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Abstract

Drugs targeting genes that harbor natural variations associated with the disease the drug is in-

dicated for have increased odds to be approved. Various approaches have been proposed to iden-

tify likely causal genes for complex diseases, including gene-based genome-wide association stud-

ies (GWAS), rare variant burden tests in whole exome sequencing studies (Exome) or integration of

GWAS with expression/protein quantitative trait loci (eQTL-GWAS/pQTL-GWAS). Here, we compare

gene-prioritization approaches on 30 common clinical traits and benchmarked their ability to recover

drug target genes defined using a combination of five drug databases. Across all traits, the top pri-

oritized genes were enriched for drug targets with odds ratios (ORs) of 2.17, 2.04, 1.81 and 1.31 for

the GWAS, eQTL-GWAS, Exome and pQTL-GWAS methods, respectively. We quantified the perfor-

mance of these methods using the area under the receiver operating characteristic curve as metric,

and adjusted for differences in testable genes and data origins. GWAS performed significantly better

(54.3%) than eQTL (52.8%) and pQTL-GWAS (51.3%), but not significantly so against the Exome ap-

proach (51.7% vs 52.8% for GWAS restricted to UK Biobank data). Furthermore, our analysis showed

increased performance when diffusing gene scores on gene networks. However, substantial improve-

ments in the protein-protein interaction network may be due to circularity in the data generation process,

leading to the node (gene) degree being the best predictor for drug target genes (OR = 8.7, 95% CI

= 7.3-10.4) and warranting caution when applying this strategy. In conclusion, we systematically as-

sessed strategies to prioritize drug target genes highlighting promises and potential pitfalls of current

approaches.
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Introduction1

Drugs whose targets have genetic support were found to be more likely to succeed in clinical trials [1, 2].2

Although multiple methods have been proposed to establish such genetic support, leveraging genetic3

data to find disease genes and ultimately drug targets has proven to be challenging [3, 4, 5, 6]. The4

most straightforward approach maps genome-wide association studies (GWASs) signals to the closest5

genes with more sophisticated methods incorporating linkage disequilibrium (LD) structure and gene6

annotation information to compute gene scores [7, 8, 9]. Over the past decade, large-scale molecular7

quantitative trait loci (mQTL) datasets facilitated the discovery of disease mechanisms and the identifi-8

cation of potential new drug targets [10, 11, 12, 13, 14, 15]. Several methods, including Mendelian ran-9

domization studies, transcriptome-wide association studies and colocalization methods have integrated10

expression and protein QTL data with GWAS studies to pinpoint likely causal genes for complex traits11

and diseases [16, 17, 18, 19, 20, 21, 22]. More recently, the availability of high-throughput sequencing12

data enabled the discovery and analysis of rare variants and their aggregated effects to reveal gene-13

disease associations [23, 24]. Whole exome sequencing (WES) in the UK Biobank (UKBB) showed that14

genes prioritized this way are 3.6 times more likely to be targets of drugs approved by the Food and15

Drug Administration (FDA) [25].16

17

Genes prioritised by GWASs, mQTL-GWAS integration methods and WES burden tests may not be18

drug targets themselves, but up- or downstream of those in pharmacological pathways. Propagating19

gene prioritization scores on networks has proven to be a promising approach to identify known drug20

target genes [26, 27, 28, 29, 30]. Starting from seed genes (i.e., prioritized disease-associated genes),21

network connectivity can identify neighbouring genes that strongly interact with disease genes, but lack22

a direct genetic evidence that explain their therapeutic effect. Gene networks can be derived from lit-23

erature or high-throughput experiments and thus are prone to yield very different results when used for24

(seed) gene score diffusion [31].25

26

Here, we took a comprehensive approach to examine the contribution of each method component27
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to the success of drug target prioritization. First, we focused on four different approaches to prioritise28

(seed) genes: 1) LD-aware gene score computation from the largest GWASs with full publicly available29

summary statistics (Pascal [9]); 2) Mendelian Randomisation (MR) combining tissue-wide expression30

QTLs and GWAS (eQTL-GWAS); 3) MR combining plasma protein QTL with GWAS (pQTL-GWAS);31

4) UKBB WES burden tests (Exome). We then used three different networks to diffuse the seed32

gene scores: 1) STRING protein-protein interaction (PPI) network [32]; 2) an RNA-seq co-expression33

network [33]; 3) the FAVA network [34]. All 12 combinations of the four seed generating methods and the34

three networks were applied to thirty traits (Figure 1) using five different reference sets of target genes35

(DrugBank [35], Ruiz et al. [36], ChEMBL [37], DGIdb [38] and STITCH [39]). Overall, we provide an36

in-depth comparison of all combinations of these approaches, identifying their respective strengths and37

caveats.38
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Figure 1: Overview of the analysis workflow. a Three different gene prioritization methods were tested
in this study. The first one uses GWAS summary statistics as input (GWAS); the second combines
molecular QTL and GWAS summary statistics (QTL-GWAS): either expression QTL (eQTL) or protein
QTL (pQTL) data; the third leverages individual-level whole exome sequencing (WES) data (Exome).
In the GWAS method, gene p-values are based on the sum of squared SNP z-scores (Tsum) that fol-
lows a weighted χ2

1 distribution. The QTL-GWAS method integrates QTL and GWAS summary statistics
through Mendelian randomization (MR). MR causal effect sizes (βMR) are calculated from GWAS and
mQTL effect sizes (GWAS b and mQTL b, respectively) and gene scores are the corresponding p-
values. The Exome method aggregates rare variants from WES data. Putative loss-of-function and
missense variants with minor allele frequencies (MAF) below 1% are collapsed in burden tests which
results in gene p-values. The different approaches were benchmarked for their ability to prioritize drug
target genes. b The effect of network diffusion using three different network types and different diffusion
strengths (i.e. restart parameter r) was evaluated. Drug target genes may only be prioritized following
signal propagation from neighboring disease genes. c Diseases were linked to target genes through
public drug databases: first, we used drug-indication information to connect the 30 traits to drugs and
then leveraged drug-target information to link the drugs to genes. Prioritized disease genes and cor-
responding diffusion scores (obtained via strategies described in panel a and b) were then tested for
overlap with drug target genes through Fisher’s exact tests resulting in odds ratios (ORs) and through
area under the receiver operating characteristic curve (AUC) values.

Results39

Overview of the analysis40

In this study, we calculated gene prioritization scores and tested their ability to identify drug targets41

across thirty traits (Figure 1). We focused on three types of methods termed GWAS, QTL-GWAS and42

Exome that allow the computation of gene scores provided genetic association data (Figure 1a).43

44

The GWAS method takes as input GWAS summary statistics together with a matching LD reference45

panel. Gene p-values are calculated based on the sum of squared test statistics for SNPs falling into46

the gene region [9]. The QTL-GWAS methods integrate GWAS summary statistics with molecular QTL47

data for the gene of interest. We calculated gene scores using i) expression QTL data (eQTL-GWAS)48

from the largest available whole blood eQTL study (eQTLGen study, n = 31,684) as well as tissue-wide49

eQTL data from the GTEx consortium v8 (n = 65-573 for 48 tissue types) and ii) protein QTL data50

(pQTL-GWAS) from the largest available plasma pQTL study (deCODE study, n = 35,559) [14] and i.51

Integration was done by performing Mendelian randomization (MR) analyses using either the protein52
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or transcript as exposure and the GWAS trait as outcome. If not specified otherwise, the eQTL-GWAS53

method refers to the tissue-wide analysis in which the eQTLGen and GTEx data are combined by54

considering the tissue for which the MR effect was the most significant (Methods). While the GWAS55

and QTL-GWAS methods focuse on common genetic variants, the Exome method considers only56

rare variants from WES data with minor allele frequencies (MAF) below 1%. Gene scores were57

based on gene burden tests that aggregate putative loss-of-function and missense variants, and we58

used the resulting p-values from the WES analysis in the UKBB [25]. To allow for a fair comparison59

with the Exome method while also exploiting disease-specific consortia GWAS summary statistics60

with maximized case counts, we calculated gene prioritization scores for the GWAS and QTL-GWAS61

methods using both consortia GWAS and UKBB GWAS data (Table S1-3; Methods).62

63

Disease genes may not coincide with drug target genes, but they may be in close proximity in terms64

of molecular interaction (Figure 1b). Through diffusion based on random walks, we leveraged network65

connectivity to prioritize neighbours of disease genes, which may be drug targets. We tested this66

hypothesis on three different network types: the STRING PPI network which relies on literature67

interactions among other data types [32], a gene co-expression network based on 31,499 RNA-seq68

samples (CoXRNAseq) [33], and gene co-expression network based on single cell RNA-seq and69

proteomics data (FAVA) [34]. Gene prioritization scores were obtained following diffusion at six different70

restart parameter values (r = 0, 0.2, 0.4, 0.6, 0.8, 1) (Methods).71

72

Disease drug target genes were defined using public databases. Specifically, drug-disease indica-73

tion were retrieved from DrugBank [35], Ruiz et al. [36], and ChEMBL [37], while drug-drug target74

pairs originate from DGIdb [38], STITCH [39], and ChEMBL [37]. Drug target enrichment analyses75

were calculated for the following five database combinations: DrugBank/DGIdb, DrugBank/STITCH,76

Ruiz/DGIdb, Ruiz/STITCH, and ChEMBL/ChEMBL.77

78

Finally, prioritized disease genes, defined as the top 1% of genes identified through the 12 combinations79
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of gene prioritization and network diffusion methods (5% for combinations involving the pQTL-GWAS80

method to account for the smaller set of testable genes), were then tested for enrichment with the five81

drug target genes using Fisher’s exact test (Figure 1c). Background genes were defined as all genes that82

could be tested by the respective method, and sensitivity analyses were performed on background genes83

testable for all methods. Second, we calculated the area under the receiver operating characteristic84

curve (AUC) values which has the advantage of not requiring any thresholds. To compute a combined85

enrichment score per method, we aggregate results across traits and drug databases termed overall86

ORs or overall AUC values (Methods).87

Concordance of prioritized genes among gene scoring methods88

We first analyzed whether genes prioritized by the GWAS, QTL-GWAS and Exome methods were89

concordant (Figure 2). For each of the thirty traits (Figure 2a), we calculated gene scores for the90

testable autosomal protein-coding genes (GWAS: ∼19,150, eQTL-GWAS: ∼12,550 (blood) and ∼16,25091

(tissue-wide), pQTL-GWAS: ∼1,870, Exome: ∼18,800). In the tissue-wide eQTL-GWAS method, the92

tissue with the most significant MR p-value was selected. In Figure S1, we show the proportion of genes93

mapped to a particular tissue category. The contribution of glandular-endocrine, neural central nervous94

system (CNS) and whole blood (eQTLGen) tissue categories were the highest (respective means of95

15.3%, 12.8%, and 12.6% across the thirty traits; Table S4-5). Although each trait had genes mapped96

to nearly all tissues, a few distinctive patterns could be observed: cardiac muscle tissues contributed97

the most to atrial fibrillation (16.4%), vascular tissues the most to coronary artery disease (16.5%)98

followed by diastolic (11.1%) and systolic (9.9%) blood pressure, and the neural CNS contributed the99

most to schizophrenia (16.9%) and bipolar disease (16.6%).100

101
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Figure 2: Evaluating the concordance of prioritized genes among methods. a Thirty different traits/drug
indications were tested in this study. b The top prioritized genes between pairs of methods were com-
pared at different thresholds for each trait (legend shown in a). The logarithm of odds ratios (log-OR)
were calculated from Fisher’s exact tests. Log-ORs are only plotted for percentiles at which common
genes between pairs of methods were found. Comparisons were conducted on the same background
genes and same data origins (i.e., on UK Biobank GWASs for comparisons with the Exome method).
Tissue-wide eQTL-GWAS gene prioritizations were considered for the comparison with the GWAS and
Exome methods, and the blood-only eQTL-GWAS gene prioritization method for the comparison with
the pQTL-GWAS method. c Spearman correlations calculated per trait between the gene significance
(-log10(p-values)) from the GWAS and tissue-wide eQTL-GWAS methods. The analysis was conducted
per trait on all common genes (∼16,100) stratified into quartiles according to transcript heritability (in
cis). d Spearman correlations calculated per trait between gene Mendelian randomization (MR) causal
effect sizes (βMR) from the blood eQTL-GWAS and pQTL-GWAS methods. The analysis was conducted
on all common genes (∼1,370) stratified into quartiles according to the transcript heritability. In c and d,
the boxplots bound the 25th, 50th (median, centre), and the 75th quantile. Whiskers range from minima
(Q1 – 1.5 · IQR) to maxima (Q3 + 1.5 · IQR) with points corresponding to individual traits from a.

The concordance of prioritized genes among pairs of methods is summarized in Figure 2b. For each102

trait, we calculated Fisher’s exact tests between the top prioritized genes at thresholds ranging from the103

top 0.1%-10% (Methods). The overlap was the highest between the GWAS and eQTL-GWAS methods.104

At 1%, the median odds ratio (OR) was 212.2 which dropped to 51.0 and 22.1 at 5% and 10%, respec-105

tively. The concordance between GWAS and eQTL-GWAS prioritized genes was highest for transcripts106

with high heritabilities (Figure 2c; Methods). Similarly, the agreement between the eQTL-GWAS (whole107

blood) and pQTL-GWAS (blood plasma) increased with increasing transcript heritabilities (Figure 2d).108

Overall, the median ORs between these two methods was 8.5 and 4.6 at the top 5% and 10%, respec-109

tively. The overlap of prioritized genes was the lowest with the Exome method. The top 1% GWAS vs110

Exome and eQTL-GWAS vs Exome overlaps (based only on UKBB GWAS summary statistics), yielded111

median ORs of 1.7 and 1.9, respectively which dropped to 1.0 at 10% for both methods.112

Enrichment of prioritized genes for drug targets113

Next, we assessed the extent to which prioritized genes overlapped with drug target genes. For114

each trait, we conducted enrichment analyses for the GWAS, eQTL-GWAS, pQTL-GWAS and Exome115

methods using our five definitions of drug target genes.116

10
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117

In Figure 3a, we show the resulting ORs for the DrugBank/DGIdb database combination. Across118

methods, genetic support for drug targets was the highest for LDL and total cholesterol (average ORs119

of 5.99 and 6.12, respectively). Lowest enrichment ratios were obtained for neuro-psychiatric traits120

(average OR of 1.56) and glaucoma (average OR of 1.14). The average OR across traits was 2.48,121

2.68, 1.65, and 1.26 for the GWAS, eQTL-GWAS, Exome and pQTL-GWAS methods, respectively.122

We explored a range of top disease gene percentiles (0.1-5%) and the corresponding ORs are123

shown in Figure 3b. Restricting disease genes to the top 0.1% for all methods increased the average124

ORs without changing the method ranking with average ORs of 3.68, 4.02, 2.40, and 1.44 for the125

GWAS, eQTL-GWAS, Exome and pQTL-GWAS methods, respectively. We further analyzed whether126

identified drug targets were the same across methods and found that prioritized drug target genes were127

similar between GWAS and eQTL-GWAS methods (average Jaccard index of 0.39), less so between128

eQTL-GWAS and pQTL-GWAS methods (blood tissues; average Jaccard index of 0.15) and were very129

different from Exome identified targets (average Jaccard index of 0.06 between GWAS & Exome and130

eQTL-GWAS & Exome methods). Average AUC values across traits were of 53.4%, 51.9%, 50.5% and131

49.9% for the GWAS, eQTL-GWAS, Exome and pQTL-GWAS methods (Figure 3c).132

133

While the number of drugs reported per indication was similar across databases (average of 43.9,134

41.8 and 40.4 for Ruiz et al., ChEMBL and DrugBank, respectively), the average number of reported135

drug targets was much higher for Ruiz/STITCH (285), Ruiz/DGIdb (274.8), Drugbank/DGIdb (263.4)136

and Drugbank/STITCH (244.2) than for ChEMBL/ChEMBL (24.8; Table S7). We repeated drug target137

enrichment calculations for all drug database combinations (Figure 3d, Figure S2). The average OR138

for the GWAS/eQTL-GWAS methods were 2.48/2.68, 2.80/2.53, 2.18/2.12, 1.78/1.61 and 1.78/1.51 for139

Drugbank/DGIdb, ChEMBL/ChEMBL, Ruiz/DGIdb, Ruiz/STITCH and Drugbank/STITCH, respectively.140

Overall, the variability in ORs across traits was the highest in the ChEMBL database (Figure 3d, Figure141

S2), likely due to the low average number of reported drug targets which leads to very high ORs when142

drug targets figured among the prioritized genes (e.g. for LDL and total cholesterol), but for many traits143

11
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drug target genes were not among prioritized genes (e.g. for type 1 diabetes, atopic dermatitis and144

inflammatory bowel disease).145

146

Since enrichment results can differ widely across traits and reference databases, we calculated overall147

enrichment and AUC values across traits and drug databases, including sensitivity analyses on UKBB148

data only and common background genes (Table S9, Figure S4; Methods). The overall ORs were 2.17149

(UKBB: 1.72), 2.04 (UKBB: 1.67), 1.81 and 1.31 (UKBB: 1.30) for the GWAS, eQTL-GWAS, Exome and150

pQTL-GWAS methods, respectively. There were no significant differences between these four methods151

in terms of enrichment OR (Pdiff > 0.05 including in the sensitivity analyses). Overall AUCs were 54.3%152

(UKBB: 52.8%), 52.8% (UKBB: 51.4%), 51.7% and 51.3% (UKBB: 50.6%) for the GWAS, eQTL-GWAS,153

Exome and pQTL-GWAS methods, respectively. Judging by the AUC values, GWAS performed signifi-154

cantly better than eQTL-GWAS (Pdiff = 3.1e-5) also when only considering testable eQTL genes (Pdiff =155

2.9e-4). Significantly higher AUC values were obtained for the GWAS compared to Exome on consortia156

data (Pdiff = 2.2e-4) which was no longer the case on UKBB data (Pdiff = 0.06). The difference between157

eQTL-GWAS and Exome was not significant on either dataset (Pdiff of 0.12 and 0.77 on consortia and158

UKBB data, respectively). The number of testable genes was much lower for the pQTL-GWAS method159

(∼1,870 genes). With this set of background genes, GWAS still scored a higher overall AUC (55.1%,160

Pdiff = 2.1e-3). No difference was observed between the pQTL-GWAS and tissue-wide or whole blood161

eQTL-GWAS methods (Pdiff of 0.66 and 0.87, respectively).162
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Figure 3: Enrichment for drug target genes. a Left: Barplot with odds ratios (ORs) calculated from
Fisher’s exact tests between drug target genes and the top 1% (5% for pQTL-GWAS) prioritized genes
for the four tested methods and thirty traits, classified according to trait category. Drug target genes were
defined by DrugBank/DGIdb, and only drug target genes that could be tested by the respective method
were considered. The number on the right of each bar indicates the number of identified drug target
genes. Right: Overlap of identified drug target genes between pairs of methods quantified through the
Jaccard index. The blood-only eQTL-GWAS gene prioritization method was used for the comparison
with the pQTL-GWAS method. Plots using UKBB GWASs-only are shown in Figure S3. b ORs at
different top prioritised gene percentiles for the four methods. The plotted dots correspond to the median
OR across the thirty traits, and the shaded area bounds the 10% and 90% percentiles. c Boxplots
showing the area under the receiver operating characteristic curve (AUC) values. AUC values were
calculated for each trait as indicated by the points (legend in Figure 2a) and using the same background
genes and drug target definitions as in a. d ORs calculated for the five drug target definitions and for
all four methods (legend in b). The OR was set to 1 for traits with no identified drug target genes. In b
and d, the boxplots bound the 25th, 50th (median, centre), and the 75th quantile. Whiskers range from
minima (Q1 – 1.5 · IQR) to maxima (Q3 + 1.5 · IQR) with points outside representing potential outliers.

Examples of drug target prioritization ranks163

In Figure 4, we highlight drug targets and their gene prioritization ranks for a few examples (complete list164

in Table S10). Major antihypercholesterolemic drug targets PCSK9 (evolocumab, alirocumab), HMGCR165

(statins) and NPC1L1 (ezetimibe) were top ranked by all methods (except for no pQTLs being available166

for HMGCR and NPC1L1; Figure 4a). HCN4, the target of antiarrhythmic drug dronedarone, was priori-167

tized as a disease gene for atrial fibrillation only through the GWAS method. Although highly expressed168

in the atrial appendage and left ventricle of the heart, no eQTL was reported for this gene (Figure 4b).169

Several antiepileptic drugs target SCN1A which was highly prioritized by the GWAS and eQTL-GWAS170

methods with the strongest MR effect found in the nucleus accumbens (basal ganglia) of the brain (Fig-171

ure 4c). Antiplatelet drug dipyrimadole used in the prevention and treatment of vascular diseases such172

as stroke and coronary artery disease is listed to target 23 genes of the PDE superfamily in ChEMBL.173

Of these, four (PDE4D, PDE3A, PDE3B, PDE6B) were ranked in the top 1% by the exome method for174

stroke (Figure 4d). None of the other methods prioritized any of these 23 genes. For coronary artery dis-175

ease, another superfamily member (PDE5A) had a low ranking (< 2%) for the GWAS and QTL-GWAS176

methods, supported by solid GWAS and e/pQTL colocalisation (Figure 4e).177
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Figure 4: Examples illustrating drug target genes and their prioritization ranks. a Three drug target
genes (PCSK9 (evolocumab, alirocumab), HMGCR (statins) and NPC1L1 (ezetimibe) shown in purple)
for LDL cholesterol (blue box) and their prioritization ranks (top percentiles shown in parentheses) of
each of the four methods (GWAS in green, eQTL-GWAS in yellow, Exome in blue and pQTL-GWAS
in red). Genes that were not testable by a given method are reported as NA (no e/pQTL means that
the gene was measured, but had no QTL) and a range of ranks (i.e., 1-52) indicates tied p-values. b
Top plot shows the prioritization ranks of HCN4, the target of antiarrhythmic drug, dronedarone. Bot-
tom plot shows the gene expression profile of HCN4 across GTEx tissues (transcript per million - TPM)
with “Testis”, “Heart – Atrial Appendage” and “Heart – Left Ventricle” dominating. c Top plot shows the
prioritization ranks of SCN1A (Sodium Voltage-Gated Channel Alpha Subunit 1), a drug target gene of
several antiepileptic drugs. Bottom plot shows Mendelian randomization (MR) effects (red dot) wih 95%
CI (black bars) across tissues in which there was a significant eQTL. d Antiplatelet drug dipyrimadole
and gene prioritization ranks of its multiple drug targets (a non-exhaustive selection) of the phosphodi-
esterase (PDE) superfamily. e Top plot shows the gene prioritization ranks of PDE5A, another reported
target for dipyrimadole. Bottom plot shows the regional SNP associations (-log10(p-values)) with coro-
nary artery disease (CAD; GWAS, green), PDE5A protein (pQTL, red) and PDE5A transcript (eQTL,
yellow), respectively (red dashed lines indicate the significance thresholds of the respective SNP asso-
ciation, and grey shade marks the position of PDE5A). Bottom row illustrates the positions and strand
direction of the genes in the locus.

Heritability and polygenicity of drug target transcripts and proteins178

It has been shown that drug target genes are more likely to have lower residual variance intolerance179

scores (RVIS), i.e., are less tolerant to change [1]. With the availability of large-scale eQTL and pQTL180

data, we tested whether drug target transcript or protein levels may be less impacted by genomic181

variations.182

183

To this end, we compared cis-heritabilities and polygenicities of drug target genes versus non-drug184

target genes that were measured in the respective studies (i.e., also those with no reported e/pQTLs;185

Methods). We conducted the analysis per trait and for each of the five drug target gene definitions.186

Overall, we observed that drug target genes were less heritable and more polygenic than non-drug187

target genes pointing towards a negative selection [40] (Figure S5). This trend was less pronounced188

for tissue-wide than for whole blood eQTLs, and was the strongest for pQTLs. Across QTL studies and189

drug databases, the traits for which drug targets were significantly less heritable and more polygenic190

differed substantially. However, in no scenario drug target genes were more heritable than non-drug191

target genes on either the transcript or protein-level (at a nominally significant level). Considering drug192
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target genes defined by DrugBank/DGIdb for the plasma protein QTLs as an example: targets for traits193

from the circulatory system were all shown to be more polygenic, and targets for psychiatric traits were194

all less heritable at a nominally significant level.195

Network diffusion196

Finally, we assessed whether network diffusion can identify drug target genes for which there is no197

direct genetic evidence. Gene scores from prioritization methods defined the initial distribution p0 of198

the diffusion process. This process is regulated by a restart parameter r where lower values result in a199

wider diffusion (i.e., genes can be prioritized even when distant from initial disease genes; Methods).200

The stationary distribution was calculated for six different restart parameters, ranging from no diffusion201

(r = 1) to complete diffusion (r = 0). Since the set of testable proteins (∼1,870) is enriched for drug202

target genes (two-sided binomial test: p-value = 1.3e-47 for DrugBank/DGIdb; complete results in Table203

S15; Methods) AUC values were artificially inflated upon projecting the gene scores onto the network204

and pQTL-GWAS results are hence not discussed.205

206

Applying diffusion using the STRING network massively boosted the overlap between the diffused207

prioritized genes and the drug target genes (Figure 5a-b, Figure S6-7). At no diffusion, overall AUC208

values across the thirty traits were 54.3%, 52.8% and 51.7% for the GWAS, eQTL-GWAS and Exome209

methods, respectively, which increased to 68.9%, 67.7% and 66.9% at r = 0.6, and 73.5%, 72.9% and210

72.3% at r = 0.4 (Figure 5a, Figure S6, Table S12). The same trend was observed when calculating211

enrichment scores for the top 1% genes with overall ORs of 4.63, 5.21 and 5.07 at r = 0.4 (Figure 5b,212

Figure S7, Table S12). On the other hand, improvements were modest when considering co-expression213

networks. At r = 0.6, overall AUC values increased to 54.9%, 54.7% and 53.5% in case of the214

CoXRNAseq network. Although small, the difference was significant compared to no diffusion (Pdiff of215

5.11e-3, 4.12e-14 and 4.83e-5, respectively). Overall ORs at r = 0.6 were 2.28, 2.04 and 1.91 which216

were not significantly different (Pdiff > 0.05) compared to no diffusion. Likewise, in the FAVA network,217

overall AUC values at r = 0.6 were 55.9%, 54.2% and 53.6% (Pdiff compared to no diffusion of 2.23e-5,218
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3.08e-3 and 7.3e-6), and ORs 2.38, 2.02 and 1.77 (Pdiff > 0.05) for GWAS, eQTL-GWAS and Exome219

methods, respectively (Figure S6-7, Table S12-13).220

221

We further assessed which method’s AUC values benefited the most from network diffusion. To allow222

fair comparisons with the Exome methods, we used UKBB GWAS data for the GWAS and eQTL-GWAS223

methods. Across all diffusion parameters r, overall AUC values were significantly higher for GWAS224

than eQTL-GWAS in the STRING and FAVA network (Pdiff < 4.45e-4), but not any different in the225

CoXRNAseq network (Pdiff > 0.05). A nominally significant difference in favour of GWAS compared226

to Exome was only observed in the STRING network at r values of 0.4, 0.6 and 0.8 (Pdiff of 0.0262,227

7.36e-3 and 0.0146, respectively). No statistical differences were observed between the eQTL-GWAS228

and Exome method except for a nominally significant difference in favour of eQTL-GWAS at r = 0.2 in229

the CoXRNAseq network (Pdiff = 0.0113).230

231

When investigating the network connectivity, we observed that drug target genes were significantly more232

likely to be hub genes (Figure 5c, Figure S8). This observation was particularly strong in the STRING233

network (mean log-degree = 13.0 vs 12.3, Pdiff = 6.6e-284 for DrugBank/DGIdb), but also present in the234

co-expression networks (∆ log-degree = 0.064, Pdiff = 0.011 for CoXRNAseq; ∆ log-degree = 0.3, Pdiff235

= 6.6e-11 for FAVA). As a consequence, the network’s node degree was found to be a good predictor236

of drug targets, and the best performance was found for the network degree in STRING (overall AUC =237

77.6%, overall OR = 8.71). Given this bias, we generated random initial disease gene scores and de-238

termined to which extent genetically-informed p0 distributions performed better compared to random p0239

distributions. Although GWAS, eQTL-GWAS and Exome methods had significantly higher AUC values240

than random score distributions for any given r value in the STRING network (Pdiff < 1.62e-7; Table S13),241

the performance of a mildly diffused (r = 0.8) random score (which is unaware of the target disease) per-242

formed significantly better than any disease gene prioritisation method without diffusion (Pdiff of 4.18e-6,243

3.58e-10 and 2.10e-12 compared to GWAS, eQTL-GWAs and Exome, respectively). In line with this244

observation, the network degree was still significantly better than gene prioritization methods at r = 0.2245
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(Pdiff of 8.98e-6, 9.87e-13 and 1.89e-11 compared to GWAS, eQTL-GWAs and Exome, respectively).246
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Figure 5: Effect of network diffusion to prioritize drug target genes. a Boxplots showing the area under
the receiver operating characteristic curve (AUC) values for each network type (STRING, CoXRNAseq
and FAVA) and method at different restart parameter values r. AUC values were calculated for each
of the thirty traits, and drug target genes were defined by DrugBank/DGIdb. At an r value of 1 (no
network diffusion), the analysis corresponds to the results in Figure 3b, and at an r value of 0, the gene
prioritization rank is simply based on the degree of the network nodes. At r < 1, the background genes
are the genes reported in the respective network. The star next to the pQTL-GWAS method signals that
the set of testable genes for this method is enriched for drug target genes and therefore higher AUC
values were obtained when adding background genes with zero-valued initial scores. b Odds ratios
(ORs) between prioritized genes (top 1%) and drug target genes for each network type and method at
different r values across the thirty traits (same drug target and background genes as in a). The OR was
set to 1 for traits with no identified drug target genes. c Histograms showing the degree distribution of
drug target genes and non-drug target genes in each network. The difference in log-degree (∆) and the
p-values from two-sided t-tests are shown in the titles. In a and b, the boxplots bound the 25th, 50th
(median, centre), and the 75th quantile. Whiskers range from minima (Q1 – 1.5 · IQR) to maxima (Q3 +
1.5 · IQR) with points above or below representing potential outliers.

Examples of prioritized genes through network diffusion247

In the following, we describe several examples for which drug targets figured among the top 1% genes248

only after network diffusion (complete list in Table S14). Amyloid-beta precursor protein (APP) targeted249

by the monoclonal antibody aducanumab in the treatment of Alzheimer’s disease was ranked 506 (top250

2.7%) prior and 152 (top 0.8%) after diffusion on the STRING network (r = 0.6; Figure 6a) based on the251

eQTL-GWAS method. Prioritization was largely influenced by its interacting neighbour Apolipoprotein E252

(APOE) which was the top 5 ranked gene for Alzheimer’s disease. Tumor necrosis factor (TNF), a drug253

target in the treatment of inflammatory diseases such as psoriasis, was ranked 1,558 (top 8%; Exome-254

Psoriasis) prior and 182 (top 0.98%; r = 0.6) post-propagation in the STRING network (Figure 6b).255

While initially the drug target F2 (Coagulation Factor II, Thrombin) for VTE (venous thromboembolism)256

ranked only in the top 2% it moved up to the top 1% regardless of the network used for diffusion at r =257

0.6 (top 0.9%, 0.6% and 0.7% for STRONG, CoXRNAseq and FAVA, respectively). In the STRING and258

CoXRNAseq networks, this boost could largely be attributed to the interacting fibrinogen genes (FGA,259

FGB and FGG) that ranked in the top 0.06% (Figure 6c).260
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Figure 6: Examples illustrating network diffusion to prioritize drug target genes. a Top ten network
neighbours of drug target APP (brown circle) and their prioritization values (i.e., normalized node proba-
bilities) of the eQTL-GWAS method for Alzheimer’s disease are shown before (r = 1) and after diffusion
(r = 0.6) on the STRING network. b Same representation as in a showing Exome prioritization values
for psoriasis and tumor necrosis factor (TNF) drug target. c Top ten network neighbours of drug target
F2 (Coagulation Factor II, Thrombin) in the STRING, CoXRNAseq and FAVA networks. GWAS prioriti-
zation values for venous thromboembolism (VTE) are shown before (r = 1) and after diffusion (r = 0.6)
on each network. In each network example (a-c), the drug target gene was among the top 1% prioritized
genes only after diffusion at r = 0.6.

Discussion261

We conducted a comprehensive benchmarking between different genetically informed approaches262

(GWAS, QTL-GWAS and Exome) combined with network diffusion to prioritize drug target genes.263

The strength of our analysis lies in the side-by-side comparison of gene prioritization methods that264

individually have proven to be successful in identifying drug targets. Recently, methods have emerged265

that combine multiple genetic predictors to derive an aggregate score often using machine-learning266

techniques [27, 41, 42]. These scores demonstrated high enrichment for drug targets but reveal little267

about underlying molecular mechanisms. Our aim was to disentangle the importance of the choice of268

the ground truth (i.e., drug target genes), the input data (such as molecular QTLs, WES) in combination269

with different molecular networks to highlight added benefits while also exposing weaknesses compared270

to using GWAS data alone.271

272

Adjusting for differences in background genes and data origins, GWAS yielded higher AUC than273

eQTL- and pQTL-GWAS, but no significant difference was found with Exome. Genes prioritized by274

the Exome method were different from those identified by the GWAS and QTL-GWAS methods which275

was also reflected in the identified drug targets. While this could imply that rare- and common variant276

genetic architectures are complementary, differences could also be due to power issues. Possibly,277

with increased sample size the implicated genes will converge, but the extent to which they can be278

perturbed by regulatory vs rare coding variants might remain different. Considering ORs, we lacked279

statistical power to claim significant differences between methods since the number of drug targets280
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among top 1% prioritized genes can be very low. Overall enrichment ORs for drug targets were 2.17,281

2.04, 1.81 and 1.31 for the GWAS, eQTL-GWAS, Exome and pQTL-GWAS methods, respectively.282

Although ORs for the pQTL-GWAS method may seem lower, it should be noted that testable proteins283

(i.e., proteins with pQTLs) accounted for ∼10% of GWAS testable genes. On the same background284

genes, ORs for the tissue-wide and blood-only eQTL-GWAS methods were 1.38 and 1.22, respectively.285

For the AUC metric, no significant difference between eQTL-GWAS and pQTL-GWAS was found. In286

the method comparisons, we considered multiple drug target gene definitions. The number of targets287

per drug drastically differed between ChEMBL and the DGIdb or STITCH databases due to differences288

in their construct. Drug target genes in the ChEMBL database are manually curated and should not289

contain false positives but it remains debatable whether to consider only primary or also secondary290

target genes. For instance, ChEMBL only lists HMGCR as a drug target for statins, whereas the DGIdb291

database also includes APOA5, APOB and APOE among others. For this reason, we considered292

different databases and present enrichment results for both broad and narrow drug target definitions,293

as well as aggregates.294

295

Network diffusion was beneficial for prioritizing drug target genes with weaker genetic support. A296

remarkable increase in drug target identification was achieved when using the STRING network.297

However, this improvement may be due to a circularity in the data generation process leading to drug298

targets being much more likely to also be hub genes. Although genetically-informed methods performed299

better than random distributions, the STRING network node degrees resulted in the highest AUC values300

overall. Thus, care has to be taken when relying on literature-derived gene-gene interactions as ag-301

gressive diffusion will point to the same drug target genes, irrespective of the disease, and the intrinsic302

bias stemming from under- and over-studied genes may hinder the discovery of new drug targets.303

The improvements made with co-expression networks, which do not suffer from publication/curation304

biases, were minor in comparison. Although significant with the AUC metric, ORs were not significantly305

increased with a diffusion of r = 0.6 as compared to no diffusion for any of the methods.306

307
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Among the set of measured proteins (which itself was enriched for drug target genes), protein levels of308

drug target genes exhibited lower heritabilities and higher polygenicities than non-drug target genes.309

The same trend, but to a lesser extent, was observed on the transcript level. Additionally, drug target310

genes had stronger network connections than non-drug target genes, even in unbiased co-expression311

networks. Together, these observations suggest a tendency for drug targets to be evolutionary312

constrained and as a result are more protected from genomic perturbations.313

314

Several limitations should be considered. First, we do not take into account directionality of therapeutic315

and genetic effects, i.e., whether the drug is an agonist or antagonist. Although found to be less316

performant than GWAS, QTL-GWAS methods have the advantage of specifying directionality, as317

opposed to gene scores from the GWAS approach which ignores SNP effect directions. Second, the318

used molecular QTL data sets cover only a small fraction of possible intermediate traits through which319

SNPs exert their disease-inducing effects [43]. Third, we only focus on common genetic variants when320

associating transcript and protein levels. With the advent of coupled rare variant-protein level data,321

either from populations enriched for rare variants or sequencing data [14, 44], more powerful QTL-322

GWAS methods are likely to emerge that combine mechanistic insights gained from QTL approaches323

while capturing rare variant associations previously missed. Fourth, drug target data are sparse which324

limits the statistical power in benchmarking analyses. Given the required resources to test a drug325

target in clinical settings, focusing on top ranking genes is of most interest. This scenario is best326

described with a threshold that defines highly prioritized genes for enrichment analyses. However,327

ROC curves that quantify the performance at all prioritization thresholds (i.e. use all data at hand)328

were better powered to detect subtle differences between methods. Finally, our analysis compares329

methods using historical drug discovery data as the ground truth. This data is highly biased with330

G-protein-coupled receptors being targets of a third of FDA-approved drugs [45]. Many other genes331

may be effective targets, but have never been tested in clinical trials. Thus, our results may not reflect332

how well the tested genetic approaches uncover true disease genes, but rather how well they identify333

targets that were historically prioritized in drug development processes. Since the emergence of robust334
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GWAS, more and more clinical trials are motivated by genetically informed targets. Thus, drug tar-335

get databases will tend to overlap better with GWAS-inspired genes, leading to artificially higher overlap.336

337

To conclude, we systematically evaluated major gene prioritization approaches for their ability to identify338

approved drug target genes. Our analyses highlight the power of harnessing multiple data sources339

by capitalizing on QTLs for mechanistic insights, sequencing data for rare variant associations, GWAS340

when molecular QTL signals are missing and network propagation to leverage gene-gene interactions.341

Methods342

GWAS data343

We used the largest (to-date), publicly available GWAS summary statistics for each analyzed condi-344

tion (Table S1). GWAS data came mostly from consortia specific to the respective disease, and were345

often a meta-analysis comprising the UKBB. Twenty-four out of the 30 conditions were case/control346

studies, the remaining 6 being continuous traits: diastolic and systolic blood pressure (DBP and SBP, re-347

spectively [46]), low-density lipoprotein and total cholesterol (LDL and TC, respectively [47]), estimated348

glomerular filtration rate (eGFR [48]) and heel bone mineral density ([47]) proxying chronic kidney dis-349

ease (CKD) and osteoporosis, respectively. For four traits with low case count in the UK Biobank (<350

20,000; chronic obstructive pulmonary disease (COPD), endometriosis, pneumonia and psoriasis) and351

no large-scale GWAS meta-analysis available, we performed a meta-analysis between the UK Biobank352

[47] and FinnGen [49] using METAL [50].353

GWAS gene scores354

We used PascalX [9, 51] to compute gene scores based on GWAS summary statistics. The software355

takes as input GWAS p-values, gene annotations and LD structure. SNPs are assigned to genes and356

their squared z-scores are summed. This sum, under the null, was shown to follow a weighted chi-357

square distribution with weights being defined by the local LD structure from which gene p-values can be358

derived [9]. We applied PascalX with default parameters (gene ± 50 kB) on protein-coding genes using359
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the Ensembl identifiers and annotations (Ensembl GRCh37.p13 version) and the UK10K reference panel360

[52]. Across traits, ∼19,150 protein-coding genes could be tested which were ranked by their PascalX361

p-value.362

Molecular QTL-GWAS gene scores363

We integrated molecular quantitative trait loci (QTL) and GWAS summary statistics using Mendelian364

randomization (MR) implemented in the smr-ivw software [53, 22]. The exposure (transcript or protein365

levels) and outcome disease were instrumented with independent genetic variants, also called instru-366

mental variables (IVs; r2 < 0.01) and used to calculate putative causal effect estimates of the exposure367

on the outcome (βMR). IVs were required to be strongly associated to the exposure (PQTL < 1e-6) and368

had to pass the Steiger filter ensuring no significantly stronger effect on the outcome than on the ex-369

posure [54]. We used expression QTLs (eQTLs) from the eQTLGen consortium [13] (whole blood; n =370

31,684) and tissue-specific QTLs from the GTEx v8 release [55] (European ancestry; n = 65-573 for 48371

tissue types; Table S4) to estimate causal transcript-trait effects. In the eQTLGen dataset there were372

∼12,550 protein-coding genes with at least 1 IV which increased to ∼16,250 when integrating the GTEx373

dataset. MR results from both datasets (whole blood from eQTLGen and 49 tissues from GTEx) were374

aggregated by considering the MR causal effect with the lowest p-value across tissues (Table S4-5).375

Protein QTLs (pQTLs) from the deCODE study [14] (whole blood; n = 35,559) were used to estimate376

protein-trait causal effects with ∼1,870 proteins having at least 1 IV. Prior to the analysis, e/pQTL and377

GWAS data were harmonized, palindromic SNPs were removed as well as SNPs with an allele frequency378

difference > 0.05 between datasets. All transcripts and proteins were mapped to Ensembl identifiers as379

provided by eQTLGen, GTEx and deCODE.380

Exome gene scores381

We used gene burden test results computed on WES data from the UK Biobank [25]. We extracted382

gene-trait associations based on putative loss of function (pLOF) and deleterious missense variants383

with MAF <1% (M3.1 nomenclature in original publication) with phenotypes matching the investigated384

conditions as indicated in Table S2. Associations were provided for ∼18,800 genes which were ranked385
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by the association p-value and retrieved by the provided Ensembl identifier.386

Concordance of gene scoring methods387

We tested whether prioritized genes were similar or dissimilar between pairs of methods. First, only388

genes (based on Ensembl identifiers) that were common between the two tested methods were selected389

into the gene background. Then, prioritized genes were defined at different top percentile cut-offs (0.1%,390

0.2%, 0.5%, 1%, 2%, 3%, 5%, 7.5%, 10%). The enrichment of prioritized genes between methods was391

quantified by a Fisher’s exact test using common genes as background genes. When calculating median392

ORs, ORs of traits for which no prioritized genes overlapped at a given percentile were set to 1.393

Drug target genes394

We extracted drug target genes from public resources by combining drug-indication and drug-target links395

from various databases. A given disease/indication was linked to a drug if the drug was indicated to be396

prescribed for the selected indication and subsequently, the target genes of these drugs were extracted.397

For drug-indication pairs we consulted DrugBank, Ruiz et al. and ChEMBL:398

• DrugBank 5.0 [35] (download: May 2022): DrugBank indications are manually curated from drug399

labels and underwent an expert review process. Drug indications have their own DrugBank condi-400

tion numbers and drugs their DrugBank identifiers.401

• Ruiz et al. [36]: A drug-disease dataset was created by querying multiple sources such as the402

Drug Repurposing Database, the Drug Repurposing Hub, and the Drug Indication Database and403

extracting information from drug labels, DrugBank and the American Association of Clinical Tri-404

als Database. Drug–disease pairs were filtered for FDA-approved treatment relationships. This405

dataset uses NLM UMLS CUIDS identifiers (National Library of Medicine -Unified Medical Lan-406

guage System Controlled Unique Identifier) for diseases and DrugBank identifiers for drugs.407

• ChEMBL [37] (download: May 2022): ChEMBL drug indications are extracted from multiple408

sources including DailyMed package inserts, Anatomical Therapeutic Chemical (ATC) classifica-409

tion and ClinicalTrials.gov. Mapping of disease terms to Medical Subject Headings (MeSH) vocab-410

27

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2023. ; https://doi.org/10.1101/2023.03.21.23285637doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.21.23285637
http://creativecommons.org/licenses/by/4.0/


ulary and the Experimental Factor Ontology (EFO) is done through a combination of text-mining,411

automated mapping and manual curation/validation. Drugs are reported with ChEMBL identifiers.412

The mapping of GWAS traits to the drug indication identifiers of the respective database is shown in413

Table S6.414

415

Drug target genes were extracted from the DGIdb, STITCH and ChEMBL databases:416

• Drug Gene Interaction database (DGIdb) 4.0 [38] (release: January 2021): Aggregated drug-gene417

interactions from multiple sources including DrugBank, Drug Target Commons, the Therapeutic418

Target Database and Guide to Pharmacology. Genes were matched to Ensembl identifiers using419

the provided gene vocabulary file. Drugs were reported through DrugBank or ChEMBL identifiers,420

and mapping from ChEMBL to DrugBank identifiers was done with UniChem [56], using PubChem421

IDs as intermediates.422

• Search Tool for Interacting CHemicals (STITCH) 5.0 [39]: Aggregated drug-protein interaction423

data from high-throughput experiments data, manually curated datasets and prediction methods.424

Only high confidence drug-protein relationships (confidence score ≥ 700) of the type “inhibition”425

and “activation” were considered. STITCH uses PubChem Chemical Identifiers (CID) for drugs426

and mapping to DrugBank IDs was done through the chemical sources file provided by STITCH.427

Protein Ensembl identifiers were mapped to gene Ensembl identifiers using biomaRt (GRCh37,428

v2.50.3)[57].429

• ChEMBL [37] (download: May 2022): ChEMBL provides drug targets which have been manually430

curated from literature. Drug targets are identified by ChEMBL IDs with mapping to UniProt Ac-431

cessions provided by ChEMBL. UniProt identifiers were then mapped to gene Ensembl identifiers432

through the UniProt REST API [58].433

In this analysis we considered drug target genes resulting from the following combinations: Drug-434

Bank/DGIdb, DrugBank/STITCH, Ruiz/DGIdb, Ruiz/STITCH, and ChEMBL/ChEMBL. The number of435

drugs and drug target genes per indication is shown in Table S7.436
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Drug target enrichment and AUC calculations437

Enrichment for drug target genes was calculated through two-sided Fisher’s exact tests. A contingency438

table was constructed based on testable genes (i.e., background genes), with genes categorized439

into prioritized (top 1% or 5% for the pQTL-GWAS) and drug target genes. In rare instances (i.e.,440

pQTL-GWAS background genes and ChEMBL/ChEMBL drug targets) where diagonal values were 0,441

these were changed to 1. If no prioritized gene coincided with a drug target gene, the resulting OR442

was set to 1 (for visualization purposes this was not done in barplots where each trait was shown443

individually). AUC values and standard errors were calculated using the R package pROC v1.15.3 [59].444

445

Log-OR and AUC values (both are denoted bi herein) were aggregated across traits and drug databases446

(m = 30 · 5 = 150 observations per method) as follows:447

b̄ =
1

m

m∑
i

bi (1)

with corresponding variance:448

var(b̄) = 1′ · S ·R · S · 1/m2 (2)

where S is a diagonal matrix of size mxm containing standard errors of bi and R is the correlation449

matrix between drug databases and traits. This matrix was derived from the Kronecker product of the450

drug database correlation matrix and phenotypic trait correlation matrix (Table S8). The drug database451

correlation matrix was derived on the gene level (i.e., 1 if the gene was a drug target for any of the 30452

traits, 0 if not) and the phenotypic trait correlation on individual-level data from the UKBB (codes in Table453

S2). b̄ was referred to as the overall AUC/ log-OR (overall OR after an exponential transformation).454

455

To calculate the statistical difference of b̄1 and b̄2 for method 1 and 2, respectively, we derived the456

variance of the difference as follows:457
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var(b̄1 − b̄2) = var(b̄1) + var(b̄2) − 2 · cov(b̄1, b̄2) (3)

with cov(b̄1, b̄2) ≈ r ×
(
1′ · S1 ·R · S2 · 1/m2

)
, where r is the empirical correlation between b1 and b2.458

From the resulting z-score, a two-sided p-value was calculated.459

Transcript and protein level heritabilities and polygenicity460

Transcript and protein level heritabilities were estimated from QTL effects. Standardized QTL effects461

(β̂G) were approximated by dividing SNP z-scores by the square root of the sample size. The corre-462

sponding variance (var(β̂G)) equals the inverse of the sample size. The cis heritability (ĥ2
cis) could then463

be estimated by summing up effects of independent (r2 < 0.01) and significant (p-value < 1e-6) QTLs464

in proximity of the transcript/protein (± 500 kB) while taking into account their variance:465

ĥ2
cis =

∑
i

(
β̂2
Gi

− var(β̂Gi)
)

(4)

Protein heritabilities were based on the deCODE plasma protein dataset [14] and transcript heritabilities466

for whole blood on the eQTLGen dataset [13]. Tissue-wide transcript heritabilities were based on eQTL467

effects from the tissue in which the MR effect was the most significant [55].468

469

To calculate the difference in heritabilities and polygenicities between drug target and non-drug target470

genes, we considered all transcripts and proteins measured in the respective study which were classified471

accordingly. Per trait, the difference in heritability was then calculated through a two-sided t-test. For472

the polygenicity analysis, we considered the number of independent (r2 < 0.01) and significant (p-value473

< 1e-6) QTLs associated to a transcript/protein. Note that this proxy for polygenicity is biased, as474

for less heritable omics entities we have less power to detect the independent signals, and may look475

less polygenic. We then conducted two-sided Wilcoxon tests to determine the difference in number of476

instrumental variables (IVs). Heritability and polygenicity tests were only performed for traits with at477

least three drug targets within the respective set of measured transcripts/proteins. Note that in case a478
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transcript or protein was reported as measured in the study, but had no associated QTL, its heritability479

and number of IVs were set to zero.480

Networks481

To calculate network diffusion scores, we used the following three networks:482

• Search Tool for Retrieval of Interacting Genes/Proteins (STRING) v11 [32]: The protein-protein483

(PPI) interaction network results from predictions based on genomic context information, co-484

expression, text-mining, experimental biochemical/genetic data and curated databases (curated485

pathways and protein-complex knowledge). Protein Ensembl identifiers were mapped to gene En-486

sembl identifiers using biomaRt (GRCh37, v2.50.3)[57]. We use interaction confidence scores as487

edge weights.488

• CoXRNAseq [33]: This network was constructed by first performing a principal component analy-489

sis on the gene co-expression correlation matrix of 31,499 RNA-seq samples. Reliable principal490

components were retained from which the final network was constructed via Pearson correlations.491

We filtered pairwise interactions to only retain those with z-scores above 4. Genes were reported492

with Ensembl identifiers and z-scores were used as edge weights.493

• Functional Associations using Variational Autoencoders (FAVA) [34]: This network is based on494

single cell RNA-seq read-count data from the Human Protein Atlas and proteomics data from the495

PRoteomics IDEntifications (PRIDE) database. First, the high-dimensional expression data was496

reduced into a latent space using variational autoencoders. From this latent space, the network497

was derived via pairwise Pearson correlations. Each reported interaction has a score which we498

use as edge weight (final network reports interactions with scores above 0.15). Protein Ensembl499

identifiers were mapped to gene Ensembl identifiers using biomaRt.500

A summary of network properties is given in Table S11. In all analyses, we use weighted networks, and501

we refer to weighted node degrees (i.e., sum of edge weights linking the node of interest to adjacent502

nodes) as node degrees.503
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Network diffusion504

We calculated network diffusion scores based on Markov random walks. Starting from an initial node505

distribution p0, a stationary distribution is calculated based on network connectivity. This diffusion pro-506

cess depends on a restart parameter r which determines how often the random walker returns to the507

initial values. Analytically, the stationary distribution (p∞) is given by:508

p∞ = (I − (1− r) ·W )−1 · p0 (5)

where W is the column-normalized weighted adjacency matrix and I the identity matrix of the same509

dimension as W [60]. The initial node distribution p0 was determined by the squared z-scores derived510

from the gene p-values (normalized to sum up to 1). Genes that could not be tested by a given method511

had their initial value set to 0. Additionally, we tested the performance of network diffusion on random512

initial distributions p0. For each trait, a random distribution was generated which all were different, but513

consistent across analyses. Resulting network diffusion scores p∞ were ranked for AUC calculations,514

and the top 1% scored genes were used in the enrichment analyses.515

516

Network manipulations, visualization and degree calculations were performed with the R igraph package517

v1.3.5 [61].518

Enrichment of available proteins for drug targets519

We conducted binomial tests to verify whether the set of testable (i.e., at least 1 pQTL) and measured520

proteins (∼1,870 and ∼4,450, respectively) were enriched for drug target genes. We performed the521

analysis on each of the five drug target definitions and proceeded as follows: 1) we extracted the number522

of testable/measured proteins that are drug targets (“number of successes”), 2) considering all protein-523

coding autosomal genes (19,430), we extracted those that are drug targets (“number of trials”), 3) we524

determined the proportion of testable/measured proteins among all protein-coding genes (“expected525

probability of success”). From these numbers, we conducted two-sided exact binomial tests (Table526
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Data availability

Whole blood expression QTLs are from the eQTLGen eQTL meta-analysis and are available at https:

//www.eqtlgen.org/cis-eqtls.html. Tissue-wide expression QTLs are from the GTEx project and

are available at https://gtexportal.org/home/datasets. Plasma protein QTLs are from the de-

CODE study and are available at https://www.decode.com/summarydata/. Summary statistics from

whole exome gene burden tests are available in the GWAS Catalog (accession IDs are in Table S2).

Genetic and phenotypic data from the UK Biobank Resource are available to approved researchers.

GWAS summary statistics from the UK Biobank are available at http://www.nealelab.is/uk-biobank

and https://pan.ukbb.broadinstitute.org. GWAS summary statistics from FinnGen are available at

https://www.finngen.fi/en/access_results. GWAS summary statistics for multiple sclerosis (MS)

are available by application from https://imsgc.net/?page_id=31. Full list of GWAS summary statis-

tics used in this study is in Table S1-3, all of which are publicly available. UK10K individual-level data

are available upon request (https://www.uk10k.org/data_access.html).

Code availability

GWAS calculations were performed with REGENIE which is available at https://github.com/rgcgithub/

regenie. GWAS meta-analyses were performed with METAL which is available at https://github.

com/statgen/METAL. Gene scoring was performed with the PascalX software which is available at

https://github.com/BergmannLab/PascalX. QTL Mendelian randomization analyses were performed

with the SMR-IVW software which is available at https://github.com/masadler/smrivw.
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