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A B S T R A C T

The infiltrative nature of malignant gliomas results in active tumor spreading into the peritumoral
edema, which is not visible in conventional magnetic resonance imaging (cMRI) even after contrast
injection. MR relaxometry (qMRI) measures relaxation rates dependent on tissue properties, and can
offer additional contrast mechanisms to highlight the non-enhancing infiltrative tumor. The aim of
this study is to investigate if qMRI data provides additional information compared to cMRI sequences
(T1w, T1wGd, T2w, FLAIR), when considering deep learning-based brain tumor (1) detection
and (2) segmentation. A total of 23 patients with histologically confirmed malignant glioma were
retrospectively included in the study. Quantitative MR imaging was used to obtain R1 (1/T1), R2 (1/T2)
and proton density maps pre- and post-gadolinium contrast injection. Conventional MR imaging was
also performed. A 2D CNN detection model and a 2D U-Net were trained on transversal slices (n=528)
using either cMRI or a combination of qMRI pre- and post-contrast data for tumor detection and
segmentation, respectively. Moreover, trends in quantitative R1 and R2 rates of regions identified
as relevant for tumor detection by model explainability methods were qualitatively analyzed. Tumor
detection and segmentation performance for models trained with a combination of qMRI pre- and post-
contrast was the highest (detection MCC=0.72, segmentation Dice=0.90), however, improvements
were not statistically significant compared to cMRI (detection MCC=0.67, segmentation Dice=0.90).
The analysis of the relaxation rates of the relevant regions identified using model explainability
methods showed no differences between models trained on cMRI or qMRI. Relevant regions which
fell outside the annotation showed changes in relaxation rates after contrast injection similar to
those within the annotation, when looking at majority of the individual cases. A similar trend could
not be seen when looking at relaxation trends over all the dataset. In conclusion, models trained
on qMRI data obtain similar performance to those trained on cMRI data, with the advantage of
quantitatively measuring brain tissue properties within the scan time (11.8 minutes for qMRI with
and without contrast, and 12.2 minutes for cMRI). Moreover, when considering individual patients,
regions identified by model explainability methods as relevant for tumor detection outside the manual
annotation of the tumor showed changes in quantitative relaxation rates after contrast injection similar
to regions within the annotation, suggestive of infiltrative tumor in the peritumoral edema.

1. Introduction
Malignant gliomas are tumors of the central nervous

system with high recurrence and high mortality rates, as
well as poor prognosis (Davis, 2016). Magnetic resonance
(MR) images are essential for the diagnosis and treatment
follow-up of malignant gliomas and brain tumors in general,
with T1-weighted pre- and post-gadolinium contrast (T1w
and T1wGd), T2-weighted (T2w), fluid-attenuated inversion
recovery (T2wFLAIR), perfusion and diffusion-weighted
images routinely acquired (Juratli et al., 2019). Radiologists
use these images for first diagnosis and to delineate the tumor
structure to balance the extent of the treatment with the
possible collateral effects. However, the infiltrative nature
of malignant gliomas poses a great challenge in delineating
the tumor boundary. In fact, not all the active and infiltrative
tumor regions are enhanced and visible in the routinely ac-
quired MR images (Konukoglu et al., 2010), which can lead
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to tumor regrowth if not considered during treatment. Tar-
geting the whole tumor region during treatment has shown
to positively impact disease progression as well as mortality
rate (Brown et al., 2016). To aid clinicians to safely and
accurately understand the extent of tumor treatment region,
new non-invasive imaging and analysis methods are needed.

In comparison to conventional MRI sequences (T1w,
T1wGd, T2w, FLAIR) hereafter cMRI, where contrast
between tissues is obtained by tuning the acquisition
sequence parameters, quantitative imaging approaches
using MRI measure tissue properties related to the aqueous
composition and functionality of the tissue (Warntjes et al.,
2008; Gurney-Champion et al., 2020). Among the proposed
quantitative MR imaging sequences, diffusion-weighted
MRI (Maier et al., 2010), perfusion MRI (Cha, 2004)
and MR relaxometry (Hattingen et al., 2015), are the
most common approaches used today. By measuring
tissue properties, quantitative MRI has the possibility
of complementing the morphological analysis currently
performed by clinicians on conventional images with
quantitative information from normal and abnormal
tissue. In addition, it could also aid early diagnosis since
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deviations from normal tissue values could be detected
prior to the manifestation of visible morphological changes
(Keenan et al., 2019, 2022). In particular, several studies
have shown the potential of MR relaxometry (qMRI) in
clinical applications (Cashmore et al., 2021). However, the
limited knowledge of the relaxation rates of healthy and
diseased brain tissue hinders its mainstream application
in the clinical workflow. In the context of brain tumors,
quantitative relaxation maps of patients diagnosed with
malignant gliomas have been used to show that tumor-like
T1 and T2 relaxation times extend in the peritumoral edema
beyond the contrast enhanced tumor region visible in cMR
images (Blystad et al., 2017). These findings suggest MRI
relaxometry as a potential quantification method of the
non-enhancing infiltrative tumor, which could be used to
generate new ways of looking at the active tumor region.
This could help radiologists to better delineate the tumor, as
well as to enabling early detection of tumor growth with no
or subtle morphological changes in conventional images.

In the context of medical image analysis, deep learning
methods can be trained to solve, among others, segmentation
and detection tasks (Lee et al., 2017). Compared to tra-
ditional imaging processing approaches where features are
manually engineered, deep learning methods automatically
learn task-specific features from the data in a data-driven
optimization fashion. Deep learning methods have been
successfully implemented for the analysis of cMR images of
gliomas, where convolutional neural networks (CNN) have
been trained to perform tumor segmentation to reduce the
burden of manual annotation for radiologists, and provid-
ing an objective method for tumor boundary delineation
(Gryska et al., 2021). Moreover, such methods have also
been implemented on quantitative MR imaging protocols
(Gurney-Champion et al., 2022). For example, perfusion
MR data alone was used as model input for automatic tumor
segmentation by (Jeong et al., 2020) showing a Dice score
up to 0.9, while (Rahmat et al., 2020) investigated the use of
diffusion-weighted MR data during model training, showing
that a good tumor segmentation could be achieved only
when spatial context information from T1wGd and FLAIR
was combined with diffusion-derived metrics (Dice score of
0.82). Given the success of deep learning in analyzing con-
ventional (Bakas et al., 2018) and quantitative MR data of
gliomas, such methods could be used to learn tumor-specific
features from the MRI relaxometry data. These methods can
then be employed to generate new ways of looking at the
tumor that may help identify the non-enhancing infiltrative
tumor.

Thus, the aim of this work was to investigate if MRI re-
laxometry data provides additional information compared to
the cMR image sequences (T1w, T1wGd, T2w, T2wFLAIR)
when considering deep learning-based brain tumor (1) de-
tection and (2) segmentation. Moreover, using model ex-
plainability methods, the regions identified as relevant for
tumor detection by models trained on different input config-
urations were qualitatively investigated. This method could
uncover radiological biomarkers previously invisible in the

conventional MRI, which could be useful for tumor treat-
ment planning and evaluation.

2. Material and methods
2.1. Dataset description

Twenty-three patients with typical radiological findings
suggestive of a high-grade malignant glioma were retrospec-
tively included in a study from 2013 to 2016 and examined
with MRI before surgery. Mean age at inclusion was 61 years
(range 34-82), six patients were females. Ethical approval
was obtained from the regional ethical board of Linköping,
Sweden (decision number 2011 / 406-31) and informed
written consent was obtained from all patients. For all the
patients, axial T1w, T1wGd, T2w and T2wFLAIR images
(referred to as cMRI in this paper) were acquired on a 3-
tesla MR scanner (750, GE Medical Systems, Milwaukee,
Wisconsin) using a 32-channel phased array head coil ac-
cording to the clinical protocol for brain tumor investigation
specified by Linköping University hospital. The total scan
time for the cMRI data per patient was 12.2 minutes. A high
resolution 1 mm isotropic T1wGd volume (BRAVO volume)
was also acquired and used to manually annotate the tumor.
In addition, qMRI pre- and post-gadolinium contrast images
were acquired using a multi-slice, multi-echo and multi-
saturation delay sequence for simultaneous measurement of
R1 (1/T1), R2 (1/T2), and proton density (PD) (Warntjes
et al., 2008). The qMRI data was processed using the soft-
ware SyMRI (version 8, developed by SyntheticMR AB,
Linköping Sweden) to obtain volumetric maps of T1- and
T2-relaxations, as well as proton density. The total scan
time for the qMRI data was 11.8 minutes per patient. A
detailed description of the acquisition protocols for each
image sequence is provided in Appendix A. Two of the
23 subjects were excluded due to incomplete data (miss-
ing BRAVO volume). In total, ten image sequences were
available for each of the remaining 21 subjects: four cMRI
(axial T1w, T1wGd, T2w and T2wFLAIR), three qMRI
pre-contrast (T1, T2 and PD) and three qMRI post-contrast
(T1Gd, T2Gd and PDGd). For each subject, the tumor core
(necrotic region ∪ enhanced region) was manually annotated
by an expert neuroradiologist on the BRAVO volume and
then registered to the axial T1wGd volume (see section 2.2).
Although there are many open access datasets containing
MR images of brain tumors (Adem et al., 2022; Magadza
and Viriri, 2021), we are not aware of a dataset that contains
both qMRI and cMRI data. Compared to the popular BraTS
dataset (Menze et al., 2009), our dataset contains the same
MR images, as well as qMRI before and after gadolinium
contrast. The clinical protocol used at Linköping University
Hospital also contains diffusion and perfusion imaging, but
those images were not included in this investigation to keep
the cMRI data similar to that of BraTS. Moreover, the
manual annotations available in this study do not account
for the edema region, and do not have separate labels for the
necrotic and tumor enhancing region.
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2.2. Data preprocessing
All DICOM files were first converted to NIFTI vol-

umes using the AFNI software (Cox, 1996). To correct for
head motion between the different scans of each patient,
a rigid body registration was performed between the axial
T1wGd volume and all other volumes. No registration was
performed between the different patients. For the qMRI data,
the registration of the pre- and post-contrast volumes was
performed independently. First the T1 and T1Gd volumes
were registered to the axial T1wGd volume, and the obtained
registration parameters were then applied to pre- and post-
contrast qMRI volumes, respectively. For all registrations,
the function flirt in FSL (Smith et al., 2004; Jenkinson
et al., 2002) was used with search rotation range set between
[-90,90] degrees for the three angles and sinc interpolation
was used for the final interpolation. Using the BET function
in FSL (Smith, 2002), a brain mask for each subject was
obtained from the axial T1wGd image and applied to all the
other registered cMRI and qMRI volumes (for anonymiza-
tion, but to also make the tumor detection and segmentation
tasks easier). The final volumes had a size of 512×512×[24,
36] voxels and a resolution of 0.43×0.43×[4.4, 6] millime-
ters (mm) in the x, y and z direction, respectively. Intensity
normalization was applied to each subject and modality
independently, where intensities were scaled into the [-1, 1]
range using the 0.5 and 99.5 percentile values as minimum
and maximum, respectively. Given the limited number of
available subjects, and the low resolution in the z-direction,
2D CNN were used instead of 3D CNN. In total, 528
transversal slices (of which 136 contained tumor) were used
for both the tumor detection and segmentation tasks (see
section 2.3). Transversal images were used given the higher
in-plane resolution. Example images from the dataset are
presented in Figure 1.

2.3. Task definition
To investigate if qMRI data provides additional informa-

tion compared to cMRI, deep learning models were trained
using either conventional or quantitative MRI data as input
in the context of tumor detection and segmentation. For
the tumor segmentation task, deep learning models were
trained to output segmentation masks matching the manual
annotations. However, as mentioned earlier, annotations of
the tumor core were obtained from T1wGd data thus, they do
not account for the non-enhancing infiltrative tumor region
invisible in the cMR images, that might be present in the
peritumoral edema and captured by the qMRI data. The
impact of imperfect annotations, also called weak anno-
tations, on medical image segmentation shows that model
training using weak annotations with biased errors, i.e.,
errors that consistently alter the annotation, have a negative
impact on model performance (Vorontsov and Kadoury,
2021). Thus, evaluating if qMRI provides any additional
information compared to cMRI solely on the results of tumor
segmentation is not sufficient. A way to disentangle the
model training from the weak annotations, while still investi-
gating if qMRI provides additional information compared to

cMRI, is to train the models for a simpler task, namely tumor
detection. In this study, tumor detection is defined as a binary
classification where a deep learning model was trained to
classify whether a 2D transversal image of the brain contains
a tumor or not. While still using the annotations to label the
2D transversal images with or without tumor, the model was
not penalized when using all the information available in the
image, thus, limiting the impact of the weak annotation on
model training.

2.4. Deep learning models
Two different model architectures were used, a shallow

2D CNN classifier for the tumor detection task, and a 2D
U-Net model for the segmentation task. For both tasks,
data augmentation was used during training by means of
random rotation (range=±90 degrees), shift (range=±0.1
of image width), zoom (range=±0.2 of image width), and
horizontal and vertical flip. Models were implemented in
python using TensorFlow 2.6.0 and training was performed
on a workstation with two Nvidia RTX 2080Ti graphics
cards with 11 GB of memory each. Training times amounted
to a total of 60 days for models trained for tumor detection
(four input configurations with a ten-times repeated five-fold
cross validation scheme, see section 2.6) and 190 days for the
tumor segmentation model (four input configurations with
a five-times repeated five-fold cross validation scheme, see
section 2.6). For a detailed description of the other packages
used in this study, see the code repository available at https:
//github.com/IulianEmilTampu/qMRI_and_DL.

2.4.1. Tumor detection model (2D-SDM4)
The detection model (hereafter called 2D-SDM4) was

a custom-implemented model composed of 4 convolutional
blocks functioning as model encoder, followed by two fully
connected layers performing the classification. A detailed
description of the model architecture can be seen in Figure 2.
The model architecture was kept as simple as possible while
still allowing for high performance on the classification task.
During model training, the binary cross entropy loss between
the labels and the model prediction was minimized using
the Lookahead optimizer (Zhang et al., 2019) with Adam
(Kingma and Ba, 2014) inner optimizer (sinc_period=5,
slow_step_size=0.5). The learning rate was set to 1e-6 and
kept constant during training. Models were trained for 300
epochs without early stopping.

2.4.2. Tumor segmentation model
A 2D U-Net model (Ronneberger et al., 2015) was

trained for tumor segmentation given the state of the art
performance achieved by this model on a variety of medical
image segmentation tasks (Isensee et al., 2021). In this
work, the original implementation of U-Net described
in (Ronneberger et al., 2015) was adjusted following
the description of the architecture template provided by
(Isensee et al., 2021). A summary of the model architecture
is presented in Figure 2. During training, the sum of
weighted Dice score (Sudre et al., 2017) and binary
cross entropy loss, as described in (Isensee et al., 2021)
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Figure 1: Transversal slice from one subject for six of the MR sequences available. The conventional images (axial T1w, T2w and
T2wFLAIR) contain arbitrary values, while R1 (1/T1), R2 (1/T2) and proton density maps describe quantitative values.

was minimized using the Lookahead optimizer (Zhang
et al., 2019) with Adam (Kingma and Ba, 2014) inner
optimizer (sinc_period=5, slow_step_size=0.5). Weights
for the tumor and the background class were used in the
computation of the loss to address class imbalance existing
between the two classes (weights computed on the training
dataset). The model was trained for 1000 epochs without
early stopping and the best model according to the validation
loss was used for comparison. Initial learning rate was set
to 0.001 and reduced during training using a polynomial
decrease, as described in (Isensee et al., 2021).

2.5. Training, validation and test split
Given that the models were trained on 2D images ob-

tained from volumetric data, a per-subject split strategy was
used to avoid biasing the evaluation of model performance
due to data leakage (Yagis et al., 2021; Tampu et al., 2022).
In particular, for every cross validation repetition (see sec-
tion 2.6), three subjects (14% of the available data) were
randomly selected for testing while the remaining were used
for training (72% of the available data) and validation (14%
of the available data).

2.6. Evaluation metrics and statistical analysis
For both tasks, the models were trained using an n-times

repeated five-fold cross validation scheme to ensure the
reliability of the presented results (Consortium, 2010), and

to minimize the effects of selection bias of the test set which
can affect the study given the limited amount of available
data (Reddy et al., 2010). n was set to 10 and 5 for the tumor
detection and segmentation tasks, respectively. Tumor detec-
tion performance on the test dataset was evaluated in terms
of Matthews correlation coefficient (MCC) since it is stable
to class imbalance (Chicco and Jurman; Chicco et al., 2021).
In addition, precision, recall, accuracy and F1-score were
computed using the definition of (Sokolova and Lapalme,
2009), and the receiver operator characteristic (ROC) curve
with the corresponding area under the curve (AUC) were
also reported. Tumor segmentation performance was instead
evaluated in terms of the Dice similarity coefficient (Sudre
et al., 2017). The Wilcoxon signed-rank test (two-tailed),
was used to compare the models’ performance between
models trained using different input configurations. A p-
value < 0.05 was considered to show a significant difference.
Bonferroni correction for multiple comparisons was applied
to reduce the risk of type I error.

2.7. Model explainability
2.7.1. Occlusion mapping

For the task of brain tumor detection, occlusion map-
ping (Zeiler and Fergus, 2014) was performed to generate
visual descriptions of the brain regions that influenced tumor
detection. By analyzing explainability, this study seeks to
investigate: (1) what are the regions in the input image that
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Figure 2: Model architecture summary for the 2D detection (2D-SDM4) and the 2D U-Net segmentation models. The input
for both models had size [512×512×N], where N specifies the number of input channels which changed based on the input
configuration (4 for cMRI, 3 for qMRI and qMRI_Gd, and 6 for qMRI+qMRI_Gd).

substantially influence model’s detection of the tumor, (2)
if there are differences between these regions for models
trained on cMRI or qMRI data, and (3) if these differences
provide additional information with respect to the nature of
the tumor that can help radiologists to improve treatment
planning.

Occlusion mapping is a perturbation-based model ex-
plainability method through which, for a given image, the
relevance of a region towards a class of interest (in this
case tumor presence) is measured by how much the model’s
predicted probability (i.e., softmax score) for the class of
interest changes when the region is occluded (i.e., its pixels
are set to background value: -1 in this study), compared to the
model’s prediction on the not-occluded image. Commonly,
a squared occlusion mask is moved over the entire image
to obtain a spatially resolved occlusion relevance map that
shows what regions in the image are important for the
classification of the class of interest. The smaller the size of
the occlusion mask, the higher the spatial resolution of the
relevance map at the cost of a longer computational time.
In this study, the occlusion mask size was set to 5×5 pixels
to obtain a high resolution relevance map for all test images
and all models trained through the repeated cross validation
scheme. By taking the average relevance map for each test
image over the different models and thresholding it using
a value of T=0.03, a larger relevant region was identified.
The relevant regions for models trained on different input
configurations were computed and compared. A schematic
representation of how the relevant regions were obtained
from the occlusion relevance maps is shown in Figure 3.

The importance of the brain region identified by the
relevant regions was evaluated by computing the difference
between the models’ predicted probability for the tumor
presence class on the occluded image (by relevant region)

and the not-occluded image. A statistical evaluation of the
impact of the relevance region on model prediction was not
performed since, to the best of our knowledge, there is no
established method to statistically compare predictions on
paired images (original and occluded) for models trained
through cross validation. Thus, a qualitative comparison
between relevant regions identified by models trained on
different input configurations was performed by plotting the
distribution of R1 and R2 relaxation ratex (as probability
densities) pre- and post-contrast injection, and differentiated
between relevant regions falling inside or outside the tumor
annotation.

2.7.2. Gradient class activation mapping (GradCAM)
In addition to the occlusion mapping analysis, GradCAM

(Selvaraju et al., 2017) was also used to allow visual compar-
ison between the two explainability methods. GradCAM is a
feature attribution method that highlights regions in the input
image which are relevant when predicting a chosen class
(range in [0,1], with 0=irrelevant, 1=most relevant). In this
study, GradCAMs were computed on the last convolutional
layer of the tumor detection models with respect to the tumor
presence class. To quantify how much of the relevant regions
fall in the region of visual explanation, the fraction of the
GradCAM values that were within the tumor annotation
was computed. This approach is similar to that proposed
by (Arias-Duart et al., 2022) as a way to quantify model
explainability results.

Moreover, the models’ ability to focus on the region of
visual explanation identified by the tumor area was inves-
tigated using mosaic images. This was initially suggested
by (Arias-Duart et al., 2022) as a method to quantify ex-
plainability methods, and used here to visualize the ability
of the model to focus on the tumor area when presented
with unseen images constructed to contain multiple brains.
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Figure 3: Identification of image regions relevant for tumor detection. The occlusion relevance maps were obtained by performing a
spatially non-selective occlusion mapping with a small patch (5×5) using the models trained through the repeated cross validation
scheme. The occlusion relevance maps were then averaged and thresholded (T=0.03) to obtain a larger spatially selective occlusion
relevant region. The average occlusion relevance map was obtained by averaging all the models from the repeated cross validation
scheme which were not trained on a given image.

In particular, mosaic images were obtained by combining in
a two-by-two grid four randomly selected images. Of the four
images composing the mosaic, two were selected to contain
tumor and two not to contain tumor. Moreover, the position
of the images in the two-by-two grid was randomly assigned.
GradCAM and occlusion mapping were performed on the
mosaic images as described above. Note that in the case
of the mosaic image, the GradCAMs and the predictions
from all the 50 models trained through the repeated cross
validation scheme were used since the mosaic images are
examples that none of the models has been trained on (model
training was performed on transversal slices and not mosaic
images).

3. Results
3.1. Tumor detection

Tumor detection performance on the test data for the
models trained on the different input configurations is sum-
marized in Table 1, with results reported as mean±standard
deviation over the 50 models trained through ten-times re-
peated five-fold cross validation scheme. In addition, ROC
and box plots for MCC are shown in Figure 4. The model
trained on a combination of qMRI data pre- and post-
contrast (qMRI+qMRI_Gd) achieved the highest score for
all the metrics. However, the difference in performance
was significant only when compared to those of the model
trained on qMRI pre-contrast data (for all the metrics). No
statistical significant difference in model’s performance was
found when comparing the models using cMRI, qMRI_Gd

or qMRI+qMRI_Gd. It is not clear if this is due to no actual
difference, or due to too low statistical power.

3.2. Model explainability for tumor detection
In the following section, the results of GradCAM and

occlusion mapping on mosaic images are presented followed
by examples of relevance regions obtained from occlusion
mapping on single brain images.

Figure 5 shows examples of GradCAM and occlusion
relevance maps performed on mosaic images composed by
slices with small (Figure 5.a) and large (Figure 5.b) tumor
sizes, and for the models trained for tumor detection. The
regions highlighted as important for tumor detection are co-
herent between the two explainability methods. The higher
spatial resolution of the occlusion maps shows even smaller
regions which are lost in the GradCAMs (see small tumor
cases). Overall, the regions highlighted as important for the
tumor detection are larger than the manual annotation and
models trained on input configurations that included qMRI
post-contrast data showed to localize the tumor region in
most of the cases, whereas models using cMRI or qMRI
pre-contrast did not focus on the tumor area in all the
instances where tumor was present. These results, obtained
on constructed images that the models have not been trained
on, show the ability of the models to focus on regions of
visual explanation when performing classification. Table
2 summarizes the quantification of GradCAMs relevance
maps on the original dataset images (single brain transversal
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Table 1
Summary of tumor detection performance for models trained on different input configurations. Results are presented as
mean±standard deviation (m±std) over the models trained using the ten-times repeated five-fold cross validation scheme.
The model with the highest performance for the different metrics is shown in bold.

Input
configuration

MCC [-1,1]
(m±std)

F1-score [0,1]
(m±std)

AUC [0,1]
(m±std)

Accuracy [0,1]
(m±std)

Precision [0,1]
(m±std)

Recall [0,1]
(m±std)

cMRI (BraTS) 0.67±0.15 0.81±0.11 0.89±0.10 0.86±0.07 0.90±0.09 0.80±0.10
qMRI 0.49±0.24 0.73±0.13 0.84±0.09 0.80±0.07 0.83±0.10 0.73±0.12

qMRI_Gd 0.70±0.15 0.84±0.09 0.91±0.07 0.88±0.05 0.91±0.07 0.83±0.09
qMRI+qMRI_Gd 0.72±0.13 0.85±0.07 0.92±0.06 0.88±0.05 0.92±0.06 0.84±0.08

Figure 4: Receiver-operator curves (left) and Matthews correlation coefficient (right) for the models trained on different input
configurations for the task of tumor detection. Each box plot summarizes the test performance for the models trained through a
ten-times repeated five-fold cross validation scheme.

Table 2
Summary of the fraction of relevance regions identified by
GradCAM falling in the region of visual explanation, i.e. the
manual annotation of the tumor structure (higher values =
high overlap). Values are computed over single transversal
images, and are presented for the original and thresholded
(T=0.5) GradCAM relevance maps, and for each input
configuration as mean±standard deviation (m±std) over the
transversal slices showing tumor structure (n=136). The input
configuration that achieved the highest overlap between Grad-
CAM and tumor annotation is in bold.

Input
configuration

Original GradCAM
relevance map

(m±std)

Thresholded GradCAM
relevance map

(T=0.5) (m±std)

cMRI (BraTS) 0.19±0.17 0.66±0.38
qMRI 0.19±0.15 0.67±0.35

qMRI_Gd 0.14±0.14 0.53±0.41
qMRI+qMRI_Gd 0.22±0.16 0.72±0.32

slices). Overall, no trends could be seen with respect to the
different input configurations.

Examples of GradCAM and occlusion mapping analysis
for transversal slices are presented in Figure 6. GradCAM
and occlusion relevance maps highlighted similar regions as
important for tumor detection. The relevant region, obtained
by thresholding the relevance map (T=0.03) when using a
5×5 patch, size is also shown. For both examples, the pre-
dicted probability for the tumor presence class was substan-
tially reduced (reduction higher than 0.6) when occluding
the relevant region for models using cMRI, qMRI_Gd or
qMRI+qMRI_Gd input configurations. On the other hand,
a reduction smaller than 0.2 in the predicted probability for
the tumor class was observed for the models trained on qMRI
pre-contrast data. These findings, in combination with the tu-
mor detection classification results, confirm the importance
of the contrast agent in highlighting the tumor region and
show that the detection models exploit the relation between
pre- and post-contrast images.

Considering models trained on cMRI or
qMRI+qMRI_Gd data, the regions identified as relevant for
the tumor detection were proximal to or overlapping with
the tumor annotation for most of the images in the database
(also confirmed by the analysis of the GradCAM in Table
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Figure 5: Examples of model explainability analysis on mosaic images for models trained for tumor detection with different input
configurations. For each example (a and b), the T1wGd mosaic image is shown with the manual annotation contour overlaid
in red (left-most column). Moreover, for each input configuration and example, the GradCAM (top row) and occlusion (bottom
row) relevance maps are presented with the tumor annotation contour overlaid in red. GradCAM and occlusion relevance maps
were computed with respect to the positive class (tumor presence) and are shown as the mean over the 50 models trained through
the ten-times repeated five-fold cross validation. Image best viewed in colors.

2). This shows that the detection models could focus on the
region of visual explanation and exploit this information
for tumor detection even though trained only for a binary
classification between slices containing or not containing
tumor.

By visualizing the R1 and R2 relaxation rates distribution
and shift after contrast injection of the identified relevant
regions for all the transversal slices in the dataset having
tumor annotation (n=136) and for models trained on either
cMRI or qMRI+qMRI_Gd data it can be seen that (1) there
is small to no difference in the relaxation rates distribution
and shift after contrast injection between relevant regions

obtain from models trained on cMRI or qMRI+qMRI_Gd
data, and (2) the relevant regions inside the annotation have
in increase relaxation rates after contrast injection, while
the regions outside do not (see Figure 7). However, these
results presented over the entire dataset do not capture the
diversity in the glioblastoma tumors available in the dataset
and do not account for the differences in relaxation rates
between subjects. In fact when performing a similar analysis
for each subject independently, different trends can be seen.
In the example presented in Figure 8, the relaxation rates of
relevant regions both inside and outside the tumor annotation
increase after contrast injection, especially for the region
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Figure 6: Examples of model explainability analysis on transversal images for models trained for tumor detection with different
input configurations. For each example (a and b), the T1wGd image is shown with the manual annotation contour overlaid in red
along with the T2w image and the R1 and R2 pre- and post-contrast quantitative maps. For each example and input configuration
the following are presented: (top row - Average GradCAM map) the average GradCAM images, (middle row - Average relevance
occlusion map) the average relevance occlusion map, and (bottom row - Relevant region) relevance occlusion mask in red obtained
by thresholding the average relevance maps (T=0.03). The average GradCAM and occlusion relevance maps were computed with
respect to the positive class (tumor presence) and are shown as the mean over the models which did not use such images during
model training. Image best viewed in colors.

identified as relevant by both models trained on cMRI and
qMRI data. The change in relaxation rates can be attributed
to the deposition of gadolinium in the tissue resulting from
the damage of the blood vessel walls caused by the active
tumor tissue growth. It is also interesting to note that the R1
relaxation for the relevant region inside the annotation (range
in [0.24, 0.96]) spread out after contrast injection showing
the inhomogeneity of tissue properties in this region (range

[0.24, 2.62]). This is also visible for R2 relaxation, where
the rates’ distribution shows two predominant tissue types
(two distinct peaks in the R2 relaxation probability density
graphs in the violin plots) of which only one has increased
R2 relaxation rate after contrast injection. Moreover, the shift
in relaxation value for the regions inside and outside the
annotation follows a similar trend, as can be seen from the
violin plot of the pixel-wise difference. This suggests that
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Figure 7: Qualitative comparison of R1 and R2 relaxation rates of relevant regions obtained from models trained on cMRI and
qMRI+qMRI_Gd data over all the transversal slices containing annotated tumor (n=136). R1 and R2 relaxation rates pre- and
post-contrast for the relevant regions within and outside the annotation are shown as violin plots. Quantitative pixel-wise difference
pre- and post-contrast for the relevant regions inside and outside the annotation are also shown as violin plots. In the difference
graph, the common region (green), the region identified only by cMRI (red), the region identified only by qMRI+qMRI_Gd (blue)
are presented with solid and dashed lines within and outside the annotation regions, respectively. Image best viewed in colors.

tissues with similar biological activity is present in these
two regions. Additional examples showing a comparison
between relevant regions inside and outside the tumor anno-
tation for individual subjects are presented in Appendix B,
where Figure 11 shows both a shift and a spread of relaxation
rates after contrast injection, and Figure 12 only a shift.

3.3. Tumor segmentation
Dice similarity coefficient computed on the test data

for the models trained with different input configurations
is summarized in Table 3, with results reported as
mean±standard deviation over the 25 models trained
through five-times repeated five-fold cross validation.
Ensemble performance obtained by averaging models’
softmax predictions on the test cases is also presented.
In addition, boxplots for DSC are shown in Figure 9.
The highest DSC (0.89±0.03) was obtained by the model
trained on the qMRI post-contrast data. A significant
difference in model performance could only be found when
comparing qMRI pre-contrast with any of the other input
configurations (p<0.008). Representative images of the
models’ segmentations when trained on different input
configurations are shown in Figure 10. Overall, models’
segmentation were coherent with the manual annotations as
summarized by the DSC metric, and no trends could be seen

when considering over or under-segmentation for any of the
input configurations. Nevertheless, it is interesting to note
how the three models using qMRI data over-segmented the
region between the two manually annotated tumor regions,
while the model trained on cMRI data did not (Figure 10.b).
This may suggest that tumor-like features extracted from the
quantitative data are present in this region, and that qMRI
could perform better than cMRI if using larger annotations.

Table 3
Segmentation performance for the models trained with
different input configurations. Values are presented as
mean±standard deviation (m±std) Dice similarity coefficient
(DSC) over the models trained through a five-times repeated
five-fold cross validation scheme. Model ensemble performance
is also shown. The input configuration achieving the highest
DSC is shown in bold. Statistically significant differences could
only be found when comparing qMRI with any of the other
input configurations.

Input
configuration

DSC
(m±std)

ensemble DSC
(m±std)

cMRI (BraTS) 0.880±0.038 0.897±0.020
qMRI 0.760±0.043 0.782±0.023

qMRI_Gd 0.885±0.028 0.906±0.011
qMRI+qMRI_Gd 0.883±0.027 0.902±0.015
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Figure 8: Qualitative comparison of R1 and R2 relaxation rates of relevant regions obtained from models trained on cMRI
and qMRI+qMRI_Gd data. (a) transversal slice as seen with T1wGd and by quantitative R1 (pre- and post-contrast). The
average occlusion relevance map used to obtain the relevant region is presented with the tumor annotation boundary shown
in yellow. The relevant region is presented in green overlayed on T1wGd and R1_Gd map. R1 and R2 relaxation rates pre-
and post-contrast for the relevant regions within and outside the annotation are shown as violin plots (b and c, respectively).
Quantitative pixel-wise difference pre- and post-contrast for the relevant regions inside and outside the annotation are also shown
as violin plots. In the difference graph, the common region (green), the region identified only by cMRI (red), the region identified
only by qMRI+qMRI_Gd (blue) are presented with solid and dashed lines within and outside the annotation regions, respectively.
Image best viewed in colors.

4. Discussion
In this study, deep learning models for tumor detection and
segmentation were trained using either cMRI or qMRI data.
Using model explainability methods, relevant regions for
the detection of the tumor were identified and the trends in
quantitative values pre- and post-contrast in those regions

were investigated. We show that (1) tumor detection and seg-
mentation performance for models trained on qMRI_Gd data
are on par with those trained on cMRI data, (2) regions in
the brain relevant for the tumor detection obtained from the
analysis of deep learning explainability maps are proximal
or overlap the manual annotation of the tumor structure, and

IE Tampu et al. Page 11 of 15

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.21.23287514doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.21.23287514
http://creativecommons.org/licenses/by-nc-nd/4.0/


Quantitative MRI and deep learning

Figure 9: Dice similarity coefficient for the models trained on
different input configurations for the task of tumor segmen-
tation. Each boxplot summarizes the test performance for the
25 models trained through a five-times repeated five-fold cross
validation. The ground truth annotations were obtained from
cMRI data.

(3) relaxation rates of these regions increase after contrast
injection, indicative of the presence of active tumor tissue.

4.1. Tumor detection and segmentation
Even though training models on qMRI data did not result

in significant improvement in tumor detection and segmenta-
tion, obtaining performances on par with cMRI (BraTS) data
shows the potential of qMRI as scanner-independent input
for deep learning models. In fact, qMRI measures properties
of brain tissue properties which do not change depending
on MR scanner brand or the field strength. Thus, collecting
qMRI data at many different sites (similar to BraTS) would
potentially not require any harmonization of the images
(which deep learning models normally are sensitive to).
In addition, the tissue relaxation properties measured by
qMRI can be used post-acquisition to generate synthetic
MR images with various contrast-weighing along with au-
tomatic tissue segmentation of white matter, gray matter,
cerebrospinal fluid and myelin (Gonçalves et al., 2018). It
is worth noting that although the tumor detection task was
designed to alleviate the impact of the weak annotations on
the model training, the presence or not of a tumor structure
was still based on the cMRI data. This could have biased the
model in only detecting tumor in those slices where tumor is
visible in cMRI, disregarding those slices where tumor could
only be detected using the qMRI data.

The model performance for both tumor detection and
segmentation was significantly lower for models trained on

qMRI pre-contrast, compared to all other input configura-
tions. The reason for this is most likely due to the missing
hyperintense image regions indicative of active tumor visible
after contrast injection. Moreover, the reason why qMRI pre-
contrast performs worse than cMRI is probably due to cMRI
containing images with and without gadolinium contrast
(T1w, T1wGd), and the network can learn to look at the
difference between these images.

Specific to the tumor segmentation task, using ground
truth annotations obtained on the same input configurations
as that used to train the models could show different model
performances, especially for those models trained on qMRI
data. In fact, all models were trained using as ground truth
the annotation of the tumor border obtained from a high res-
olution T1wGd image, disregarding the input configuration.
This could have negatively affected models using qMRI data
since the labels the models were trained to match, did not
account for all the information available in such data.

4.2. Model explainability analysis
No difference in the pre- and post-contrast injection

relaxation rate trends could be seen over the entire dataset
for the relevant regions identified by models trained on
cMRI or qMRI data using the model explainability analysis
implemented in this study. Thus, no radiological biomark-
ers sensitive to tumor detection specific for qMRI could
be identified. Nevertheless, from the analysis of individual
subjects it could be seen that relaxation rate changes after
contrast injection for relevant regions outside and proximal
to the tumor annotation were similar to those of regions
within the annotation, indicative of the presence of tumor-
like tissue proximal to the visible tumor area. These findings
are coherent with those of (Blystad et al., 2017) in showing
contrast-enhancing induced changes in relaxation rates in the
peritumoral edema. Moreover, the spread in relaxation rates
after contrast injection seen for some of the examples for
relevant regions outside the tumor annotation is indicative
of a high inhomogeneity in tissue properties in those areas.
In the context of glioblastoma, this inhomogeneity can be
attributed to the concomitant presence of vasogenic edema
and infiltrative tumor (Hattingen et al., 2013; Oh et al., 2005)
in the edema region proximal to the contrast-enhancing
tumor. Further investigation through image guided biopsies
is needed to validate such regions.

4.3. Limitations
The small number of subjects available in the dataset

(n=21) hinders the generalizability of the findings of this
study, especially when looking at the comparison between
the regions identified by the models to be useful for tumor
detection when using cMRI or qMRI data. A larger number
of subjects would increase the statistical power to provide
stronger evidence for the trends in quantitative values of the
regions identified as important for the tumor detection. More
subjects would also make it possible to train deep learning
models on 3D volumes instead of 2D slices, using 3D CNNs.
Moreover, by also including a larger variety of tumor types
and grades, the presented approach for the identification
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Figure 10: Representative segmentation results for models trained on different input configurations. Quantitative R1 map,
anatomical T1wGd and the manual annotation (red) overlaid on the T1wGd image are presented on the top row for each
example. Model segmentation is presented in two ways: (1) overlayed in red on the anatomical image (left column) and (2)
compared to the manual annotation (right column) where green shows true positive, blue false positives (over-segmentation) and
red false negatives (under-segmentation). Image best viewed in colors.

of regions important for tumor detection could highlight
differences between tumor types and grades which could be
used during diagnosis.

The in-plane resolution is high (0.43×0.43 mm), but
the slice thickness ranging from 4.4 to 6 mm results in the
quantitative values in each pixel to reflect a variety of tissues.
This is exacerbated in those regions in the brain where there
is transition between tissue types, such as at the border of
the tumor. For this reason, the analysis in this study was
limited in only showing overall trends in quantitative values
of the relevant regions identified by the models. Moreover,
the pre-processing needed to align the manual annotation of
the tumor border to the qMRI data introduced interpolation
artefacts which hindered any conclusion from the analysis of
the quantitative value trends for the small tumor regions.

5. Conclusion
In this study, the potentially added information from

qMRI data in the context of tumor segmentation and de-
tection was investigated. Analysis of quantitative relaxation
rates of brain regions identified relevant for tumor detection
by model explainability maps was also performed. Models
trained on qMRI post contrast data show comparably high
performance in tumor detection and segmentation as models

trained on cMRI data, with the advantage of qMRI mea-
suring tissue relaxation, potentially removing the need for
data harmonization and possibility of generating synthetic
contrast-weighted MR images. No distinct trends in the
relaxation rates between regions identified as relevant for
tumor detection by models trained on either cMRI or qMRI
data could be seen when considering the entire dataset. On
the other hand, the analysis of individual subjects high-
lighted cases where the model-identified relevant regions
outside the tumor annotation showed changes in relaxation
rates after contrast injection similar to regions within the
visible tumor area, suggestive of infiltrative tumor in the
peritumoral edema which are detectable by deep-learning
but invisible to the eye. A larger number of subjects and
tumor types are however needed to generalize the tumor
detection and segmentation results, along with image guided
histological examinations to validate the identified relevant
regions.
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A. Description of data acquisition protocol
Isotropic high resolution BRAVO volume (3D-FSPGR
GD): axial, FOV 240 × 240 mm, 172 slices, voxel size
0.94×0.94×1 mm, TE=3.2 ms, TR=8.2 ms, TI=450 ms.

Axial T1w spin echo before and after (T1wGd) contrast
agent injection: axial, FOV 220 × 165, 24 slices, voxel size
0.43 × 0.43 × 5 mm (gap 1 mm), TE = 17.7 ms, TR = 2
524 ms, TI (inversion time) = 798 ms.

Axial T2w spin echo PROPELLER: axial, FOV 220 × 220,
24 slices, voxel size 0.43 × 0.43 × 5 mm (gap 1 mm), TE =
95-97 ms, TR = 3000 ms.

qMRI MAGIC before and after contrast agent injection:
axial, FOV 220 × 180, 24 slices, voxel size 0.43 × 0.43 ×
5 mm (gap 1 mm). In total 8 images per slice were measured
with TE = 22 ms or 95 ms, TR = 4 000 ms, TI = 170, 670,
1840 or 3840 ms.

B. Additional examples of relevant region
comparison
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Figure 11: Qualitative comparison of R1 and R2 relaxation rates of relevant regions obtained from models trained on cMRI
and qMRI+qMRI_Gd data. (a) transversal slice as seen with T1wGd and by quantitative R1 (pre- and post-contrast). The
average occlusion relevance map used to obtain the relevant region is presented, with the tumor annotation boundary shown
in yellow. The relevant region is presented in green overlayed on T1wGd and R1_Gd map. R1 and R2 relaxation rates pre-
and post-contrast for the relevant regions within and outside the annotation are shown as violin plots (b and c, respectively).
Quantitative pixel-wise difference pre- and post-contrast for the relevant regions inside and outside the annotation are also shown
as violin plots. In the difference graph, the common region (green), the region identified only by cMRI (red), the region identified
only by qMRI+qMRI_Gd (blue) are presented with solid and dashed lines within and outside the annotation regions, respectively.
Image best viewed in colors.
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Figure 12: Qualitative comparison of R1 and R2 relaxation rates of relevant regions obtained from models trained on cMRI
and qMRI+qMRI_Gd data. (a) transversal slice as seen with T1wGd and by quantitative R1 (pre- and post-contrast). The
average occlusion relevance map used to obtain the relevant region is presented, with the tumor annotation boundary shown
in yellow. The relevant region is presented in green overlayed on T1wGd and R1_Gd map. R1 and R2 relaxation rates pre-
and post-contrast for the relevant regions within and outside the annotation are shown as violin plots (b and c, respectively).
Quantitative pixel-wise difference pre- and post-contrast for the relevant regions inside and outside the annotation are also shown
as violin plots. In the difference graph, the common region (green), the region identified only by cMRI (red), the region identified
only by qMRI+qMRI_Gd (blue) are presented with solid and dashed lines within and outside the annotation regions, respectively.
Image best viewed in colors.
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