Abstract
Drugs targeting genes that harbor natural variations associated with the disease the drug is in-dicated for have increased odds to be approved. Various approaches have been proposed to iden-tify likely causal genes for complex diseases, including gene-based genome-wide association stud-ies (GWAS), rare variant burden tests in whole exome sequencing studies (Exome) or integration of GWAS with expression/protein quantitative trait loci (eQTL-GWAS/pQTL-GWAS). Here, we compare gene-prioritization approaches on 30 common clinical traits and benchmarked their ability to recover drug target genes defined using a combination of five drug databases. Across all traits, the top pri-oritized genes were enriched for drug targets with odds ratios (ORs) of 2.17, 2.04, 1.81 and 1.31 for the GWAS, eQTL-GWAS, Exome and pQTL-GWAS methods, respectively. We quantified the perfor-mance of these methods using the area under the receiver operating characteristic curve as metric, and adjusted for differences in testable genes and data origins. GWAS performed significantly better (54.3%) than eQTL (52.8%) and pQTL-GWAS (51.3%), but not significantly so against the Exome ap-proach (51.7% vs 52.8% for GWAS restricted to UK Biobank data). Furthermore, our analysis showed increased performance when diffusing gene scores on gene networks. However, substantial improve-ments in the protein-protein interaction network may be due to circularity in the data generation process, leading to the node (gene) degree being the best predictor for drug target genes (OR = 8.7, 95% CI = 7.3-10.4) and warranting caution when applying this strategy. In conclusion, we systematically as-sessed strategies to prioritize drug target genes highlighting promises and potential pitfalls of current approaches.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was supported by the Swiss National Science Foundation (310030_189147).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Ethics committee/IRB of UK Biobank gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes