3) is a gene pathogenicity prioritization tool developed at the University of Southampton that 

transforms the interpretation of next generation sequencing data from the variant level to the 

gene or pathway level.6 GenePy incorporates allele frequency, individual zygosity (where a 

heterozygote scores one point and a homozygote scores two points), and a user-defined 

deleterious metric (such as CADD7) into a single variant score.  

GenePy is defined as: 

𝑆𝑔ℎ=−∑𝑖=1𝑘𝐷𝑖log10(𝑓𝑖1∙𝑓𝑖2) 
 

[Where h = individual; g = gene; k = variants; i = locus; Di = allele deleteriousness; fi = allele 
frequency; fi1 = allele 1; fi1 = allele 2] 
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GenePy then aggregates variant scores across genes in an additive manner, generating a single 

score, per gene, per individual that is represented in a GenePy matrix table (Figure 1). However, 

for large genes and intronic regions there is a potential to accumulate noise from low scoring 

variants. To mitigate this, GenePy can be customised to filter variants with high in silico scores 

only e.g. CADD score above a particular threshold. Additionally, GenePy can be applied across 

any defined interval and variant scores do not have to be summed across genes, e.g. one may 

choose to sum variants across a particular biological pathway or genomic region.  

 

Figure 1 | Overview of GenePy pathogenicity software and output 

 

GenePy takes input from an annotated variant call file and uses allele frequency (such as defined by gnomAD), allele zygosity, 

and a deleterious metric, such as CADD. The GenePy software then scores each variant according to the GenePy equation. 

GenePy scores are summed per gene (although the user can also specify per exon, or per gene pathway if required). The 

resultant GenePy score (summed across a gene/region) is then represented in a GenePy matrix, with samples along the Y axis 

and gene/region along the X axis. 
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Upon generation of a GenePy matrix, GenePy scores can be compared across individuals in a 

cohort; GenePy scores are intuitive in that higher GenePy scores correlate with higher 

pathogenic variant burden such that individuals can be ranked for their score for any given 

gene, relative to all individuals with comparable input genomic data. GenePy scores are not 

easily compared between genes, without normalisation and adjustment for gene length. Even 

then, genes with alternative tolerance to dysfunctional variation are likely to exhibit very 

different GenePy score profiles.  Instead, GenePy demonstrates the greatest utility when 

individual gene scores are compared across large numbers of individuals. Since GenePy is an 

additive score, individuals in large cohorts with the highest ranked GenePy scores will be 

enriched for biallelic disease. Given the potential for missed biallelic diagnoses in the 100,000 

Genomes Project, we applied GenePy at scale in a panel-agnostic way to uplift diagnostic rates.  

Methods 
 
Access to 100,000 Genomes Project Data 

Participants were recruited to the 100,000 Genomes Project with written consent. The full 

protocol is available here: https://doi.org/10.6084/m9.figshare.4530893.v7. Deidentified data 

from the project held are in the secure Genomics England Research Environment (RE).  

 

We obtained access to 100,000 Genomes Project data following governance training and 

through membership of the ‘Quantative Methods, Machine Learning, and Functional Genomics’ 

Genomics England Clinical Interpretation Partnership. We had an approved Genomics England 

Project (RR359).  
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In 2022, we accessed 78,216 whole genomes from affected and unaffected participants 

recruited to the 100,000 Genomes Project. We extracted participants’ affection status and any 

HPO terms associated with participants’ records. Using the package LabKey in R, we queried the 

‘GMC Exit Questionnaire’ SQL table and extracted any diagnostic (likely pathogenic/pathogenic) 

variants returned to participants by the project. 

 

Curating a list of recessive disease genes 

To target our method towards potential missed biallelic diagnoses, we curated a list of 2862 

recessive disease genes using the OMIM8 database (downloaded in May 2022) and cross 

checked these findings with the GenCC database, whereby discrepancies in inheritance were 

examined more carefully.9 We then generated a bed file of gene coordinates for GRCh38 using 

the UCSC Genome Browser. The full gene list is available in Supplementary A.  

 

Application of GenePy 

Within the Genomics England RE we applied GenePy v.1.3 (https://github.com/UoS-

HGIG/GenePy-1.3) software to 78,216 participants in the 100,000 Genomes Project using 

CADD7 v1.6 as our deleterious metric and the gnomAD v.2.1.1 and V310 databases as our 

reference for allele frequency. We selected variants with a minimum depth of 10, minimum GQ 

of 20, and mean GQ > 35 using vcftools. We applied a call-rate filter, whereby each variant had 

to be genotyped in at least 70% of the cohort. For downstream analysis, we only modelled and 

scored participant variants annotated as coding +/- 8 base pairs (on any transcript) and with a 

CADD score ≥15. We specified CADD as our input metric because it scores the greatest variety 
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and number of variant types. We generated GenePy scores for 2862 recessive disease genes to 

create a matrix comprising GenePy scores for 2862 genes across 78,216 individuals. Of note, in 

addition to ‘affected’ participants, this cohort included many ‘control’ type individuals that 

represented unaffected parents of affected children and germline genomes of cancer patients. 

 

For each of the 2862 recessive genes, we ranked every Genomic England participant’s GenePy 

score relative to one another e.g. the person with the highest GenePy score for CFTR would be 

ranked 1, and the person with the lowest GenePy score in CFTR would be ranked 78,216. After 

ranking, we arbitrarily assessed only individuals who ranked amongst the top-5 GenePy score 

for each gene. If two individual had identical scores, we retained all participants with a rank of 5 

or less.  We then removed any individuals who were coded as unaffected and affected 

individuals with insufficient phenotypic data in the form of HPO terms recorded. We next 

separated affected cases into those with a confirmed diagnosis returned by the 100,000 

Genomes Project and those with a negative result. If the participant had a diagnosis returned, 

we assessed whether the established diagnostic variant was in a top-5 ranked GenePy score 

(Figure 2).  
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Figure 2 | Workflow of GenePy applied to 78,216 cases in the 100,000 Genomes Project 
 

 
 
GenePy scores were created for 2862 autosomal recessive genes in 78,216 participants, using CADD v.1.6 and gnomAD v.2.1.1. 

Participants scores were ranked across the cohort per gene, whereby those who ranked in the top 5 GenePy score for each gene 

were retained for downstream analysis. Unaffected individuals were removed. HPO terms from unaffected individuals without a 

diagnosis returned by the 100,000 Genomes Project were compared with the clinical features described for the autosomal 

recessive gene that the participant scored in the top 5 for. If the participant’s HPO terms overlapped with the gene that the 

person ranked in the top 5 for, we extracted the individual participant variants and assessed phase, ClinVar status, and applied 

ACMG guidelines. We then prioritised the findings according to the prioritisation rules, with ‘Top’ priority. being putative missed 

diagnoses, ‘Middle’ and ‘Low’ priority being of interest but lacking sufficient evidence, ‘Exclude’ being not diagnostic and 

‘Closed’ being when the participants had been withdrawn from the Project. 
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For affected participants with a negative genome result, we extracted HPO terms from R Labkey 

and compared these HPO terms with the clinical features associated with the disease gene for 

which they scored in the top 5 rank. For example, if the participant had the HPO terms 

‘pancreatic insufficiency’, ‘failure to thrive’ and ‘recurrent chest infections’ and they ranked 

third/3rd for CFTR, we would compare their HPO terms with the clinical features of cystic 

fibrosis. This process was completed manually by a clinician who used clinical acumen, 

phenotypic descriptions and HPO terms listed in OMIM, and the clinical literature to help assess 

phenotype overlap. If the participant’s HPO terms were consistent with those for a gene that 

the same participant was ranked in the top 5 GenePy scores for (e.g. the participant had 

pancreatic insufficiency and recurrent chest infections and was ranked 3 in CFTR), this was 

considered a potential missed diagnosis. If the disease-gene phenotype was unrelated to the 

participant’s clinical phenotype but represented a gene in the ACMG 7811 list or may represent 

an adult onset disease, this was considered a potential incidental finding. For these, we 

contacted the recruiting clinician to discuss the findings. If there was no correlation between 

the participant’s HPO terms and the clinical phenotype for the implicated disease gene, this was 

considered to be lacking phenotypic overlap and excluded from further consideration.  

 

Assessing potential missed diagnoses 

When the participant’s phenotype was overlapping with the disease gene for which the 

participant ranked in the top 5, we extracted all variants from the participant’s variant call file 

with a CADD score ≥ 15. These variants were then prioritised by likelihood of being a missed 

biallelic diagnosis, taking into consideration variant phase where possible, ClinVar12 status, and 
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variant curation by ACMG/AMP13 guidelines (Figure 2). Variants that were prioritised as ‘Top’ 

priority were considered putative missed diagnoses and mostly represented homozygous likely 

pathogenic/pathogenic variants or likely pathogenic/pathogenic compound heterozygous 

variants. 

 

Results 
 
 
We applied GenePy to 2862 recessive disease genes in 78,216 cases recruited to the 100,000 

Genomes Project. A summary of results is provided in Figure 3. For each gene we selected the 

top 5 ranked participants by GenePy score, which yielded a total of 9,404 unique participants, 

with some participants ranking top 5 for more than one recessive gene. 4713/9404 (50.1%) of 

the top ranked participants were unaffected participants, whereby anyone coded as unaffected 

(rare disease or cancer germline) represented 45% of the entire cohort. 4691/9404 (49.9%) 

were affected participants. Of the 4691 affected participants, 847/4691 (18.1%) already had a 

diagnosis returned by the 100,000 Genomes Project up to 2022. Of these, 599/847 (70.7%) had 

diagnoses in one of the top 5 ranked genes. 248/847 (29.3%) individuals had a diagnosis 

returned by GEL in an alternative gene. Of these, 87 individuals had a de novo pathogenic 

variant and 161 had a pathogenic variant in a dominant gene (either inherited from an affected 

individual or the participant was a from a singleton family). 

 

In total, there were 3184 affected individuals who had a ‘no diagnosis’ genome report returned 

by the 100,000 Genomes Project who were ranked in the top 5 GenePy scores for the 2862 

computed recessive disease genes. For these cases, we compared the participant’s reported 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2023. ; https://doi.org/10.1101/2023.03.21.23287545doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.21.23287545
http://creativecommons.org/licenses/by/4.0/


HPO terms with the clinical phenotype of the GenePy disease gene implicated in the 

participant. For 320 participants, there was insufficient HPO terms recorded to assess for 

phenotypic overlap between the participant’s clinical phenotype and that of the implicated 

disease gene; thus, these individuals were removed from downstream analysis. 2864 individuals 

had sufficient HPO terms to assess phenotype overlap and for 682/2864 (23.8%) of these cases, 

the participant’s HPO terms overlapped with the clinical presentation associated with the top 5 

ranked GenePy disease gene. For 2173/2864 (75.9%) of cases, the phenotypes were non-

overlapping and for 9/2864 (0.3%) of cases the phenotypes were not overlapping but the 

implicated gene was one of the ACMG 78 incidental finding genes.  

 

For the 682 participants with a potential missed diagnosis, we extracted variants in their top 5-

ranked gene with a CADD score ≥ 15 directly from their variant call file. In total we extracted 

847 unique variants. Following prioritisation (Figure 2), we identified 122 top priority, putative 

missed diagnoses supported by phase, ClinVar12 classifications and ACMG/AMP guidelines.13 

262 individuals were assigned ‘Middle’ priority demonstrating supportive evidence for a 

potential missed diagnosis, whereby for many there was lack of phased data limiting diagnostic 

potential. 72 individuals had some, but weak evidence for a potential missed diagnosis for 

example due to one variant being non-coding on the matched annotation from ECBI and EMBL-

EBI (MANE)14 transcript and were assigned ‘Low’ priority. 229 cases were ruled as non-

diagnostic, typically due to the variants being in cis, being non-coding on the MANE transcript, 

not segregating with affected and related individuals, and being common in the 100,000 
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Genomes call-set (Table 1). In 13 cases, no variants were extracted because the individual had 

withdrawn from the 100,000 Genomes Project.  

 

Figure 3 | Summary of results 

 
 
Results of GenePy applied to 2862 autosomal recessive disease genes in 78,216 individuals.  
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Table 1 | Flags applied to de-prioritise variants 

Variant priority (no. 
of variants) 

At least one non-
coding variant 

Common in 
call-set 

Does not 
segregate 

In 
cis 

No second 
hit 

Top (122) NA NA NA NA NA 

Middle (262) 12 NA NA NA NA 

Low (72) 48 NA NA NA NA 

Exclude (229) 73 22 63 71 61 

Variant pairs were deprioritised when at least one variant was non-coding on the MANE transcript, any variant was 

common in the 100,000 Genomes Project call-set (>5%), the variant(s) did not segregate between affected 

individuals from the same family, variants were in cis, or when only one heterozygous variant was identified. 

 
 

Discussion 
 
We applied a gene pathogenicity score, GenePy, to a cohort of 78,216 individuals recruited to 

the 100,000 Genomes Project. Utilising ranked individuals’ GenePy scores for 2862 recessive 

disease genes, we identified outliers with the highest GenePy scores per gene. We selected 

individuals who ranked in the top 5 scores for each gene, with an expectation that these 

individuals may harbour missed biallelic diagnoses.  

 

847 individuals with a top 5 ranked GenePy score had a diagnosis returned by the 100,000 

Genomes Project. 599/847 (71%) of these individuals had a diagnosis in a top 5 ranked gene, 

demonstrating how GenePy was able to rapidly recover 71% of diagnoses, showing potential 

diagnostic utility for both known and novel disease genes. The remaining 248 cases had 

diagnoses in dominant genes, with 81 diagnoses being de novo and 161 being inherited from an 

affected individual or the individual represented a singleton. 
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In total we identified 2864 undiagnosed individuals with top 5 ranked GenePy scores, of which 

682/2864 (24%) had phenotypes overlapping with the clinical features of their top ranked 

recessive disease gene. Following prioritisation and removing 13 cases whereby participants 

had withdrawn from the 100KGP, 122/669 (18%) of the phenotype-matched cases had a 

putative missed diagnosis supported by phase, ClinVar classifications and ACMG/AMP 

guidelines. All these findings have since been returned to Genomics England through their 

Diagnostic Discovery Pathway. For 334/669 (50%) of individuals, we identified variants of 

interest in a disease gene consistent with the participant’s phenotype with some supportive 

evidence for pathogenicity, but often phase could not be determined due to missing parental 

data. Additionally, for many of these cases, the variants contributing to the high GenePy scores 

were classified as VUSs and therefore require additional functional work-up. These variants are 

being reviewed by a clinical scientist in an NHS accredited diagnostic laboratory. Whilst follow-

up of these variants is outside the scope of this research project, many of these variants, even 

those prioritised in the low category, may represent pathogenic variants. For example, non-

coding variants were assigned to a lower priority grouping, despite them having a CADD score ≥ 

15. It is hoped that many of these variants may be functionally investigated in the future as 

high-throughput methods to model VUSs advance. 

 

In total, GenePy has identified potential missed diagnoses in 456/2864 (16%) of undiagnosed 

individuals who had a top-5 ranked GenePy score in a recessive disease gene. On average this 

resulted in the curation of 1.2 additional variants per participant. Therefore, the application of 
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GenePy successfully uplifted diagnosis rates without adding large variant numbers requiring 

time-consuming manual curation for diagnostic laboratories to assess and classify.  

 

GenePy6 is an open-source transferrable piece of software that can be successfully applied at 

scale. GenePy matrices can be used as reference datasets for other cohorts applying the same 

GenePy methods i.e. when applying the same deleterious metric, population reference 

database and quality control thresholds. For example, GenePy may be applied to a cohort of 10 

samples, whereby these 10 individuals’ GenePy scores could be ranked against a larger GenePy 

matrix comprising 100,000 individuals. However, GenePy matrices for genome sequencing data 

should only be compared with other genome sequencing datasets, unless restricted to the 

same target regions of exome data.  

 
 
Limitations and opportunities 
 
The application of GenePy to the 100,000 Genomes Project is not without its limitations. For 

one, we used an entirely arbitrary cut off of 5 when we ranked individuals. It is entirely possible 

that a more permissive value may capture a wider range of diagnoses; however, this must be 

balanced with the additional number of variants, per individual, that would require further 

scrutiny by clinical laboratories. 

 

We assessed for phenotype overlap between the participants’ HPO terms and the clinical 

features described for the disease-gene in which the participants ranked in the top 5 GenePy 

scores. For 320 cases, the HPO terms were so limited that it was not possible to assess overlap. 
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This represents a real-world limitation of sequencing studies whereby there is often variability 

in how submitters record phenotype data and highlights the importance of accurate 

phenotyping. This phenotype comparison step was performed manually on 2864 cases. 

Application of automated methods to compare participant HPO terms with disease gene 

phenotypes may prove more time efficient for GenePy applied at scale, however it is unlikely 

that clinical or diagnostic laboratories applying GenePy would be reviewing thousands of 

individuals at once, but rather on a case-by-case basis.  Additionally, automated methods lack 

the clinical knowledge and experience of a clinician or clinical scientist that may be better able 

to intelligently compare groups of similar phenotypes. 

 

In our application of GenePy we used CADD v.1.6 to capture and model the greatest breadth of 

variation in an unbiased way, but it may be that incorporation of other metrics for different 

variant types (e.g. REVEL15 for missense) may prove more sophisticated in an improved model. 

However, this is likely to require machine learning to apportion in silico weightings fairly for 

different variant types. We also applied a CADD cut off of ≥ 15 to avoid individuals accruing high 

GenePy scores in genes of increasing length, where there was a higher chance of finding 

multiple ultrarare variants by pure chance that would score highly in GenePy. Whilst we are 

confident that using CADD ≥ 15 reduced a lot of noise and helped isolate pathogenic variants, 

we accept that this approach risks missing some pathogenic variants with lower CADD scores. 

 

GenePy currently does not utilise phased data, meaning that some high scores may represent 

variants inherited in cis; indeed, we observed this in 71 cases (Table 1). However, we were 
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conscious not to limit GenePy to nuclear families with parental data since this does not 

represent a real-world example and would disadvantage non-parent/child families, where 

phase cannot be determined. In the future, this could perhaps be mitigated with long read 

sequencing data. 

 

Whilst we applied GenePy herein focusing on identification of potential missed recessive 

disease, there may also be opportunities to apply it in autosomal dominant diseases. When we 

scrutinised the variants of individuals with potential missed diagnoses, we identified 61 

individuals that ranked in the top 5 GenePy scores for a given gene, yet they only had one 

variant with a CADD score ≥ 15 in that gene. Most commonly these individuals harboured 

predicted loss-of-function variants which are upweighted in the GenePy statistic. Therefore, 

there may be utility of GenePy in haploinsufficient disease genes, but it is likely that a more 

stringent CADD cut off, such as ≥ 20, or limiting the GenePy statistic to the highest scoring 

variant is necessary to apportion lower GenePy scores to individuals who would otherwise 

accrue high scores from multiple rare, but benign variants with lower CADD scores.   

 

GenePy also has potential to identify novel disease genes. If multiple top-ranking individuals 

across the same novel gene share similar clinical features, this may support the discovery of 

new disease genes. For novel haploinsufficient genes, unpublished data from our research 

group suggest that GenePy performs best when limited to high CADD scores e.g. CADD >20, 

whereas recessive genes may benefit from a more permissive CADD cut off.  
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Conclusion 
 
The application of GenePy to ~78,000 individuals in the 100,000 Genomes Project has identified 

122 putative missed biallelic diagnoses in known autosomal recessive disease genes that are 

being returned to participants through the Genomics England diagnostic discovery pathway. 

Selecting the top 5 ranked individuals for 2864 autosomal recessive genes yielded review of 

only 1.2 additional variants per individual, rendering GenePy a useful tool to identify biallelic 

variants of interest without significantly burdening diagnostic laboratories with additional 

variants to assess. A dilemma for many diagnostic laboratories is how to limit number of 

variants requiring assessment without missing diagnoses. Whilst strategies to prioritise 

dominant diseases are well established e.g. de novo analysis or Exomiser16, there are limited 

tools for prioritising recessive conditions. We attest that GenePy is a useful panel-agnostic 

adjunct to exome and genome analysis pipelines to uplift diagnoses of recessive disease. 
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