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Abstract  16 

 17 

Advances in multimodal single cell analysis can empower high-resolution dissection of 18 

human vaccination responses. The resulting data capture multiple layers of biological 19 

variations, including molecular and cellular states, vaccine formulations, inter- and intra-20 

subject differences, and responses unfolding over time. Transforming such data into 21 

biological insight remains a major challenge. Here we present a systematic framework 22 

applied to multimodal single cell data obtained before and after influenza vaccination 23 

without adjuvants or pandemic H5N1 vaccination with the AS03 adjuvant. Our approach 24 

pinpoints responses shared across or unique to specific cell types and identifies 25 

adjuvant specific signatures, including pro-survival transcriptional states in B 26 

lymphocytes that emerged one day after vaccination. We also reveal that high antibody 27 

responders to the unadjuvanted vaccine have a distinct baseline involving a rewired 28 

network of cell type specific transcriptional states. Remarkably, the status of certain 29 

innate immune cells in this network in high responders of the unadjuvanted vaccine 30 

appear “naturally adjuvanted”: they resemble phenotypes induced early in the same 31 
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cells only by vaccination with AS03. Furthermore, these cell subsets have elevated 32 

frequency in the blood at baseline and increased cell-intrinsic phospho-signaling 33 

responses after LPS stimulation ex vivo in high compared to low responders. Our 34 

findings identify how variation in the status of multiple immune cell types at baseline 35 

may drive robust differences in innate and adaptive responses to vaccination and thus 36 

open new avenues for vaccine development and immune response engineering in 37 

humans. 38 

 39 

Introduction  40 

 41 

Human immune systems exhibit substantial person-to-person variation1–4. Population 42 

variations in immune response outcomes to the same perturbation, such as antibody 43 

responses to vaccination, can be linked to cellular and molecular immune system 44 

components using top-down systems biology approaches4,5. Such studies have used 45 

unbiased immune profiling to identify signatures of response to perturbations and 46 

predictors of outcomes such as antibody response to vaccination6–14, uncovering 47 

contributions from intrinsic factors, such as genetics15, age16,17, and sex18. Furthermore, 48 

accumulating evidence from these studies supports the hypothesis that immune system 49 

status prior to a perturbation can predict and potentially influence both response quality 50 

and quantity6,16,19–23. For example, we identified transcriptome signatures reflective of 51 

an immune system “set point” predictive of higher antibody response following 52 

vaccination in healthy individuals22; the same signature when evaluated during relative 53 

clinical quiescence was also linked to increased plasma cell related transcriptomic 54 

activity during disease flares in lupus patients. More recently, blood transcriptome 55 

profiling studies identified prognostic signatures in healthy children at risk of type 1 56 

diabetes prior to development and onset of the disease24, and at baseline in cancer 57 

patients prior to immunotherapy induced autoimmunity25,26.  58 

 59 

While the biomarker signatures identified thus far are informative, technological 60 

limitations hinder a high-resolution and holistic view of immune cell processes that 61 
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underlie baseline set points that predict and potentially determine optimal 62 

responses27,28. Bulk blood transcriptomic profiles are confounded by substantial inter-63 

individual variations in circulating immune cell subset frequency6,29,30, while protein 64 

based phenotypes measured using cytometry alone often cannot assess internal cell 65 

states such as those captured by transcriptomics. Single cell transcriptomics can better 66 

resolve cell states but interpretation remains challenging when measuring chromatin 67 

accessibility or mRNA alone without utilizing, for example, existing knowledge 68 

cataloging immune cell types and subsets using surface protein markers6,29–31. Multi-69 

modal single cell transcriptome and protein profiling methods such as CITE-seq32 are 70 

promising for unifying these modalities; however, the integrative analysis of timed 71 

perturbation responses including the decomposition of meaningful biological variations 72 

spanning different size scales from individual human subjects to cell types and single 73 

cells remains a major challenge.  74 

 75 

In this work, we developed a multilevel modeling framework to integrate human 76 

population, temporal, and single cell variations. We applied this framework to extract 77 

vaccine response kinetics and cell states, and attributed cell type specific transcriptomic 78 

variations to age, sex, subject, perturbation, and time. Using CITE-seq32, we profiled 79 

PBMCs from 26 subjects before and after vaccination with two different pandemic 80 

influenza vaccines. Individuals were nested into three groups: those with 1) high or 2) 81 

low antibody responses to an unadjuvanted influenza vaccine and 3) individuals 82 

vaccinated with an AS03 adjuvanted vaccine against H5N1 influenza. We further 83 

revealed previously unknown, cell type specific phenotypes specifically induced by 84 

AS0333. In addition, we unbiasedly defined the landscape of baseline immune 85 

phenotypes linked to high antibody responses, demonstrating that these do not merely 86 

reflect the phenotypes of a single cell type but instead capture an extensive correlated 87 

set of phenotypes across different cell types. Furthermore, by comparing the baseline 88 

(prevaccination) cell type specific predictors of unadjuvanted vaccine responses with 89 

phenotypes induced specifically by the unadjuvanted influenza vaccine, the COVID-19 90 

mRNA vaccine, and the AS03 adjuvanted H5N1 vaccine revealed that high responders 91 
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to the unadjuvanted vaccine were “naturally adjuvanted” at baseline. This concept was 92 

further buttressed by data from phosphoprotein signaling responses to ex vivo cell 93 

stimulation. Our integrative approach paves the way for multiscale analysis of timed 94 

perturbation studies using multimodal single cell data in humans. Furthermore, our 95 

findings suggest cell type specific targets of immune response engineering and vaccine 96 

development. 97 

 98 

Results  99 

 100 

Multimodal single cell profiling to assess human response variations to timed 101 

vaccine perturbations 102 

 103 

To generate a multimodal single cell data set that captured biological variations 104 

spanning molecular and cellular states, vaccine formulations, inter- and intra-subject 105 

differences, and response kinetics, we assessed 52 PBMC samples from 26 donors 106 

pre- and post-vaccination using CITE-seq (Figure 1a). Subjects received either the 2009 107 

seasonal and pandemic type A strain vaccine combination, or an H5N1 avian influenza 108 

strain formulated with oil in emulsion adjuvant AS036,34. For the AS03 group, we 109 

focused on the baseline and innate response (day 1) time-points since AS03 is known 110 

to elicit a strong early response35,36. For the unadjuvanted seasonal influenza vaccine, 111 

twenty subjects with high (n=10) and low (n=10) antibody responses were selected from 112 

our cohort of 63 individuals that we previously profiled and stratified into high, mid, and 113 

low responders based on antibody titer fold change adjusted for age, sex ethnicity and 114 

pre-existing immunity6,22. These 20 individuals were profiled at baseline and select 115 

subsets of individuals on day 1 or 7 post vaccination to assess the innate and adaptive 116 

cellular responses (Figure 1a). We analyzed sources of technical noise in CITE-seq 117 

surface protein expression data by using our recently developed normalization method 118 

called dsb37, then assessed the robustness of CITE-seq to recover and unify known cell 119 

surface and transcriptome phenotypes. For example, both activated B cells and 120 

plasmablasts could be distinguished based on the expression of CITE-seq surface 121 
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protein markers CD19, CD71, CD20, and CD38. We further confirmed that the gated 122 

cells exhibit transcriptional signatures38 derived previously from these cell subsets after 123 

FACS-sorting (Figure S1a).   124 

 125 

Transcriptome variation decomposition into surface protein-based cell type, 126 

individual, age, sex, and vaccination effects  127 

 128 

Cells clustered using the 82 surface proteins were enriched for known immune 129 

phenotypes (Figure S1 c, d). Cells from individual subjects at different timepoints were 130 

represented in a majority of cell clusters (Figure S1e,f). Some cell clusters were 131 

dominated by cells from two to three subjects (e.g., NKT and CD57+ CD4 T cells); this 132 

likely reflects individualistic phenotypes as the samples from different timepoints from 133 

the same individuals were also present in the same clusters, suggesting that these 134 

phenotypes represent temporally stable, within-individual variations6 (Figure S1f).  135 

 136 

Instead of analyzing one variable at a time, we next deconstructed the transcriptional 137 

variation of each gene into that attributable to cell types, individuals, intrinsic factors 138 

(age, sex), and vaccination responses (Figure 1b) using multivariate mixed effects 139 

models. For each gene, these models quantify contributions of biological factors (such 140 

as cell type or subject effects) toward observed expression variation, including adjusting 141 

for dependency among repeated measures from the same individuals (see Methods). 142 

Models were first fit to each transcript across 780 transcriptome (“pseudobulk”) libraries 143 

indexed by cell type, individual, and timepoint (Figure 1c, columns). Variance patterns 144 

for each gene in every cell type are provided in Supplemental Tables 3 and 4. This 145 

analysis revealed that cell type explained more than 30% of the variation across the 146 

transcriptome (range 0-100%; Figure 1d, top); this observation is consistent with the 147 

fact that different cell types have distinct transcriptome profiles39,40. To identify cell type 148 

intrinsic and vaccination effects independent of differences among cell types, we next fit 149 

models within the cell subsets defined by surface proteins (Figure 1d, bottom). For 150 

example, this analysis revealed factors contributing to the extensive differences among 151 
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Figure 1. Multimodal single cell portraits of human vaccination response through within 
cluster mixed models comparing vaccination effects over time  
 
a. Human vaccination response study outline; CITE-seq data was generated from n=52 PBMC 
matched pre- and post-vaccination PBMC samples from n=26 subjects including 2 response 
groups and two vaccine formulations. Numbers in the boxes indicates the number of samples 
run with CITE-seq. 10 high and 10 low responders from the 2009 TIV + pandemic H1N1 
influenza vaccination without adjuvant were profiled with a subset of 8 and 12 subjects split 
evenly between high and low responders profiled on day 1 and 7 respectively. 6 subjects 
vaccinated with a pandemic H5N1 avian influenza vaccine formulated with adjuvant AS03 were 
profiled at baseline and day 1 post vaccination. b. The hierarchical structure of the data for a 
single cluster is shown to motivate necessity of multilevel modeling approach for transcriptome 
analysis. Clusters are based on surface protein (select proteins from naïve B cell cluster 
shown); within each cluster modeled with weighted mixed effects models clusters are 
represented by cells from PBMC samples indexed by individual, timepoint and different 
response groups (high and low responders) and vaccine group (unadjuvanted vs adjuvanted). c. 
For each of 780 samples aggregated by protein based cell type and individual x timepoint, the 
median dsb normalized protein expression in each cell type is shown–colors of cell types are 
the same as shown in d. d. Top: the fraction of variance explained in a multivariate model 
across libraries aggregated by cell type, individual and timepoint; bottom: as in the top panel, 
but here with models fit within each protein based cell type, i.e. within colored columns of c. e. 
Variance fractions for an example group of 5 genes from the multivariate mixed model fit within 
CD14 monocytes with additional visualizations of gene expression (y axis) vs the experimental 
factor (x axis) explaining maximal variance for the 5 genes. f. Top: enrichment of pathways in 
the MsidDB Hallmark gene sets based on genes ranked by their variance explained by age; 
subset of genes with positive association with age in CD8 naïve and CD161+ T cell clusters; 
bottom: select genes positively associated with age within the two cell types.  
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CD14+ classical monocytes; 5 example genes are shown in (Figure 1e). As expected, 152 

sex almost completely explained the variation in the expression of a Y-linked gene 153 

(DDX3Y). A transcription factor genetically linked to rheumatological pathology41 154 

(PPARGC1B) and an apoptosis regulator (TP53RK) were negatively and positively 155 

associated with age, respectively. Overall, our approach identified substantial between-156 

subject variations for many genes (Figure 1d, see “SubjectID”). For example, inter-157 

subject differences accounted for nearly 100% of expression variation in TMEM176B, 158 

an inflammasome signaling regulator42, suggesting that inflammasome function could 159 

have substantial individuality in the human population. Temporal variation (e.g., 160 

differences relative to baseline following vaccination) accounted for more than 50% of 161 

the expression differences in STAT1; a separate differential expression model revealed 162 

that vaccination induced expression of this gene within monocytes a day after 163 

vaccination (see below). Age was also a major contributor, particularly in genes within 164 

the CD8 naïve and CD8+ CD161+ T cells relative to other cell types; inflammatory 165 

processes were specifically enriched among genes positively correlated with age 166 

(Figure 1f), consistent with sterile inflammation linked to aging43 or “inflammaging”. 167 

Thus, our approach provides a global view of the extent by which different biological 168 

factors contribute to gene expression variation.  169 

 170 

Single cell deconvolution of the early response to unadjuvanted influenza 171 

vaccination reveals both cell type-specific and -agnostic patterns  172 

 173 

Given that most of the known transcriptional response signatures of vaccination were 174 

derived using whole blood/PBMC profiling, we next assessed time-associated changes 175 

from our mixed effects models to identify cell type specific responses elicited by 176 

unadjuvanted vaccination on days 1 and 7 (after modeling between individual variation 177 

and adjusting for age, sex, baseline antibody titers, and other technical factors - see 178 

Methods). Gene set enrichment analysis revealed that day 7 responses comprised 179 

naïve B cell and CD4+ memory T cell activation and metabolic processes; however, 180 

some are not significant after FDR correction and these effects were generally weaker 181 
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than early response effects described below (Figure S2a,b). Changes in circulating 182 

plasmablast frequencies were thought to drive whole blood transcriptome signatures 183 

(typically measured on day 7-12 post vaccination) predictive of antibody response to 184 

multiple vaccines6–8,44. Indeed, here plasmablasts had the most elevated signature 185 

score (i.e., average expression of genes we compiled based on previous day-7 bulk 186 

transcriptome signatures predictive of antibody responses) in our day 7 vs. day 0 187 

comparison relative to other cell subsets (Figure S2c). B cell maturation antigen 188 

(BCMA) receptor (TNFRSF17) had the highest fold change in both bulk microarray and 189 

“pseudobulk” CITE-seq data (Figure S2d). Deconvolution of the CITE-seq sequencing 190 

reads to each cell type revealed that nearly all the TNFRSF17 counts (see Methods) 191 

were derived from the day-7 CD38high CD20- plasmablast cells and not from naïve or 192 

memory B cell subsets (Figure S2e).  193 

 194 

Unadjuvanted influenza vaccination response studies consistently report interferon 195 

stimulated gene expression (ISG) detected early (1-3 days) post vaccination in bulk 196 

blood transcriptomic data. Furthermore, elevation of ISG and antigen presentation 197 

genes on day 1 has been found to correlate with higher antibody response11, although 198 

the cellular origins of these responses were not fully resolved. Based on microarray 199 

profiling of sorted cell subsets, early reports suggested that this signal originated 200 

primarily from DCs on day 345 or monocyte/granulocytes on day 113. Here, unbiased 201 

CITE-seq assessment using curated gene sets, including influenza vaccine response 202 

signatures obtained from the literature that were derived from bulk transcriptomic data 203 

(See Supplementary Table 1), identified three broad patterns of responses 24 hours 204 

following vaccination. The first pattern was characterized by genes downstream of type I 205 

and type II interferon signaling pathways that are shared across cell types (Figure 2a). 206 

46 shared, “core genes” were collectively induced in at least 5 cell types (Figure S2f), 207 

including the transcription factors IRF1 (notably, induced across 15 cell types), STAT1, 208 

IRF7, and IRF9. Also included were pattern recognition receptor (PRR) genes IFITM1 209 

and IFITM3, inhibitors of vial transcription GBP146 and ISG1547, and antigen 210 

presentation genes TAP1, and PSMB9 (Figure S2f). The second pattern encompassed 211 
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responses unique to classical and nonclassical monocytes, such as adhesion molecule 212 

ICAM1, JAK2, antigen presentation / HLA genes, and inhibitors of viral replication 213 

OAS348, and ISG2049. The third pattern pointed to more individual cell-type specific 214 

responses (Figure S2g), notably, inflammatory processes induced within classical 215 

monocytes. The “reactome interferon signaling” genes (Figure 2a) captured all three 216 

response patterns, with 10-15 shared ISGs across multiple cell subsets, a specific set of 217 

ISGs shared by classical and non-classical monocytes, and a set of classical monocyte 218 

specific genes (Figure 2b). The expression of these genes in classical monocytes alone 219 

clustered samples by time relative to vaccination, suggesting that they were induced in 220 

a coordinated manner across individuals after vaccination (Figure 2c).  221 

 222 

Genes driving the classical monocyte “IL6 production” pathway reflected early initiators 223 

of inflammation MYD88, DDX-58 (RIG-I), TNF and TRAF6. Inflammatory processes 224 

were further implicated by monocyte specific expression of IL-15, and chemokine 225 

CCL250 (Figure S2g). Classical monocytes were also enriched for hypoxia and 226 

mTORC1 signaling pathways (Figure 2a). While natural influenza infection can activate 227 

and subvert mTOR signaling to support viral replication51, this signal following 228 

inactivated vaccination was more likely to reflect the role of mTOR in inflammation52. 229 

The genes driving this enrichment signal (“leading-edge genes”) suggested that mTOR 230 

induced glycolytic metabolism might be involved: this process is known to be induced 231 

after VZV vaccination53 and is linked to non-specific innate memory in monocytes54. 232 

mTOR enrichment within CD25+ CD4 effector T cells, MAIT-like cells, mDCs and NK 233 

cells may have been intrinsically induced by TIV or by monocyte specific expression of 234 

IL-15 (Figure S2g), a cytokine that can activate mTOR in human NK cells55. These cell-235 

specific and shared unadjuvanted vaccine response perturbations and driver genes are 236 

provided in Supplementary Table 2. 237 

 238 

We next explored how time associated response signatures from our statistical models 239 

could be coupled to “bottom up” single cell computational reconstructions of 240 

transcriptional dynamics induced by vaccination. By using single monocytes from both 241 
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Figure 2. Top down and bottom up deconstruction of transcriptome perturbations 
induced day 1 post vaccination with seasonal TIV + 2009 pandemic strain vaccine  
a. Day 1 post vaccination transcriptional response within protein-based cell types. Gene set 
enrichment (orange = positive enrichment/upregulation, black= negative enrichment/ 
downregulation) of modules based on genes ranked by pseudobulk weighted linear mixed 
effects model baseline vs day 1 effect size. The broad category of each curated module / 
pathway is labeled on the right margin; see supplemental table 1. b. Leading edge genes from 
the reactome interferon signaling module; cell types shown with enrichment at adjusted p value 
< 0.05. c. Log counts per million of aggregated data for each subject within CD14 monocytes 
defined by protein of leading edge genes from the "interferon signaling" module CD14 monocyte 
day 1 enrichment demonstrate a coordinated post vaccination across individuals (hierarchically 
clustered genes and samples). d. DDR-tree algorithm constructed with baseline and day 1 post 
vaccination cells. Component 1 and component 2 are latent space embeddings based on 
mRNA only for single monocytes as determined by the DDR-tree algorithm. Each point is a 
single cell and is labeled by pseudotime as calculated by monocle. The timepoint relative to 
vaccination of each cell along mRNA trajectory component 1 is highlighted in the top marginal 
histogram; cells are colored by inferred pseudotime. Three branches from left to right are 
enriched for resting classical monocytes, activated classical monocytes from post vaccination, 
and nonclassical monocytes. Cells progressively downregulate CD14 and upregulate CD16 
protein level along the rightmost branch; protein data shown in the bottom margin basis spline fit 
to dsb normalized protein level for CD14 and CD16 (protein levels were not used to construct 
the trajectory). e. Gene expression of select leading edge genes from enrichments in CD14 
monocytes based on branch-dependent differential expression show two broad patterns. 
Pattern 1 genes are perturbed by vaccination with highest expression in post vaccination 
classical monocytes – dashed line at pseudotime value of 9.5 represents the peak of activation. 
Pattern 2 genes continuously increase across pseudotime and have highest expression in 
CD16+ CD14- non-classical monocytes. The top row shows example genes from each 
category. The bottom row shows the subset of genes falling into each category from the 
combined hallmark MTORC1 signaling/Hypoxia pathways and reactome interferon signaling 
pathways. Below each category / pathway, enrichment of gene ontology (GO) biological process 
and KEGG pathways for the subset of genes from each pathway and category.   
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days 0 and 1 samples, we derived a pseudotime, tree-based latent cell-phenotype 242 

space via a “reversed graph embedding” algorithm56,57 (Figure. 2d). CD14 and CD16 243 

surface protein expression patterns allowed identification of cell subset enrichment at 244 

the ends of the three tree branches (Figure 2d, bottom margin): pre-vaccination 245 

classical monocytes along the left branch, their day 1 counterparts in the top branch, 246 

and the non-classical monocytes from both before and after vaccination enriched in the 247 

right branch. Integrating the monocyte specific vaccination response phenotypes from 248 

above (Figure 2a) with this latent space visualization identified two categories of genes 249 

based on branch-dependent differential expression (see Methods). Category 1 genes 250 

mainly reflected vaccine perturbation effects within either CD14 monocytes alone (e.g., 251 

CCL2) or both within CD14 and CD16 monocytes (e.g., TNFSF10), whereas category 2 252 

genes (e.g., IFITM2, FCERG1) captured differences and potential differentiation 253 

between classical and non-classical monocytes; these genes continuously increased 254 

across the spectrum of pseudotime with the highest expression in nonclassical 255 

monocytes  (Figure 2e, top row). This analysis also revealed that IFN response genes 256 

in Figure 2c mostly belonged to category 1 (more than 40 genes) except for 5 genes, 257 

PTPN1, IFITM2, IFITM3, HLA-C and EIF4E2 which belonged to category 2. The mTOR 258 

and hypoxia pathway genes followed a similar pattern, though notably the genes falling 259 

in category 2 were more enriched for glycolysis than those in category 1, which were 260 

more enriched for ER stress (Figure 2e, bottom). These results illustrate how 261 

integrating effects associated with day 1 changes following vaccination (“real time”) and 262 

single-cell latent space/pseudotime reconstruction can highlight interwoven cellular 263 

activation and differentiation processes and reveal finer shades of phenotypic variation 264 

in response to vaccination.   265 

   266 

The AS03 adjuvant induces unique myeloid innate-sensing and B-cell anti-267 

apoptosis enhancement signatures compared to unadjuvanted vaccination 268 

 269 

We next examined early response (day 1) variations attributable to the vaccine adjuvant 270 

AS03. AS03 is known to elicit both higher level and diversity of anti-influenza antibodies 271 
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compared to unadjuvanted vaccines, even when formulated with a low antigen dose33. 272 

Previous studies of transcriptional responses to AS03 adjuvanted vaccines revealed 273 

strong early induction of ISGs in innate immune cells33,35,36,58 when comparing against a 274 

low-dose antigen control formulated with PBS. Here we applied a statistical contrast 275 

defining the difference in the day 1 responses (relative to baseline) between the AS03 276 

adjuvanted vaccine versus the unadjuvanted vaccine described above. We then 277 

validated these signatures using an independent data set from profiling FACS-sorted 278 

immune cells (e.g., total B and T cells) from subjects receiving the same vaccine 279 

formulated with AS03 versus PBS58 (Figure 3a, Figure S3a). We first noticed positive 280 

enrichment of several pathways related to surface receptors in monocytes and mDCs 281 

(Figure 3b, red); these were highly concordant with data from similar innate cell 282 

subsets in the validation cohort (Figure 3b, light blue). The leading-edge genes driving 283 

these enrichments include immune receptors recognizing different classes of pathogens 284 

(beyond just the receptors recognizing specific molecular patterns in the vaccine), thus 285 

suggesting expansive upregulation of receptors to increase the capacity of cells to 286 

sense environmental signals. For example, Toll Like Receptors (TLRs) recognizing both 287 

bacterial and viral molecular patterns TLR1, TLR4, TLR5, and TLR8 were among the 288 

leading-edge genes in the CD14 monocyte module “M16”, as was FPR2, which is 289 

known to induce immune cell chemotaxis in response to bacterial metabolites59. 290 

Examination of genes with strong AS03-specific effects beyond genes in these specific 291 

sensing pathways identified additional PRRs in monocytes, for example c-GAS, a 292 

cytosolic DNA sensor that activates antiviral response via STING60 (Figure 3c). Within 293 

mDCs, day 1 enrichment of the “rhodopsin like receptors” module was driven by genes 294 

related to inflammatory chemotaxis such as FPR159 and CCR161 and P2RY13, an ADP 295 

sensor active during inflammation62, which were induced to a greater degree by AS03. 296 

As with CD14+ monocytes, mDCs also had evidence of AS03 specific upregulation of 297 

TLR4, the PRR for bacterial lipopolysaccharide63 (Figs. 3c-d). 298 

 299 

While our observations thus far are consistent with the expectation that myeloid cells 300 

are key players mediating the effects of AS03, we also detected a lymphocyte signature 301 
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suggestive of apoptosis suppression in naïve B cells in subjects vaccinated with AS03; 302 

this signature included AS03-specific downregulation of genes related to apoptosis 303 

(Figure 3e). Further examination of genes with the largest difference in post vaccination 304 

effects in naïve B cells revealed additional AS03 specific downregulation of canonical 305 

pro-apoptotic genes, including BTG1 and NOXA (PMAIP1) (Figure 3e,f). NOXA 306 

deficiency is known to increase lymphocyte repertoire diversity64,65. B cells from NOXA-/- 307 

mice outcompete wild type cells for entry into the germinal center following influenza 308 

vaccination and infection, and they persist longer due to inefficient apoptosis65 and thus 309 

increase the diversity of anti-influenza antibodies. As we and others have shown, AS03 310 

induces antibody production against influenza clades beyond those in the vaccine33,34. 311 

The naïve B cells in humans after vaccination with AS03 may thus phenocopy those in 312 

NOXA-/- mice after influenza vaccination. Naïve B cells from subjects vaccinated with 313 

AS03 also appeared more activated based on increased expression of genes linked to 314 

CD40 activation66,67 (Figure S3c). The fold-change in the CD40 activation signature 315 

score (day 1/day 0) was also negatively correlated with that of an apoptosis signature 316 

score in naïve B cells across individuals (Figure 3g). Both the apoptosis and CD40 317 

activation signatures had consistent directions of change in sorted total B cells in the 318 

validation cohort (Figure S3d), although the apoptosis signature itself was not 319 

significant. Together, these observations suggest that AS03 may function to suppress 320 

apoptosis in naïve B lymphocytes early after vaccination to prolong their survival and 321 

subsequent activation. This potential increase in the diversity of the naïve B cell pool 322 

(presumably with varying specificity to vaccine antigens) may help increase the diversity 323 

of the subsequent B cell response. We further found that the day 42 antibody avidity to 324 

both the vaccine and non-vaccine influenza strains was tightly correlated across 325 

individuals immunized with the ASO3 adjuvant (Figure 3h), supporting the hypothesis 326 

that AS03 may tune the size of the initial naïve B cell pool available to be proportionally 327 

expanded in the germinal center. Together these results highlight two potential 328 

mechanisms by which AS03 may drive more robust antibody responses: 1) activation of 329 

broad innate sensing pathways unrestricted to only those specific to the molecular 330 

patterns in the vaccine; 2) suppression of apoptosis in naïve B cells to increase the 331 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.20.23287474doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287474


M
ono

D
C

−1 0 1 2 3

 * LI.M37.0 immune activation
LI.M4.3 myeloid receptors and transporters
Reactome peptide ligand binding receptors

 * LI.S4 Monocyte surface signature
 * LI.M4.0 cell cycle and transcription

 * LI.M11.0 enriched in monocytes (II)
 * LI.M16 TLR and inflammatory signaling

Reactome ligand receptor interaction
Reactome activated TLR4 signaling
Reactome rhodopsin−like receptors

Reactome NFKB activation via TLR4
Reactome TAK1 activates NFKB

Reactome peptide ligand binding receptors
 * Reactome DNA replication

 * Reactome G alpha signaling
 * LI.M4.0 cell cycle and transcription

 * LI.M11.0 enriched in monocytes (II)

Normalized Enrichment Score

cohort

CITE−seq

validation

−log10(padj)

2.5

5.0

7.5

BTG2

BCL2
PMAIP1 (NOXA) BTG1

−2.5

0.0

2.5

−2 −1 0 1 2

Difference in day 1 log fold change
AS03 vs unadjuvanted

M
ixe

d 
m

od
el

 c
on

tra
st

 
 s

ta
nd

ar
di

ze
d 

z 
st

at
ist

ic

Naive B cells

Figure 3 

FPR1 CCR1 P2RY13 TLR4

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

3.5

4.0

4.5

5.0

5.5

4

5

6

7

4

5

6

4

5

6

7

lo
g 

C
PM

PMAIP1 (NOXA)

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

6

7

8

lo
g 

C
PM

R = -0.56, p = 0.039
−2

−1

0

1

−1 0 1
B cell apoptosis signature fold change

C
D

40
 A

ct
iva

tio
n 

si
gn

at
ur

e 
fo

ld
 c

ha
ng

e

Naive B cells
R = 0.54, p = 0.0098

0

200

400

600

2000 4000 6000
Day 42 Antibody Binding (RU) 

 Heterologous H5N1 strain (Vietnam)

D
ay

 4
2 

An
tib

od
y 

Bi
nd

in
g 

(R
U

) 
 v

ac
ci

ne
 H

5N
1 

st
ra

in
 (I

nd
on

es
ia

)

a

e f g   h

CGAS FPR2 P2RY13 TLR4

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

d0
 No−

AS03

d1
 No−

AS03

d0
 AS03

d1
 AS03

4.0

4.5

5.0

5.5

6.0

5.0

5.5

6.0

6.5

3.0

3.5

4.0

4.5

5.0

3.0

3.5

4.0

4.5

lo
g 

C
PM

mDC

b c
CD14+ Monocytes

cell sorting 

RNA-seq

AS03 specific phenotype CITE-seq discovery cohort AS03 specific validation cohort                          Defining adjuvant-specific effects

CITE-seq

no 
adjuvant AS03

ba
se

lin
e

da
y 

1

ba
se

lin
e

da
y 

1

d 

Enrichment: age-and sex-adjusted 
mixed effect model contrast

CD14M – “M16”
TLR1
TLR4
TLR5
TLR8
FPR1
FPR2
P2RY13
LILRB2
IRAK3
KCNJ15
SIGLEC9
NPL
HSPA6
NFE2
FES
KCNJ2
AQP9
ANPEP
WDFY3
ITGAX

mDC “rhodopsin-like”
FPR1
CCR1
P2RY13
IL8
CX3CR1
ANXA1
P2RY6
P2RY14
PTAFR
CCR2
HRH2
PTGER2
LTB4R
LPAR6

AS03 specific cell phenotype genesCD14+ M
onocytes

m
DC

Define AS03 effect: 

rank genes 

Pathway 
enrichment 

Fit mixed model 
within cell type  

M
ono

D
C

−1 0 1 2 3

LI.M37.0 immune activation
LI.M4.3 myeloid receptors and transporters
Reactome peptide ligand binding receptors

LI.S4 Monocyte surface signature
LI.M4.0 cell cycle and transcription

LI.M11.0 enriched in monocytes (II)
LI.M16 TLR and inflammatory signaling

Reactome ligand receptor interaction
Reactome activated TLR4 signaling
Reactome rhodopsin−like receptors

Reactome NFKB activation via TLR4
Reactome TAK1 activates NFKB

Reactome peptide ligand binding receptors
Reactome DNA replication

Reactome G alpha signaling
LI.M4.0 cell cycle and transcription

LI.M11.0 enriched in monocytes (II)

Normalized Enrichment Score

cohort

CITE−seq

validation

−log10(padj)

2.5

5.0

7.5

M
ono

D
C

−1 0 1 2 3

LI.M37.0 immune activation
LI.M4.3 myeloid receptors and transporters
Reactome peptide ligand binding receptors

LI.S4 Monocyte surface signature
LI.M4.0 cell cycle and transcription

LI.M11.0 enriched in monocytes (II)
LI.M16 TLR and inflammatory signaling

Reactome ligand receptor interaction
Reactome activated TLR4 signaling
Reactome rhodopsin−like receptors

Reactome NFKB activation via TLR4
Reactome TAK1 activates NFKB

Reactome peptide ligand binding receptors
Reactome DNA replication

Reactome G alpha signaling
LI.M4.0 cell cycle and transcription

LI.M11.0 enriched in monocytes (II)

Normalized Enrichment Score

cohort

CITE−seq

validation

−log10(padj)

2.5

5.0

7.5 AS03 adjuvanted
unadjuvanted

AS03 adjuvanted subjects

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.20.23287474doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287474


Figure 3. Early transcriptional responses to AS03 adjuvanted vs non-adjuvanted 
vaccines  
a. Schematic illustrating the approach to define AS03 adjuvant specific perturbation 
transcriptome phenotypes within protein based cell types. Left: unadjuvanted individuals were 
combined and compared to individuals receiving the AS03 adjuvanted vaccine; protein based 
cell types are the same as those used in Fig 2 and Supplementary Fig 2 which were defined 
together with the adjuvanted subjects here in combined clustering. Middle: a cohort of 
individuals vaccinated with AS03 vs an unadjuvanted formulation from Howard et al. 2017. Cell 
types including total T cells, B cells, monocytes and DCs were defined using surface protein and 
sorted using FACS followed by RNAseq at baseline and day 1. Right: the model contrasts within 
each cell type applied to the CITE-seq discovery and FACS validation cohorts–for each cell type 
genes are fit with a mixed effects model and the difference in day 1 fold change between AS03 
adjuvanted and unadjuvanted subjects is calculated as shown with boxplots. Genes are then 
ranked for enrichment based on the effect size of this contrast reflecting AS03 specificity, e.g. 
modules with positive normalized enrichment score have higher day 1 fold change in the AS03 
vaccine group compared to the unadjuvanted vaccine. b. Gene set enrichment analysis of 
genes ranked based on the difference in transcriptional response 24-hours post vaccination vs 
baseline between AS03+H5N1 vs. H1N1 non adjuvated vaccine (i.e. ranked by the contrast 
effect shown as in a) in classical monocytes and mDCs. Leading edge genes driving the 
enrichments of the selected pathways highlighted in light blue are shown to the right. Pathways 
with adjusted p < 0.01 in the validation cohort are highlighted with an asterisk. c. The 
distribution of log counts per million from aggregated CITE-seq data for each subject of select 
genes driving difference in perturbation response distinct to AS03 adjuvant within CD14 
monocytes. Individual gene statistics from the mixed effects model contrast: FPR2 standardized 
z: 2.57 p value 0.010, P2RY13 standardized z: 2.56 p value 0.010, MB21D1 (CGAS) 
standardized z: 2.26 p value 0.022, TLR4 standardized z 1.99 p value 0.047 and d. As in c for in 
mDCs Individual gene statistics from mixed model contrast: FPR1 standardized z 2.91 p value 
0.004 P2RY13 standardized z  2.8 p value 0.0051 CCR1 standardized z  2.33 p value 0.02 
TLR4 standardized z 1.85 p value 0.0642. e. For naïve B cells, the distribution of genes from the 
mixed effects model showing x axis: estimated difference in baseline vs day 1 log fold changes 
between AS03 adjuvanted and unadjuvanted vaccination and y axis: standardized z statistics of 
the fold change difference contrast. Leading edge genes from M160 are highlighted in blue, with 
additional canonical apoptosis genes not in M160 PMAIP1 (NOXA) and BTG1 highlighted, each 
with strong AS03-specific downregulation (NOXA standardized z: -2.83, p value: 0.005, BTG1 
standardized z: -3.05, p value: 0.002) f. Expression distribution of PMAIP1 (NOXA) log counts 
per million of aggregated CITE-seq data across donors within naïve B cells pre and post 
vaccination. g. Pearson correlation between the day 1 fold change in the CD40 activation score 
and the apoptosis signature in naive B cells. h. The correlation between antibody avidity to the 
heterologous strain (x-axis – H5N1 Vietnam HA) vs the vaccine strain (y-axis – Indonesia H5N1 
HA) (Pearson correlation) measured by surface plasmon resonance assay on day 42 post 
vaccination in subjects receiving AS03 adjuvant. 
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diversity of naïve B cells entering germinal center reaction with potential positive 332 

impacts on antibody response breadth. Detailed information on these AS03 specific cell 333 

perturbation phenotypes are provided in Supplementary Table 2. 334 

 335 

 336 

Linking baseline set point signatures to early vaccination responses reveals 337 

natural adjuvanted baseline immune states in healthy humans 338 

 339 

We previously described a baseline immune set point signatures predictive of antibody 340 

responses to vaccination in healthy individuals and plasma cell-associated disease 341 

activities in SLE patients22. However, we had only focused on a single class of 342 

signatures that was discovered earlier via flow cytometry and bulk transcriptomic 343 

analyses; we also did not assess how baseline immune status overlaps with 344 

transcriptional and cellular responses early after vaccination. Here we used multivariate 345 

models to first perform an unbiased analysis of baseline immune cell phenotypes 346 

associated with antibody responses. To understand how these baseline cell phenotypes 347 

associated with the high responders were related to one another, we used correlation 348 

network analysis. We then further investigated how these baseline phenotypes were 349 

linked to early innate responses and how they were correlated with later cellular 350 

responses (see Methods). Our first analysis revealed that effector lymphocyte and 351 

innate cell phenotypes comprising the baseline predictive signatures could be grouped 352 

into several functional categories based on their correlation across individuals. Together 353 

these defined a multicellular set point network (Figure 4a, Figure S4a). Interestingly, 354 

the phenotypes with the highest “hub”-like properties tended to reflect innate cell 355 

surface receptor pathways in CD14+ monocytes and ISG pathways in CD16+ non-356 

classical monocytes (Figure S4b). Full details on the cell phenotypes and genes driving 357 

the high responder network phenotype are provided in Supplementary Table 2. Two 358 

example cell phenotypes from the network are highlighted (Figure 4b, c). Within CD14 359 

monocytes, the “FC receptors and phagocytosis” genes include those encoding Fc 360 

receptors (e.g. FCGR3A, FCGR1A, FCGR2A), regulators of cytoskeletal reorganization 361 
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active during phagocytosis (e.g. PAK1, ARPC5, CFL1, ARF6), and second messenger 362 

signaling molecules (PIP5K1A, PIK3CD, AKT1, MAPK12, ARPC2). Remarkably, this 363 

monocyte signature was correlated with 27 cell phenotypes elevated in high responders 364 

(adjusted p < 0.05) (Figure 4b), including both antigen presentation genes in naïve B 365 

cells and interferon response genes in CD16 monocytes (Figure. 4b, bottom). ISG 366 

expression was elevated in a variety of cell types beyond CD16 monocytes, including 367 

CD161+ MAIT-like CD8+ T cells (Figure 4c, bottom), within which the level of IFITM1, 368 

IFITM2, ISG15 and IFI6 was increased in high responders. These baseline phenotypes 369 

were also correlated to the day 7 plasmablast signature score in blood (Figure. 4d), 370 

which was predictive of antibody responses. Thus, these correlated transcriptional 371 

phenotypes at baseline, both within and across cell types, are associated with the 372 

extent of day 7 plasmablast and subsequent antibody increases following vaccination.  373 

 374 

Interestingly, the phenotypes comprising the above baseline set point network and the 375 

innate signatures induced early following unadjuvanted (i.e., without AS03) vaccination 376 

(see Figure 2a) appeared similar. We thus asked whether the cell phenotypes 377 

comprising the high responder set point network were induced by vaccination by 378 

statistically modeling the early (day 1) post–vaccination response of the baseline set 379 

point signature genes in a cell type specific manner. This analysis revealed the same 380 

phenotypes driving this multicellular high responder set point (including CD14 and CD16 381 

monocytes, mDCs, and MAIT cells), were induced by vaccination coherently across all 382 

individuals within the same cell subsets (Figure 4e).This suggests that the high 383 

responder baseline set point signature indeed reflected an immune state mirroring the 384 

early inflammatory responses induced by vaccination. This baseline state may have 385 

primed innate responses to vaccination since it was itself further induced by vaccination. 386 

Further supporting this idea, the baseline signature in monocytes and mDCs was also 387 

induced one day after either dose of BNT162b2 mRNA SARS-Cov2 vaccination68, with 388 

greater elevation after the second dose in classical monocytes (Figure 4f). Given that 389 

the lipid nanoparticle carrier in the mRNA vaccine is thought to act as an adjuvant69, 390 

these results further suggest that the baseline set point signatures might have reflected 391 
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Figure 4. The multicellular setpoint network of high responders their day 1 post-
vaccination kinetics and coupling to day 7 plasmablast activity 
 
a. Identification of the multicellular baseline high responder setpoint network. Gene set 
enrichment of modules enriched pre-vaccination (baseline) in high vs. low responders within 
each cell type based on genes ranked using multivariate models adjusting for age, sex, and 
batch. The leading edge genes from these cell type specific high responder pathway 
enrichments were correlated across donors within and between cell types. Within cell types, the 
Jaccard similarity of each pairwise leading edge gene was subtracted from the spearman 
correlation coefficient to correct for correlation due to two signals sharing the same genes 
(within a cell type) and connectivity edges were retained in the network (see methods). b-c Two 
selected highly coupled cell phenotypes in the high responder setpoint network. The edges 
highlighted in red are shown below as correlations of the activity of the leading edge genes from 
those modules across donors within the cell type indicated by the edge. Correlation values 
reflect Bonferroni adjusted Spearman correlation of phenotypes across the entire network. d. 
The correlation of signature expression within cell types with the day 7 fold change in the 
predictive signature we previously found was predictive of antibody response associated with 
plasmablast activity from microarray data. e. The post vaccination kinetics of the components of 
the high responder innate setpoint network. A single cell mixed effects model of module activity 
was used to estimate the baseline high vs low responder effect size (red) and day 1 fold change 
across subjects adjusting for age, sex, number of cells per donor and a random effect for donor 
ID. f. Day 1 vs 0 prime and day 22 vs 21 boost kinetics of baseline high responder states tested 
in an external cohort of monocytes and DCs manually gated from CITE-seq data (GSE171964) 
collected on individuals vaccinated with mRNA vaccine BNT162b2. The difference in the fold 
change between boost (d22 vs d21) and prime (d1 vs d0) p values: mDC 0.59, CD14 monocyte 
< 0.001 and day 1 vs baseline p<0.001 calculated by the emmeans package based on a mixed 
model with a donor random effect as in e.  
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a naturally “adjuvanted” state that can enhance innate immune response potential prior 392 

to stimulation.  393 

 394 

Interestingly, we noticed that the aggregated AS03 specific early response phenotypes 395 

(the union of leading edge genes driving the gene set enrichments in each cell type  396 

shown in Figure 3b) were decreased rather than increased after unadjuvanted 397 

vaccination, further demonstrating that they were unique to the response to AS03 398 

(Figure 5a,b). To further test the naturally adjuvanted baseline hypothesis, we next 399 

tested whether these specific DC and monocyte signatures specifically induced by the 400 

AS03 adjuvant were phenocopied by the baseline of high responders. Indeed, these 401 

AS03-specific innate response phenotypes were higher at the baseline of high than low 402 

responders to the unadjuvanted vaccine (Figure 5c). A previous study of AS03 403 

identified increased frequencies of activated HLA-DR+ monocytes 24h following 404 

vaccination9. Again, here the high responders to unadjuvanted vaccination already had 405 

elevated frequencies of HLA-DR+ monocytes6 at baseline (Figure 5d). Furthermore, by 406 

day 1 post vaccination, the frequency of these activated HLA-DR+ monocyte increased 407 

with a larger effect in the high responders (effect size 3.17, p = 0.0005) than the low 408 

responders (1.89, p = 0.14) (Figure 5e). Thus, multiple lines of evidence, including 409 

those from transcriptional and innate immune cell frequency analysis, support the 410 

conclusion that the baseline immune statuses of high responders correspond to a 411 

naturally adjuvanted innate immune state that mirrors not only the early responses 412 

induced by the unadjuvanted vaccine, but also those specifically elicited by the AS03 413 

adjuvant.  414 

 415 

The naturally adjuvanted baseline statuses may partly reflect cell-intrinsic differences in 416 

response capacity to innate immune cell stimulation. To evaluate this hypothesis, we 417 

stimulated PBMCs from the same 10 high and 10 low responders (to the unadjuvanted 418 

influenza vaccine) with interferon alpha, PMA plus ionomycin, and LPS, and used early 419 

phosphorylation signaling responses within 15 minutes after stimulation to assess 420 

whether certain cell subsets were intrinsically more responsive in transducing these 421 
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Figure 5 High responders have a naturally adjuvanted immune setpoint with monocytes 
more poised to enter blood and respond to PRR stimulation 
 
a. Average expression of a combined gene signature reflecting the AS03 specific induced states 
within DCs and CD14 monocytes. b. Gene set enrichment of the combined AS03 specific 
signature on the validation cohort in analogous subsets; select adjuvant specific genes in the 
leading edge of the validation are shown. c. The average expression in high vs low responders 
of the mDC and CD14 monocyte AS03 specific day 1 induced validated signature tested in 
analogous subsets. d. Log cell frequency of HLA-DR+ classical monocytes as a percentage of 
total classical monocytes in high vs low responders at baseline, p value from a Wilcoxon rank 
test. e. The kinetics over two baseline timepoints and three post vaccination timepoints for HLA-
DR+ classical monocytes. Mixed effects model with an interaction for time and response group 
and a random effect for subject ID–high responder effect size 3.17 p value  = 0.0005, low 
responder effect size 1.89, p value = 0.14, difference in estimated marginal day 1 vs baseline 
fold change not significant, response time vs time only interaction model ANOVA p = 0.063.  f. 
Schematic outlining CyTOF stimulation experiment. PBMCs isolated from high and low 
responders were stimulated with PRR ligands. Stimulation phenotype and markers driving 
stimulation were defined with HDStIM. g. UMAP plot of a random subset of 5000 monocytes pre 
and post stimulation with stimulated cells in orange and unstimulated cells in blue. h. Variable 
importance for individual phospho-protein markers determined by the Boruta algorithm which 
are used for automatic determination of responding cells in HDStIM. i. The post stimulation 
median marker intensity of phosphor markers within the CD14 monocyte cluster, the post 
stimulation aggregated data are shown due to variable baseline phospho-marker detection and 
effects were tested using a mixed model adjusting for batch and modeling individual variation 
with a random effect for donor ID. The difference in pre vs post stimulation fold changes in high 
vs low responders contrast estimate and p values: p38 contrast effect: 0.104, p = 0.058, pCREB 
contrast effect: 0.223, p = 0.024, pERK contrast effect: 0.58, p = 0.055.  
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external stimulatory signals (Figure 5f). We used CyTOF profiling for both cell surface 422 

protein and intracellular phosphorylation-based signaling readouts, and defined the 423 

responding cell populations and associated response markers by using a computational 424 

algorithm we recently developed called HDStIM70 (Figure 5g-h). As expected, CD14 425 

monocytes responded strongly to LPS as evident by increased levels of phosphorylated 426 

p38, CREB, IkBa, and ERK (Figure 5h). Supporting the idea that the naturally 427 

adjuvanted set point reflected cell intrinsic signaling response capacity, the difference in 428 

the post-stimulation fold-change of p38, pERK, and pCREB (after adjusting for batch 429 

and individual variation) was elevated to a greater extent in high compared to low 430 

responders (Figure 5i). This cell intrinsic, TLR-dependent increase in the signaling 431 

capacity of monocytes suggest that the high responders possess a baseline set point 432 

poised to mount a stronger response to stimulatory signals from the vaccine. 433 

Specifically, if this intrinsic signaling response difference extends to pattern-recognition 434 

receptors that might recognize influenza vaccine components, such as TLR3, TLR7, or 435 

TLR9, these may signal through transcription factors including IRF3 or IRF7 to activate 436 

interferon response genes, such as those encoding for ISG15 and IFN-β; these could 437 

further induce antiviral gene expression programs in both monocytes and DCs via 438 

autocrine / paracrine circuits71,72. Furthermore, enhanced p38 signaling could also play 439 

a role in RIG-I induced interferon response to the vaccine73,74.Together these 440 

observations provide additional insights into the mechanistic underpinnings of a 441 

naturally adjuvanted human immune set point found in healthy individuals primed to 442 

respond with more robust innate and adaptive responses following vaccination.  443 

 444 

Discussion  445 

 446 

In this work we introduce a framework for integrating natural human population variation 447 

with multimodal single cell variation capturing cellular states before and after a 448 

perturbation. While prevailing analysis approaches for single cell data often rely on 449 

qualitative visualization75 and univariate analysis, these approaches are often 450 

insufficient for complex experiment designs with many samples76 and do not provide a 451 
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quantitative means to integrate human and single cell variations to extract biological 452 

insights. Our approach provides robust statistical methods for these complex 453 

experimental designs; its application to the multimodal single cell data in this work 454 

illustrated how new insights can be obtained, e.g., regarding adjuvant specific response 455 

phenotypes involving naïve B cells as well as the cellular and transcriptional signatures 456 

of a naturally-adjuvanted baseline immune set point. These findings advance the 457 

concept that modulating baseline set points may improve immune response outcomes 458 

in diverse contexts21. For example, the baseline immune states of the low responders 459 

could be tuned to phenocopy the naturally adjuvanted innate immune state to enhance 460 

their future vaccination responses; these low responders include patients who require 461 

continued immunosuppression e.g. after transplantation, but need urgent vaccination in 462 

a pandemic setting.  463 

 464 

A host of approaches can be used to tune immune set points including vaccination 465 

itself. For example, BCG vaccination has been known to confer nonspecific protection 466 

(i.e., not just against TB) and reduce all-cause mortality in infants77; it has also been 467 

shown to potentiate nonspecific secondary innate immune cell responses in mice78. 468 

Recent phase III human trials evaluating BCG vaccination as a nonspecific 469 

immunomodulator showed promise in demonstrating protection against respiratory 470 

infections in the elderly79, who tend to be immunosuppressed43. It remains to be seen 471 

whether the naturally adjuvanted phenotype we describe here is similar to the innate 472 

immune training conferred by BCG vaccination80,81, which can induce short-term innate 473 

immune memory attributed to chromatin remodeling82. Indeed, the molecular 474 

underpinnings of the naturally adjuvanted baseline transcriptional phenotype remain to 475 

be determined. Preliminarily by using a computational approach83 to look for 476 

transcriptional factor motif enrichments, we detected significant enrichment of SPI1/ 477 

PU.1, IRF family members, and CEBPB, which were ranked near the top among other 478 

transcription factors (TFs) predicted to regulate the above set point signature genes in 479 

classical monocytes (these were ranked between 2 and 32 among 1632 tested, data not 480 

shown). Intriguingly, these were some of the same TFs whose binding motifs tended to 481 



Mulè MP et al. 2023  
 

17 

have altered chromatin accessibility after LPS “training” in mouse monocytes, leading to 482 

enhanced myelopoiesis and elevated extravasation of monocytes into the blood84. 483 

Future work could evaluate vaccination regimens which might optimize the longitudinal 484 

persistence of this naturally adjuvanted set point.  485 

 486 

Evaluation of larger cohorts using similar multimodal single cell approaches will help 487 

assess the generalizability of our naturally occurring baseline set points. While lacking 488 

the resolution of the multimodal single cell analysis framework introduced here, our 489 

earlier work analyzing bulk blood transcriptome data from multiple influenza vaccine 490 

studies provide independent support, including the observation of substantial inter-491 

subject variation in baseline immune states1,2,6,85 and an “inflammatory signaling” 492 

module predictive of antibody response to influenza vaccination in multiple cohorts of 493 

subjects under the age of 6516. More recent work using bulk blood transcriptomic data 494 

assessing different types of vaccines revealed that individuals with a high “inflammation” 495 

phenotype tended to have better antibody responses23. What is less clear is how age 496 

related inflammation is similar to or distinct from such baseline inflammatory states. 497 

Earlier work suggests that tonic levels of interferon in the young are distinct from age 498 

related inflammation, which may be more related to TNF signaling and its downstream 499 

effects86,87. Our work provides a basis for future studies to identify the extent by which 500 

these bulk signatures can be resolved further by using the kind of approaches 501 

introduced here.  502 

 503 

Our study has several limitations. Profiling blood alone misses cells and processes in 504 

tissues. Assessing tissues such as lymph nodes would give a more comprehensive 505 

picture of vaccination response variations across individuals. Despite logistical 506 

challenges of human tissue profiling, recent pioneering work using fine needle aspirates 507 

or biopsies from lymph nodes88–90 following influenza vaccination91 have helped link 508 

blood and tissue phenotypes. For example, our single cell deconvolution revealed that 509 

the predictive day-7 bulk expression signatures were derived nearly exclusively from a 510 

small number of plasmablast cells (Figs S2c-e). Circulating plasmablasts have been 511 
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shown to shared B-cell receptor sequences with those obtained from lymph node 512 

biopsies91, thus the whole blood based plasmablast transcriptional signatures that have 513 

been widely detected post vaccination in previous studies are, as expected and 514 

supported by our results, originated from B cells in lymph nodes with shared clonality. 515 

Determining the origin of the innate immune cells and their states in circulation, 516 

including both DCs and monocytes, on day 1 and their connection to the cells 517 

“encoding” the naturally adjuvanted baseline states remains an open problem. Given 518 

that monocytes have relatively short halflife, the dynamics and status of the myeloid 519 

progenitors need to be considered and may hold a key to linking immune cell status in 520 

the bone marrow and shorter-lived circulating cells in blood. Tracking the clonal origins 521 

of innate immune cells lacking clonal receptors in humans presents a major challenge, 522 

however, recent developments in mitochondrial DNA mutation profiling using single cell 523 

ATAC-seq data could be informative in this context92. Another open issue is the origin of 524 

the naturally adjuvanted baseline immune state within individuals – what sets the set 525 

point? Our recent work suggest that prior infections could modulate and establish new 526 

baseline set points in humans, e.g., months after clinical recovery from mild COVID-19 527 

both men and women had a temporally stable altered baseline immune state compared 528 

to matching controls, and men tended to mount more robust innate and adaptive 529 

responses to the seasonal influenza vaccine93. As future work we can assess whether 530 

and how the monocyte and DC naturally adjuvanted phenotypes overlap with those 531 

stably modified by prior infections in the same cells. Finally, vaccination itself, such as 532 

BCG discussed above as well as recent evidence from influenza vaccination with 533 

adjuvants94, can also potentially modulate baseline immune states. Together, our 534 

framework paves the way for further studies to integrate human and single cell 535 

variations over space and time in response to perturbations across biological 536 

disciplines; our findings help advance a more quantitative, predictive understanding of 537 

the human immune system.  538 

 539 

 540 

Methods  541 
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 542 

Human vaccination comparison cohorts and antibody response assessment 543 

Healthy volunteers were enrolled on the National Institutes of Health (NIH) protocols 09-544 

H-0239 (Clinicaltrials.gov: NCT01191853) and 12-H-0103 (www.clinicaltrials.gov: 545 

NCT01578317). Subjects enrolled in 09-H-0239 received the 2009 seasonal influenza  546 

vaccine (Novartis), and the 2009 H1N1 pandemic (Sanofi‐Aventis) vaccines, both  547 

without an adjuvant. Subjects in 12-H-0103 received a vaccine formulated with the 548 

adjuvant AS03 containing avian influenza strain H5N1 A/Indonesia/05/2005 (GSK). In 549 

both cohorts, virus neutralizing antibody titers assessed using a microneutralization 550 

assay were determined as previously reported. The highest titer that suppressed virus 551 

replication was determined for each strain in the 2009 inactivated influenza vaccine: 552 

A/California/07/2009 [H1N1pdm09], H1N1 A/Brisbane/59/07, H3N2 A/Uruguay/716/07, 553 

and B/Brisbane/60/2001 or for AS03 adjuvanted influenza vaccine, H5N1 A/Indonesia, 554 

clade 2.1. High and low antibody responders to the unadjuvanted vaccination were 555 

defined using the adjusted maximum fold change (AdjMFC) which adjusts the fold 556 

change for the baseline antibody titer (methodological details in the supplementary 557 

methods of our previous report6). In the unadjuvanted cohort, n=10 high responders and 558 

n=10 low responders were selected for CITE-seq profiling. All subjects were analyzed 559 

pre–vaccination, with a subset of 8 and 12 donors profiled on days 1 and 7 post-560 

vaccination also split evenly between high and low responders. In the adjuvant cohort, 561 

n=6 subjects with robust titer responses were selected for CITE-seq.  562 

 563 

CITE-seq profiling of peripheral blood mononuclear cells  564 

We optimized a custom CITE-seq antibody panel of 87 markers using titration 565 

experiments and stained cells with a concentration of antibody appeared to saturate 566 

ligand of the cell population with the highest marker expression, or used the 567 

manufacturers recommended concentration when below saturation. We stained the 52 568 

PBMC samples across three experimental batches using a single pool of which were 569 

combined in the optimal concentration and concentrated in an Amicon Ultra 0.5mL 570 

centrifugal filter by spinning at 14,000 x g for 5 minutes. Three aliquots of 12µL from the 571 
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36µL volume of optimized antibody mixture was used on 3 subsequent days to minimize 572 

between experiment technical variability. Frozen PBMC vials from each donor were 573 

washed in pre-warmed RPMI with 10% FBS followed by PBS. 1x106 cells from each 574 

sample were stained with a hashing antibody95 simultaneously with 1µL FC receptor 575 

blocking reagent for 10 minutes on ice. After washing the hashing reaction 3 times in 576 

cold PBS, cells were counted and pooled in equal ratios into a single tube and mixed. 577 

The sample pool was concentrated to 5x106 cells in 88µL of staining buffer. 12µL of the 578 

concentrated optimized 87 antibody panel was added to stain cells (total reaction 579 

volume 100µL) for 30 mins on ice. After washing cells, we diluted cells to 1400 cells / 580 

µL, recounted 4 aliquots of cells and 30µL of the stained barcoded cell pool containing 581 

cells from all donors was partitioned across 6 lanes of the 10X Genomics Chromium 582 

Controller for each of the 3 batches for 18 total lanes. We proceeded with library prep 583 

for the 10X Genomics Chromium V2 chemistry according to the manufacturer’s 584 

specifications with additional steps to recover ADT and HTO libraries during SPRI bead 585 

purification as outlined in the publicly available CITE-seq protocol (https://cite-seq.com) 586 

version 2018-02-12. We clustered Illumina HiSeq 2500 flow cells with V4 reagents with 587 

pooled RNA, ADT and HTO libraries in a 40:9:1 ratio (20µL RNA, 4.5 µL ADT, 0.5µL 588 

HTO). Libraries were sequenced using the Illumina HiSeq 2500 with v4 reagents. CITE-589 

seq antibody information is provided in Supplemental Table 5.  590 

  591 

CITE-seq data sequence alignment and sample demultiplexing  592 

Bcl2fastq version 2.20 (Illumina) was used to demultiplex sequencing data. Cell Ranger 593 

version 3.0.1 (10x Genomics) was used for alignment (using the Hg19 annotation file 594 

provided by 10x Genomics) and counting UMIs. The fraction of reads mapped to the 595 

genome was above 90% for all lanes and sequencing saturation was typically around 596 

90%. ADT and HTO alignment and UMI counting was done using CITE-seq-Count 597 

version 1.4.2. We retained the “raw” output file from Cell Ranger containing all possible 598 

10X cell barcodes for each 10X lane, and merged the CITE-seq-count output. For each 599 

10X lane, barcodes were concatenated with a string denoting the lane of origin and data 600 

for ADT, HTO and mRNA. We then utilized combined sample demultiplexing to assign 601 
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the donor ID and timepoint to each single cell. Both the timepoint and response class 602 

were identifiable based on the hashing antibody. The first round of demultiplexing was 603 

carried out via cell hashing antibodies. The union of singlets defined by the multiseq 604 

deMUTIplex procedure96 and Seurat’s HTODemux function were retained for further 605 

QC. Negative drops identified by HTODemux were retained for further QC and use in 606 

denoising and normalizing protein data. The second round of sample demultiplexing 607 

was carried out via Demuxlet97 to assign the unique donor ID by cross-referencing 608 

unique SNPs detected in mRNA single cell data against a vcf file with non-imputed 609 

illumina chip based genotype data from the same donors. Demuxlet provided an 610 

additional round of doublet removal via an orthogonal assay (mRNA) to antibody 611 

barcode (HTO) based demultiplexing thus providing further data QC. Only cells that met 612 

the following conditions were retained for further downstream QC, normalization and 613 

analysis: 1) The cell must be defined as a “singlet” by antibody barcode based 614 

demultiplexing and by demuxlet. 2) The identified donor from demuxlet must match one 615 

of the expected donors based on cell hashing. Cells were then further QCd based on 616 

mRNA using  calculateQCmetrics function in scater98. Cells were removed that had with 617 

greater or less than 3.5 median absolute deviations from the median log mRNA library 618 

size.  619 

 620 

Surface protein and mRNA count data normalization 621 

We denoised and normalized ADT data using an open source R package we developed 622 

for this work called dsb37 which removes noise derived from ambient unbound 623 

antibodies and cell to cell technical noise. We used function DSBNormalizeProtein with 624 

default parameters. We normalized mRNA on the entire dataset with the normalizeSCE 625 

and multiBatchNorm functions from scran99 using library size-based size factors. 626 

Various analysis utilized aggregated mRNA data which was were separately normalized 627 

for analysis at the subset level as a “pseudobulk” library; single cell mRNA data were 628 

also renormalized or rescaled for specific analysis as outlined below.  629 

 630 

Surface protein-based clustering and cell type annotation   631 
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Using protein to define cell type facilitated improved interpretation of transcriptome 632 

differences between vaccination groups. Cell types were defined with statistically 633 

independent  information, protein, from transcriptome data being modeled within each 634 

cell type (Figure. 1a). We clustered cells directly on a distance matrix using the 635 

parallelDist package calculated from the non-isotype-control proteins all cells using 636 

Seurat’s FindClusters function using parameters:  res =1.2, modularity.fxn = 1, algorithm 637 

= 3 (SLM100). We annotated cell types in the resulting clusters post hoc, based 638 

canonical protein expression in immune cell populations. This procedure improved 639 

separation of known immune populations compared to compressing protein data using 640 

principal components as commonly done for higher dimensional mRNA data (data not 641 

shown). Analysis of unadjuvanted vaccination responses was first done blind to the 642 

adjuvanted cohort data. We thus first applied high dimensional clustering of the 643 

unadjuvanted cohort and annotated cell types with additional manual gates to purify 644 

canonical cell populations such as memory and naïve T cells. We next merged 645 

unadjuvanted and adjuvanted cohort cells and used annotations to guide combined 646 

clustering annotation, again manually refining cell populations using biaxial gating 647 

scripts in R to purify cell some cell populations. For annotation, the distribution of 648 

marker expression within and between clusters was compared using density histogram 649 

distributions of marker expression across clusters at the single cell level, biaxial marker 650 

distribution and median and mean aggregated protein expression across clusters.  651 

 652 

Hierarchical transcriptome variance deconstruction to infer individual (subject 653 

intrinsic), cell type, and vaccine effects  654 

To estimate the contribution of subject intrinsic and contributors to the observed 655 

variation in expression of each gene within specific cell clusters/subsets, we used the 656 

variancePartition package101. The set of models used for estimating variance fractions 657 

are distinct from but related to those used for testing differential expression and contrast 658 

vaccination effects within cell subsets (see below). We first aggregated data across 659 

individual, timepoint and cell type. The normalized aggregated expression was used to 660 

first model the mean variance relationship using observation level weights using 661 
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voom102. Mixed effects linear models of the expression of each gene across the 662 

aggregated libraries were then fitted using lme4103 with variancePartition. For each gene 663 

“y” the total variance was defined by 780 measurements derived from the 52 PBMC 664 

samples deconvolved into the 15 major protein-based cell clusters/types tested. The 665 

model fit to each gene “g” was:  666 

 667 

𝑔	 = 	$𝑋&𝛽&
&

+	$𝑍*𝑎*
*

+	𝜀-		 668 

 669 

Where X and Z are the matrices of fixed and varying / random effects respectively, with 670 

random effects modeled with a Gaussian distribution and errors incorporating weights 671 

calculated with voom.  672 

 673 

 674 

𝑎*	~	𝑁(0, 𝜎45) 675 

  676 

       𝜀-~	𝑁70, 𝑑𝑖𝑎𝑔7𝑤-;𝜎<5; 677 

 678 

The variancePartition package then incorporates both fixed and random effects in 679 

calculating the fraction of variation attributable to each variable in the model. For 680 

example, the variance in g attributable to “subjectID” (i.e., differences between 681 

individuals) was modeled as a random effect is:  682 

  683 

𝜎-=>?&@ABCD5 =
𝜎EFGHIJKLMN	
5

∑ 𝜎EI	
5

& +	∑ 𝜎4P	5
* +	𝜎@5

		 684 

 685 

The denominator in the fraction above is the total variance of gene g, with both fixed 686 

and random effects contributing to total variance. In the first model above, age, sex, 687 

subjectID, timepoint, response /vaccine group (unadjuvanted group high vs low 688 
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responders, or AS03 group) cell type, and a cell type and timepoint interaction term as 689 

categorical random effect variables as required by the variancePartition framework. As 690 

expected, a second set of models fit within each cell type/cluster (i.e., without having 691 

cell type as a variable in the model) increased the apparent variance explained by the 692 

other factors given that major cell type specific expression was a key factor driving gene 693 

expression variation. This model included age, sex, subjectID, timepoint, and response / 694 

vaccine group (as above) and an interaction term for time and group.  695 

 696 

Within cell type linear mixed effect models of vaccination effects on gene 697 

expression 698 

We used linear mixed models to test coherent effects of vaccination across individuals 699 

while adjusting for subject intrinsic factors including age and gender and estimating 700 

individual subject level variation. Gene expression counts were aggregated within each 701 

surface protein-based cell type by summing counts within each sample. The lowest 702 

frequency cell types without representation across some individuals and time relative to 703 

vaccination (e.g., HSCs, donor-specific cell types, or plasmablasts which were mainly 704 

detected on day 7) were excluded from this specific analysis. Three main analysis were 705 

carried out to model gene expression within each cell type to estimate the following 706 

vaccination effects over time across individuals: model 1) unadjuvanted subjects day 1 707 

vs baseline, model 2) unadjuvanted subjects day 7 vs baseline, model 3) A contrast of 708 

the difference in day 1 fold change between unadjuvanted and adjuvanted subjects in a 709 

combined model – the goal of this model is to assess adjuvant specific response 710 

effects. All models were fit with the 'dream' method96 which incorporates precision 711 

weights97 in a mixed effects linear model fit using using lme498. For models 1 and 2 712 

above (unadjuvanted vaccination effects) we fit the following model: gene ~ 0 + time + 713 

age + sex + (1|subjectID).  714 

 715 

The fitted value for expression y of each gene g corresponds to: 716 

 717 
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	𝑦- = 𝛽R- +$𝑋&𝛽&
&

+ 𝜀-	 718 

 719 

With variables time, age, and sex represented by covariate matrix 𝑋. The 𝛽R term 720 

corresponds to the varying intercept for each donor represented by the (1|subjectID) term. 721 

This model thus estimates the baseline expression variation across subjects 𝑆R around 722 

the average 𝛾R using a Gaussian distribution with standard deviation 𝜏-5 to shrink 723 

estimated vaccination effects toward the population mean and adjust for non-724 

independence of repeated measures from the same individuals, as follows:  725 

 726 

𝛽R- = 𝛾R + 𝑆R 727 

 728 

𝑆R~	𝑁70, 𝜏-5; 729 

Errors 𝜀- incorporate observational weights 𝑤- calculated using the function 730 

voomWithDreamWeights in a procedure similar to that described by Law et al102 but using 731 

the mixed model fit: 732 

𝜀-~	𝑁70, 𝑑𝑖𝑎𝑔7𝑤-;𝜎<5; 733 

 734 

In this model, the day 1 or day 7 effect across subjects was the time effect from the model. 735 

The mixed model standardized z statistic was then used to rank genes for gene set 736 

enrichment testing for each cell type.  Model 3 was specified as gene ~ 0 + group + age 737 

+ sex + (1|subjectID). The “group” variable corresponds to a combined factor representing 738 

the vaccine formulation received (adjuvanted vs unadjuvanted) and timepoint (baseline 739 

or day 1 post vaccination) with 4 level: “d0_AS03”, “d1_AS03”, “d0_unadjuvanted”, 740 

“d1_unadjuvanted”. A contrast matrix 𝐿W@XBY  corresponding to the difference in fold 741 

changes between adjuvanted and unadjuvanted subjects was applied to test the null 742 

hypothesis of 0 difference in fold changes between the groups.  743 

 744 

𝐿W@XBY = [		−1	1	1				 − 1	0	0			] 745 
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 746 

With the first four columns representing the group factor and the two 0s representing age 747 

and sex effects. The contrast fit outputs the difference in fold change after adjusting 748 

estimates for age, sex and subject variation with positive effects representing increased 749 

fold change in the adjuvant group compared to the unadjuvanted group. This contrast 750 

approach was designed to also capture genes with opposite vaccination effects in the two 751 

groups, for example, upregulation in the AS03 group and downregulation in the 752 

nonadjuvanted subjects.  753 

 754 

Transcriptome data was uniformly processed for all fitted models above. Aggregated 755 

(summed) single cell UMI counts were normalized within each protein based cell type 756 

using the trimmed means of M values method with only genes retained with a pooled 757 

count per million above 3 using the edgeR filterByExprs function104. Cell type specific 758 

gene filtering removed genes non expressed by each lineage from analysis ensured the 759 

model assumptions used to derive precision weights and account for the mean variance 760 

trend were met. We verified the log count per million vs. fitted residual square root 761 

standard deviation had a monotonically decreasing trend within each cell type. For the 762 

AS03 validation cohort, pre normalized data were downloaded from the study 763 

supplemental data58 and a similar model to model 3, contrasting the difference in fold 764 

change was fit with a contrast again using a donor random intercept.  765 

 766 

Gene set enrichment testing of vaccination effects within cell types using specific 767 

hypothesis-driven gene sets or unbiased analysis  768 

To test enrichment of pathways based on the estimated gene coefficients corresponding 769 

to the three vaccination effects defined above, we performed gene set enrichment 770 

analysis using the fgsea105 package multilevel split Monte Carlo method (version 771 

1.16.0). Genes for each coefficient (i.e. models 1-3) and each cell type were ranked by 772 

their effect size, (the dream package empirical Bayes moderated signed z statistic), 773 

corresponding to pre vs post vaccination or the difference in fold change for model 3 774 

(comparing unadjuvanted vs. AS03). For enrichment of the day 1 response, five gene 775 
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sets were derived from bulk transcriptomic data of influenza vaccination (see 776 

Supplementary Table 1), and an additional 25 pathways/gene sets curated from public 777 

databases were tested. For Day 7 responses and the difference in fold change between 778 

adjuvanted and unadjuvanted subjects, an unbiased set of pathways were tested from 779 

the Li et al. Blood Transcriptional Modules (BTM)106, MSigDB Hallmark, reactome and 780 

kegg databases. Over-representation of GO terms for the monocyte pseudotime gene 781 

categories was assessed using enrichr107. 782 

 783 

Inference of the baseline immune set point network  784 

To define cell type specific transcriptional phenotypes robustly associated with high vs 785 

low responders of the unadjuvanted vaccine at baseline, we used limma108 to fit linear 786 

models of gene expression as a function of antibody response class (high vs low, coded 787 

as a two-level factor) adjusting for age sex and batch (e.g. in R symbolic notation, gene 788 

~ AdjMFC + age + sex + batch) as fixed effects on aggregated (summed) data for each 789 

cell type, similar to models above without varying effects for individuals:  790 

 791 

𝑦- =$𝑋&𝛽&
&

+	𝜀- 792 

 793 

Errors incorporated voom weights as above. Gene coefficients for each cell type 794 

corresponding to model adjusted empirical Bayes regularized estimates for high vs low 795 

responder effect at baseline were input into gene set enrichment analysis against the 796 

unbiased set of pathways described above. We then calculated the average module z 797 

score22 using log counts per million from each cell type of the high responder associated 798 

cell phenotypes (using only high responder associated leading edge genes from gene 799 

set enrichment analysis), resulting in a matrix of baseline normalized expression of 800 

pathways across 20 individuals (10 high and low responders) for each cell type. We 801 

next tested for correlation of these signals, both within and between cell types, by 802 

calculating the spearman correlation and adjusted p values with the FDR method. We 803 
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noticed that within the same cell type, pathway enrichments could sometimes be driven 804 

by a shared set of genes among gene sets with different pathway labels but essentially 805 

shared a substantial fraction of genes. We therefore calculated the Jaccard similarity 806 

coefficient of each pairwise enrichment signal (leading edge genes driving the high vs 807 

low responder difference) within each cell type, and use that to adjust the correlation 808 

effect sizes computed above such that the resulting quantity reflected “shared latent 809 

information” (SLI) by subtracting the Jaccard similarity index from the Spearman 810 

correlation coefficient 𝜌:   811 

 812 

𝑆𝐿𝐼	 = 	𝜌 −		
𝐴 ∩ 𝐵
𝐴 ∪ 𝐵			 813 

 814 

For example, given enriched pathways A and B within a cell type, if at one extreme, 815 

these two pathways are driven by the same exact shared 10 leading edge genes, the 816 

Spearman 𝜌 of their normalized expression would be equal to 1, yet this apparent 817 

correlation is arbitrary since the two pathways reflect the same genes. However, the 818 

shared latent information would be equal to 0 because the Jaccard similarity of the two 819 

sets is also equal to 1 since the leading edge genes from the enrichments are also the 820 

same. The remaining correlation strength better reflects the phenotypic coupling of 821 

intracellular states across individuals after removing the signal due to leading-edge 822 

gene sharing between gene sets. For inter-cellular correlations between two distinct cell 823 

types, we do not subtract the Jaccard similarity of gene content from 𝜌 as we consider 824 

the same genes to be distinct signals when measured in different cell types. We further 825 

constructed a sub network from a subset of cell types forming the high responder 826 

baseline set point network. To identify the most highly connected processes, 827 

correlations with adjusted p values < 0.05 were retained and a weighted undirected 828 

network was constructed using igraph, retaining only the strongest links above the 829 

median weight with weights reflecting Spearman’s Rho for intercellular connections and 830 

the SLI metric described above for intracellular connections. Each node (high responder 831 

cell phenotype) was also correlated across individuals with the day 7 fold change of a 832 
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gene expression signature5 reflective of plasmablast activity derived from bulk 833 

microarray data from the same subjects and select high degree nodes were highlighted 834 

in the text.  835 

 836 

Single-cell mixed-effect models of gene expression  837 

In addition to the pseudo-bulk models fitted above, we also used single cell mixed effects 838 

models to assess consistency and to specifically test the early response kinetics of the 839 

baseline states enriched above, including select AS03 associated response signatures 840 

within innate immune cell subsets.   841 

 842 

Early kinetics of baseline set point phenotypes. Each cell type specific transcriptional 843 

phenotype enriched in high vs low responders in the aggregated/pseudo-bulk linear 844 

model described above were scored in single cells from subjects on day 0 and day 1 as 845 

the average expression of the specific leading edge genes enriched in high vs low 846 

responders. The per single cell module scores were fitted with a linear mixed model for 847 

each cell type to 1) re-test the baseline association (high vs. low responders) at the single 848 

cell level, and 2) to test their post vaccination effect size within the same cell subset. 849 

These models estimated the variance at the single-cell level instead of at the individual 850 

donor cell-aggregated level. Otherwise these represent conceptually similar models as 851 

the ones described above fitted using lme4 with a donor random intercept, but without 852 

voom weights. Two models were tested with highly concordant resulting effect sizes: 1) 853 

a parsimonious model of time relative to vaccination with a subject random effect, and 2) 854 

a more complex model including the time relative to vaccination, the number of cells per 855 

individual sample for a given cell type, age, sex, and a subject random effect. Normalized 856 

expression of each module was standardized within each surface protein-based cell 857 

cluster/subset by subtracting the mean and dividing by the standard deviation of the 858 

module score across single cells within the cell type. After fitting models, the baseline 859 

high vs low responder effect and the day 1 vs baseline effect sizes and standard errors 860 

across subsets was calculated using the emmeans109 package with a custom contrast 861 

(e.g., see Figure. 4e). All models were checked for convergence criteria.  862 
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 863 

AS03 specific regulation. Naïve B cells were tested for expression of modules 864 

hypothesized to be involved in B cell survival (see below; partly based on the literature or 865 

derived from existing independent data sets). These modules were tested here for their 866 

effects at the single cell level; they were then independently assessed in sorted total B 867 

cells in the validation cohort58. Two modules were defined to reflect survival of human 868 

naïve B cells: 1) A CD40 activation signature22 which was derived from studies of in vitro 869 

CD40 activated human B cells; 2) An apoptosis signature derived by combining signals 870 

from the CITE-seq naïve B cell day 1 gene set enrichment  comparing AS03 adjuvanted 871 

to unadjuvanted individuals. The signals combined the specific naïve B cell leading edge 872 

genes from the negatively enriched (reflecting AS03 specific downregulation) apoptosis 873 

modules (with unadjusted p values < 0.1–we opted for a loser cutoff to increase 874 

sensitivity): reactome activation of BH3 only proteins, KEGG p35 signaling pathway, and 875 

LI.M160 leukocyte differentiation. The cell type specific leading edge genes were scored 876 

as above and fitted with age and sex covariates, a combined factor for vaccine group, 877 

timepoint, and random effect for subject ID, with the difference in fold changes calculated 878 

using the emmeans package.  879 

 880 

Software for implementing analysis workflow  881 

The analysis framework described above is available in an R software package 882 

“scglmmr” (https://github.com/MattPM/scglmmr) for analysis of single cell perturbation 883 

experiment data with repeated measures and multi-individual nested group designs. 884 

The software provides workflows for fitting single cell mixed models, deriving cell 885 

signatures, visualization, and also includes wrapper functions to implement the 886 

weighted gene level mixed effects differential expression models described Hoffman et 887 

al. 2021 (dream) and enrichment using fgsea.  888 

 889 

Monocyte differentiation and perturbation pseudotime analysis 890 

To construct a combined monocyte differentiation and perturbation single cell map we 891 

used the DDR tree algorithm with monocle 257. The trajectory was constructed using the 892 
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genes that changed as a function of time (q value <0.15 using the differentialGeneTest 893 

in monocle, with ribosomal genes and genes expressed in less than 15 cells removed). 894 

The DDRtree algorithm56 was implemented using the monocle function 895 

reduceDimension with arguments residualModelFormulaStr = subjectID and 896 

max_components = 2 and pseudotime calculated with function orderCells. 897 

Independently of the genes used to construct the trajectory, we then tested the genes 898 

from the mixed effects model of vaccination effects from monocytes (specific leading 899 

edge genes from 'reactome interferon signaling', 'GO IL6 PRODUCTION', 'reactome IL4 900 

and IL13 signaling', 'HALLMARK inflammatory response', 'KEGG JAK STAT signaling') 901 

for branch dependent differential expression using the BEAM function from monocle. 902 

Select genes were highlighted and categorized based on their expression dynamics 903 

along real time and pseudotime. 904 

 905 

Cell frequency analysis  906 

Cell frequencies of activated monocytes gated as HLA-DR+ cells were computed as a 907 

fraction of total CD45+CD14+ classical monocytes using flow cytometry data6. These 908 

cell frequencies were compared across subjects (high vs. low responders) at baseline 909 

using a two sided Wilcoxon rank test. The kinetic change of the cell frequency following 910 

vaccination was modeled using a mixed effects model with a single random effect for 911 

subject ID similar to the models described above. The kinetics over time were modeled 912 

using an interaction for time and antibody response group (high vs. low AdjMFC). This 913 

interaction model was compared to a timepoint only without the group interaction effect 914 

with analysis of variance. The baseline versus day 1 effects for each antibody response 915 

group was calculated using the emmeans package.  916 

 917 

Analysis of phospho-signaling responses after stimulation of high and low 918 

responder baseline PBMCs using CyTOF  919 

Samples were thawed in a 37°C water bath and washed twice with warmed complete 920 

media with Universal Nuclease (Pierce) added. Cells were then washed a final time and 921 

resuspended in complete media. 1 million cells per condition were added to individual 922 
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wells and rested in a tissue culture incubator for 2 hours (37°C, 5% CO2). Samples were 923 

then stimulated with either PMA/Ionomycin (final concentration [10 ng/mL])/([1μg/mL]); 924 

Sigma-Aldrich), LPS (final concentration [1μg/mL]; Sigma-Aldrich), IFN-a (final 925 

concentration [10,000U/ml], PBL Assay Science), or left unstimulated. After 15 minutes 926 

at 37°C, samples were fixed with paraformaldehyde (2.2% PFA final concentration) for 927 

10 minutes at 25°C. Samples were washed twice with Maxpar Barcode Perm Buffer (1X 928 

concentration; Standard Biotools). Samples were then barcoded with Cell-ID 20-Plex Pd 929 

Barcoding Kit (Standard Biotools) and incubated at 25°C for 30 minutes. Samples were 930 

then washed twice with Maxpar Cell Staining Buffer (Standard Biotools) and combined 931 

into corresponding barcoded batches of 5 samples (4 conditions per sample) and 932 

washed a final time with Maxpar Cell Staining Buffer. Samples were then stained with a 933 

titrated antibody-panel for extracellular markers (Supplementary Table) for 30 minutes 934 

at 25°C. After staining, the cells were washed twice with Maxpar Cell Staining Buffer 935 

and permeabilized in methanol (Fisher Scientific) overnight at -80°C. The next day, 936 

samples were washed twice with Maxpar Cell Staining Buffer, and stained with a titrated 937 

panel of antibodies for intracellular signaling markers (Supplementary Table) at 25°C for 938 

30 minutes. Samples were then washed twice with Maxpar Cell Staining Buffer, and 939 

labeled with Cell-ID Intercalator Ir ([1:2000] in Maxpar Fix-Perm Buffer; Standard 940 

Biotools) overnight at 4°C. The following day, samples were washed twice with Maxpar 941 

Cell Staining Buffer and resuspended in 500μL freezing media (90% FBS (Atlanta 942 

Biologicals) + 10% DMSO (Sigma-Aldrich)), and stored at -80°C until acquisition. The 943 

day of acquisition, samples were thawed and washed twice with Maxpar Cell Staining 944 

Buffer and then once with Cell Acquisition Solution (Standard Biotools) before being 945 

resuspended in Cell Acquisition Solution supplemented with 10% EQ Four Element 946 

Calibration Beads at a concentration of 6 x 105 cells/mL (to approximate 300 947 

events/sec). Samples were acquired on the Helios system (Standard Biotools) using a 948 

WB Injector (Standard Biotools). After acquisition, samples were normalized and 949 

debarcoded using the CyTOF Software’s debarcoder and normalization tools (Standard 950 

Biotools). The panel and protocol were adapted for use at CHI from the Stanford 951 

HIMC110. The phosphor markers driving the stimulated phenotype and responding cells 952 
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were automatically defined using the HDStIM R package70. The median phosphorylation 953 

protein intensity for each individual sample and cell type and stimulation was calculated 954 

and modeled with a mixed effects model adjusting or batch and using a random effect 955 

for donor ID. The difference in fold change between unstimulated and stimulated cells 956 

was calculated using a custom contrast with the emmeans package. CyTOF antibody 957 

information is provided in Supplemental Table 6. 958 

 959 

Code availability  960 

Code to replicate all analysis in this paper and create all figures is available in the 961 

following repository: https://github.com/NIAID/fsc.  962 

 963 

Data availability 964 

All data can be downloaded from the following repository: 10.5281/zenodo.7365959 965 
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Figure S1. (related to Figure 1) quality control of CITE-seq transcriptome and surface 
protein phenotypes and clustering  
a. Manually gated cell populations based on dsb normalized CITE-seq surface protein 
expression, orange box: plasmablast (CD19+CD71+IgD-CD20-CD38++) and blue box: 
activated B cell (CD19+CD71+IgD-CD20+CD38+/-). b. Transcriptome analysis of gene module 
scores specific to each gated populations (as in Ellebedy et. al. 2016) p-values shown reflect an 
unpaired two-sided Wilcoxon test between populations. c. Density distribution of dsb normalized 
protein expression binned by protein based cluster for select populations. d. Histograms of dsb 
normalized protein distribution within each protein-based cluster – rows and columns are 
hierarchically clustered based on the average expression per cluster. A select subset of proteins 
are shown and are colored by the main cell populations that they are most informative for 
discriminating. Red = T cell proteins, light blue = B cell proteins, green = monocyte proteins, 
dark blue = NK cell proteins, orange = pDC proteins, pink = pDC/HSC markers, black = cell 
state markers. e. The percentage of total cells for each PBMC sample in each major lineage 
black = B cell, orange = CD4 T cells, blue = CD8 T cells, red = myeloid (all monocytes, HSC, 
mDC and pDC), green = NK cells, light grey = unconventional T cells (MAIT-like and CD103 + T 
cells). f. The log number of cells per sample by protein based cluster shows that rare individual 
specific proteins are detected at both timepoints within a given individual.  
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Figure S2 (related to Figure 2). Deconvolution of day 7 antibody titer associated 
transcriptome signatures and additional shared and cell type specific day 1 cell 
perturbation phenotypes. 
 
a. Perturbation phenotypes of naïve B cells day 7 post vaccination. Gene set enrichment as in 
Fig. 2 based on model adjusted post vaccination effect size, adjusted -log10 p values shown as 
circle size; pathways with unadjusted p values < 0.01 and NES > 0.1 were included. b. As in a, 
for memory CD4 T cells. c. Protein based cell type specificity of day-7 bulk transcriptomic based 
gene expression signatures predictive of antibody response from previous systems biology 
studies of influenza vaccination (Supplementary table 1). Single cell level module score 
distribution shown for day 7 cells for each cell type. d. Correlation between genes in M156 
detected in CITE-seq (sample level pseudobulk) vs microarray data (Pearson correlation). e. 
Composition of raw counts of the TNFRSF17 gene, a driver of M156 on day 7 across protein-
based cell types shows the CD38++ B cells (plasmablasts) are the primary source of the signal. 
f. Left: Heatmap of estimated log fold change 24h post vaccination vs baseline of a core 
interferon signature shared across subsets – genes selected were increased in at least 5 
subsets with logFC > 0.1 and p value < 0.05. Right: the average expression of the core shared 
interferon signature genes across subsets over time. g. Log fold changes as in f, here 
highlighting genes more specifically induced within a single cell type post vaccination.  
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Figure S3 (related to Figure 3) external cohort validation of AS03 perturbation 
phenotypes and additional analysis of AS03 B cell phenotypes 
 
a. Schematic illustrating the contrast applied to each gene comparing unadjuvanted subjects to 
subjects receiving the AS03 adjuvanted vaccine. The gene set enrichment effect sizes 
(normalized enrichment score–NES) reflect the genes ranked by the difference in the day 1 fold 
changes. b. Gene set enrichment of the contrast effect shown in a from the mixed effect model 
for Naïve B cells. c. Naïve B cells single cell mixed effects model of a combined apoptosis 
signature comparing the day 1 fold change AS03 vs unadjuvanted subjects as a function of time 
post vaccination. The effect size for the time effect for each cohort was opposite, (bottom 
contrast on bottom margin of plot). The right margin shows the estimated marginal means of the 
mixed model over levels of the combined vaccine formulation cohort + timepoint variable as 
calculated by the emmeans package. d. External cohort validation of Naïve B cell CITE-seq 
derived perturbation phenotypes tested in validation cohort (see Fig 3a) of total sorted B cells 
(Naïve B cell AS03-specific leading edge genes from CITE-seq analysis as shown in 
Supplementary Fig 3b tested in all CD19+ cells in the validation cohort). The additional survival 
signals highlighted in light blue hypothesized to be enriched in naïve B cells after AS03 
adjuvanted vaccination based on the M160 genes and top AS03 specific downregulated genes 
(Fig 3e) and their expression in the CITE-seq cohort include the combined “apoptosis signature” 
and CD40 activation (CD40 ACT) signature (see methods).  
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Figure S4. (related to Figure 4) immune setpoint network of high responders  
 
a. Correlated multicellular baseline high responder cell phenotypes as a network. 
The matrix shows the Spearman correlation of expression of each gene module leading edge 
genes defined in high vs low responders across donors. Correlations within a given cell type are 
adjusted for gene content (see methods) as exhibited by the diagonal of the matrix (correlations 
between the same signals) showing a correlation of 0 instead of 1. b. The hub score of nodes in 
the high responder setpoint network after removing edges with correlation adjusted p < 0.05 and 
those with connection strength (Spearman’s Rho for intercellular connections or shared latent 
information for intracellular connections) below the median in the network.  Nodes highlighted 
with text include all CD14 and CD16 monocyte nodes including those show in in Figs 4b-c. 
Points are colored by cell type; the annotation of modules may be the same for a given row (e.g. 
reactome interferon in CD14 and CD16 monocytes) but the same module is captured by 
different genes driving the high responder effect in each cell type (e.g. they reflect cell type 
specific cell phenotypes).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


