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Abstract

Advances in multimodal single cell analysis can empower high-resolution dissection of
human vaccination responses. The resulting data capture multiple layers of biological
variations, including molecular and cellular states, vaccine formulations, inter- and intra-
subject differences, and responses unfolding over time. Transforming such data into
biological insight remains a major challenge. Here we present a systematic framework
applied to multimodal single cell data obtained before and after influenza vaccination
without adjuvants or pandemic H5N1 vaccination with the AS03 adjuvant. Our approach
pinpoints responses shared across or unique to specific cell types and identifies
adjuvant specific signatures, including pro-survival transcriptional states in B
lymphocytes that emerged one day after vaccination. We also reveal that high antibody
responders to the unadjuvanted vaccine have a distinct baseline involving a rewired
network of cell type specific transcriptional states. Remarkably, the status of certain
innate immune cells in this network in high responders of the unadjuvanted vaccine

appear “naturally adjuvanted”: they resemble phenotypes induced early in the same
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cells only by vaccination with AS03. Furthermore, these cell subsets have elevated
frequency in the blood at baseline and increased cell-intrinsic phospho-signaling
responses after LPS stimulation ex vivo in high compared to low responders. Our
findings identify how variation in the status of multiple immune cell types at baseline
may drive robust differences in innate and adaptive responses to vaccination and thus
open new avenues for vaccine development and immune response engineering in

humans.

Introduction

Human immune systems exhibit substantial person-to-person variation*. Population
variations in immune response outcomes to the same perturbation, such as antibody
responses to vaccination, can be linked to cellular and molecular immune system
components using top-down systems biology approaches*®. Such studies have used
unbiased immune profiling to identify signatures of response to perturbations and
predictors of outcomes such as antibody response to vaccination®'4, uncovering
contributions from intrinsic factors, such as genetics'®, age'®'7, and sex'8. Furthermore,
accumulating evidence from these studies supports the hypothesis that immune system
status prior to a perturbation can predict and potentially influence both response quality
and quantity®16.19-23_ For example, we identified transcriptome signatures reflective of
an immune system “set point” predictive of higher antibody response following
vaccination in healthy individuals??; the same signature when evaluated during relative
clinical quiescence was also linked to increased plasma cell related transcriptomic
activity during disease flares in lupus patients. More recently, blood transcriptome
profiling studies identified prognostic signatures in healthy children at risk of type 1
diabetes prior to development and onset of the disease?*, and at baseline in cancer

patients prior to immunotherapy induced autoimmunity?5-26.

While the biomarker signatures identified thus far are informative, technological

limitations hinder a high-resolution and holistic view of immune cell processes that
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underlie baseline set points that predict and potentially determine optimal
responses?’28, Bulk blood transcriptomic profiles are confounded by substantial inter-
individual variations in circulating immune cell subset frequency®2°39, while protein
based phenotypes measured using cytometry alone often cannot assess internal cell
states such as those captured by transcriptomics. Single cell transcriptomics can better
resolve cell states but interpretation remains challenging when measuring chromatin
accessibility or mRNA alone without utilizing, for example, existing knowledge
cataloging immune cell types and subsets using surface protein markers®2°-31, Multi-
modal single cell transcriptome and protein profiling methods such as CITE-seq3? are
promising for unifying these modalities; however, the integrative analysis of timed
perturbation responses including the decomposition of meaningful biological variations
spanning different size scales from individual human subjects to cell types and single

cells remains a major challenge.

In this work, we developed a multilevel modeling framework to integrate human
population, temporal, and single cell variations. We applied this framework to extract
vaccine response kinetics and cell states, and attributed cell type specific transcriptomic
variations to age, sex, subject, perturbation, and time. Using CITE-seg®, we profiled
PBMCs from 26 subjects before and after vaccination with two different pandemic
influenza vaccines. Individuals were nested into three groups: those with 1) high or 2)
low antibody responses to an unadjuvanted influenza vaccine and 3) individuals
vaccinated with an AS03 adjuvanted vaccine against H5N1 influenza. We further
revealed previously unknown, cell type specific phenotypes specifically induced by
AS033, In addition, we unbiasedly defined the landscape of baseline immune
phenotypes linked to high antibody responses, demonstrating that these do not merely
reflect the phenotypes of a single cell type but instead capture an extensive correlated
set of phenotypes across different cell types. Furthermore, by comparing the baseline
(prevaccination) cell type specific predictors of unadjuvanted vaccine responses with
phenotypes induced specifically by the unadjuvanted influenza vaccine, the COVID-19

mRNA vaccine, and the AS03 adjuvanted H5N1 vaccine revealed that high responders

Mulé MP et al. 2023 3


https://doi.org/10.1101/2023.03.20.23287474

medRxiv preprint doi: https://doi.org/10.1101/2023.03.20.23287474; this version posted March 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available
for use under a CCO license.

to the unadjuvanted vaccine were “naturally adjuvanted” at baseline. This concept was
further buttressed by data from phosphoprotein signaling responses to ex vivo cell
stimulation. Our integrative approach paves the way for multiscale analysis of timed
perturbation studies using multimodal single cell data in humans. Furthermore, our
findings suggest cell type specific targets of imnmune response engineering and vaccine

development.

Results

Multimodal single cell profiling to assess human response variations to timed

vaccine perturbations

To generate a multimodal single cell data set that captured biological variations
spanning molecular and cellular states, vaccine formulations, inter- and intra-subject
differences, and response kinetics, we assessed 52 PBMC samples from 26 donors
pre- and post-vaccination using CITE-seq (Figure 1a). Subjects received either the 2009
seasonal and pandemic type A strain vaccine combination, or an H5N1 avian influenza
strain formulated with oil in emulsion adjuvant AS03¢34. For the AS03 group, we
focused on the baseline and innate response (day 1) time-points since AS03 is known
to elicit a strong early response?®®. For the unadjuvanted seasonal influenza vaccine,
twenty subjects with high (n=10) and low (n=10) antibody responses were selected from
our cohort of 63 individuals that we previously profiled and stratified into high, mid, and
low responders based on antibody titer fold change adjusted for age, sex ethnicity and
pre-existing immunity®22. These 20 individuals were profiled at baseline and select
subsets of individuals on day 1 or 7 post vaccination to assess the innate and adaptive
cellular responses (Figure 1a). We analyzed sources of technical noise in CITE-seq
surface protein expression data by using our recently developed normalization method
called dsb?¥, then assessed the robustness of CITE-seq to recover and unify known cell
surface and transcriptome phenotypes. For example, both activated B cells and

plasmablasts could be distinguished based on the expression of CITE-seq surface
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protein markers CD19, CD71, CD20, and CD38. We further confirmed that the gated
cells exhibit transcriptional signatures® derived previously from these cell subsets after
FACS-sorting (Figure S1a).

Transcriptome variation decomposition into surface protein-based cell type,

individual, age, sex, and vaccination effects

Cells clustered using the 82 surface proteins were enriched for known immune
phenotypes (Figure S1 ¢, d). Cells from individual subjects at different timepoints were
represented in a majority of cell clusters (Figure S1e,f). Some cell clusters were
dominated by cells from two to three subjects (e.g., NKT and CD57+ CD4 T cells); this
likely reflects individualistic phenotypes as the samples from different timepoints from
the same individuals were also present in the same clusters, suggesting that these

phenotypes represent temporally stable, within-individual variations® (Figure S1f).

Instead of analyzing one variable at a time, we next deconstructed the transcriptional
variation of each gene into that attributable to cell types, individuals, intrinsic factors
(age, sex), and vaccination responses (Figure 1b) using multivariate mixed effects
models. For each gene, these models quantify contributions of biological factors (such
as cell type or subject effects) toward observed expression variation, including adjusting
for dependency among repeated measures from the same individuals (see Methods).
Models were first fit to each transcript across 780 transcriptome (“pseudobulk”) libraries
indexed by cell type, individual, and timepoint (Figure 1¢, columns). Variance patterns
for each gene in every cell type are provided in Supplemental Tables 3 and 4. This
analysis revealed that cell type explained more than 30% of the variation across the
transcriptome (range 0-100%; Figure 1d, top); this observation is consistent with the
fact that different cell types have distinct transcriptome profiles3?40, To identify cell type
intrinsic and vaccination effects independent of differences among cell types, we next fit
models within the cell subsets defined by surface proteins (Figure 1d, bottom). For

example, this analysis revealed factors contributing to the extensive differences among
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Figure 1. Multimodal single cell portraits of human vaccination response through within
cluster mixed models comparing vaccination effects over time

a. Human vaccination response study outline; CITE-seq data was generated from n=52 PBMC
matched pre- and post-vaccination PBMC samples from n=26 subjects including 2 response
groups and two vaccine formulations. Numbers in the boxes indicates the number of samples
run with CITE-seq. 10 high and 10 low responders from the 2009 TIV + pandemic H1N1
influenza vaccination without adjuvant were profiled with a subset of 8 and 12 subjects split
evenly between high and low responders profiled on day 1 and 7 respectively. 6 subjects
vaccinated with a pandemic H5N1 avian influenza vaccine formulated with adjuvant AS03 were
profiled at baseline and day 1 post vaccination. b. The hierarchical structure of the data for a
single cluster is shown to motivate necessity of multilevel modeling approach for transcriptome
analysis. Clusters are based on surface protein (select proteins from naive B cell cluster
shown); within each cluster modeled with weighted mixed effects models clusters are
represented by cells from PBMC samples indexed by individual, timepoint and different
response groups (high and low responders) and vaccine group (unadjuvanted vs adjuvanted). c.
For each of 780 samples aggregated by protein based cell type and individual x timepoint, the
median dsb normalized protein expression in each cell type is shown—colors of cell types are
the same as shown in d. d. Top: the fraction of variance explained in a multivariate model
across libraries aggregated by cell type, individual and timepoint; bottom: as in the top panel,
but here with models fit within each protein based cell type, i.e. within colored columns of c. e.
Variance fractions for an example group of 5 genes from the multivariate mixed model fit within
CD14 monocytes with additional visualizations of gene expression (y axis) vs the experimental
factor (x axis) explaining maximal variance for the 5 genes. f. Top: enrichment of pathways in
the MsidDB Hallmark gene sets based on genes ranked by their variance explained by age;
subset of genes with positive association with age in CD8 naive and CD161+ T cell clusters;
bottom: select genes positively associated with age within the two cell types.
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CD14+ classical monocytes; 5 example genes are shown in (Figure 1e). As expected,
sex almost completely explained the variation in the expression of a Y-linked gene
(DDX3Y). A transcription factor genetically linked to rheumatological pathology*
(PPARGC1B) and an apoptosis regulator (TP53RK) were negatively and positively
associated with age, respectively. Overall, our approach identified substantial between-
subject variations for many genes (Figure 1d, see “SubjectID”). For example, inter-
subject differences accounted for nearly 100% of expression variation in TMEM176B,
an inflammasome signaling regulator?, suggesting that inflammasome function could
have substantial individuality in the human population. Temporal variation (e.g.,
differences relative to baseline following vaccination) accounted for more than 50% of
the expression differences in STAT1; a separate differential expression model revealed
that vaccination induced expression of this gene within monocytes a day after
vaccination (see below). Age was also a major contributor, particularly in genes within
the CD8 naive and CD8+ CD161+ T cells relative to other cell types; inflammatory
processes were specifically enriched among genes positively correlated with age
(Figure 1f), consistent with sterile inflammation linked to aging*?® or “inflammaging”.
Thus, our approach provides a global view of the extent by which different biological

factors contribute to gene expression variation.

Single cell deconvolution of the early response to unadjuvanted influenza

vaccination reveals both cell type-specific and -agnostic patterns

Given that most of the known transcriptional response signatures of vaccination were
derived using whole blood/PBMC profiling, we next assessed time-associated changes
from our mixed effects models to identify cell type specific responses elicited by
unadjuvanted vaccination on days 1 and 7 (after modeling between individual variation
and adjusting for age, sex, baseline antibody titers, and other technical factors - see
Methods). Gene set enrichment analysis revealed that day 7 responses comprised
naive B cell and CD4+ memory T cell activation and metabolic processes; however,

some are not significant after FDR correction and these effects were generally weaker
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than early response effects described below (Figure S2a,b). Changes in circulating
plasmablast frequencies were thought to drive whole blood transcriptome signatures
(typically measured on day 7-12 post vaccination) predictive of antibody response to
multiple vaccines®244. Indeed, here plasmablasts had the most elevated signature
score (i.e., average expression of genes we compiled based on previous day-7 bulk
transcriptome signatures predictive of antibody responses) in our day 7 vs. day 0
comparison relative to other cell subsets (Figure S2c). B cell maturation antigen
(BCMA) receptor (TNFRSF17) had the highest fold change in both bulk microarray and
“pseudobulk” CITE-seq data (Figure S2d). Deconvolution of the CITE-seq sequencing
reads to each cell type revealed that nearly all the TNFRSF17 counts (see Methods)
were derived from the day-7 CD38high CD20- plasmablast cells and not from naive or

memory B cell subsets (Figure S2e).

Unadjuvanted influenza vaccination response studies consistently report interferon
stimulated gene expression (ISG) detected early (1-3 days) post vaccination in bulk
blood transcriptomic data. Furthermore, elevation of ISG and antigen presentation
genes on day 1 has been found to correlate with higher antibody response’’, although
the cellular origins of these responses were not fully resolved. Based on microarray
profiling of sorted cell subsets, early reports suggested that this signal originated
primarily from DCs on day 34 or monocyte/granulocytes on day 1'3. Here, unbiased
CITE-seq assessment using curated gene sets, including influenza vaccine response
signatures obtained from the literature that were derived from bulk transcriptomic data
(See Supplementary Table 1), identified three broad patterns of responses 24 hours
following vaccination. The first pattern was characterized by genes downstream of type |
and type Il interferon signaling pathways that are shared across cell types (Figure 2a).
46 shared, “core genes” were collectively induced in at least 5 cell types (Figure S2f),
including the transcription factors IRF1 (notably, induced across 15 cell types), STAT1,
IRF7, and IRF9. Also included were pattern recognition receptor (PRR) genes IFITM1
and IFITM3, inhibitors of vial transcription GBP146 and ISG15%/, and antigen
presentation genes TAP1, and PSMB9 (Figure S2f). The second pattern encompassed
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responses unique to classical and nonclassical monocytes, such as adhesion molecule
ICAM1, JAK2, antigen presentation / HLA genes, and inhibitors of viral replication
OAS3%, and 1ISG20%. The third pattern pointed to more individual cell-type specific
responses (Figure S2g), notably, inflammatory processes induced within classical
monocytes. The “reactome interferon signaling” genes (Figure 2a) captured all three
response patterns, with 10-15 shared ISGs across multiple cell subsets, a specific set of
ISGs shared by classical and non-classical monocytes, and a set of classical monocyte
specific genes (Figure 2b). The expression of these genes in classical monocytes alone
clustered samples by time relative to vaccination, suggesting that they were induced in

a coordinated manner across individuals after vaccination (Figure 2c).

Genes driving the classical monocyte “IL6 production” pathway reflected early initiators
of inflammation MYD88, DDX-58 (RIG-1), TNF and TRAF®6. Inflammatory processes
were further implicated by monocyte specific expression of IL-15, and chemokine
CCL2% (Figure S2g). Classical monocytes were also enriched for hypoxia and
mTORC1 signaling pathways (Figure 2a). While natural influenza infection can activate
and subvert mTOR signaling to support viral replication®, this signal following
inactivated vaccination was more likely to reflect the role of mTOR in inflammation®2.
The genes driving this enrichment signal (“leading-edge genes”) suggested that mTOR
induced glycolytic metabolism might be involved: this process is known to be induced
after VZV vaccination®3 and is linked to non-specific innate memory in monocytes®*.
mTOR enrichment within CD25+ CD4 effector T cells, MAIT-like cells, mDCs and NK
cells may have been intrinsically induced by TIV or by monocyte specific expression of
IL-15 (Figure S2g), a cytokine that can activate mTOR in human NK cells®. These cell-
specific and shared unadjuvanted vaccine response perturbations and driver genes are

provided in Supplementary Table 2.

We next explored how time associated response signatures from our statistical models
could be coupled to “bottom up” single cell computational reconstructions of

transcriptional dynamics induced by vaccination. By using single monocytes from both
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Day 1 post vaccination cell phenotype map. Enrichment based on mixed effects model

0.0 25
mRNA component 1

-5.0

AN
RPN
SR > N
) > «F > 2
O © @\\& <& ¢ <€ U 4E @«o b
S $° N F I $ S
NS ST PRI R P S F
& FPPFFPPFS F¥ LTS
Sobolev PBMC 24h post Flu Vac4{ © o O o O O o ) X
Bucasas PBMC 24h post Flu Vac - O o o o o |nf|uenz§i vac.
CHI PBMC 24h postFluVac14 © O QO 0 O 0 0o 00 O ©0 0 o bulk derived
Franco Blood 24h post FluVac{ © O OO0 0000000 0o
GO responsetotype IIFN{ o o O O 0o O 0 O O 0 O O O ©° ‘ Interferon
reactome interferon signaling o OO o O o Oo OO0 o O o
GO response to IFN gamma o OO0 6 O 0 0O O O O O O o ‘
KEGG ribosome {_© [N ) @ @0 0o 5 0 < | Translation
btm M5.0 antigen presentation regulaton4{ © © O ° ) o o o Antigen
KEGG Antigen processing O O o o o o o 0 O presentation
HALLMARK TNFA signalingviaNFKB{ © © O © o O o o o o o Inflammation
GO IL6 PRODUCTION o mediator
HALLMARK inflammatory response o O O o o o Inflammation
GO response to IL1 ° response
reactome IL4 and IL13 signaling 4 O o o o .
KEGG chemokine signaling - o nymkl_ne
reactome IL17 signaling o o signaling
KEGG JAK STAT signaling4{ © o o o
reactome Fatty acid metabolism - o o
HALLMARK hypoxia 4 o O o o .
KEGG glycolysis gluconeogenesis - o o Metabolism
HALLMARK MTORC1 signaling o o o o o
GO response to corticosteroid 4 o [e] § g g §
GO intrinsic apoptosis pathway - o Stress response g gz
GO extrinsic apoptosis pathway o ; 5 2
282
Normalized -log10(p) © 25 O 50 O 75 -
Enrichment
Score 0 2
davo Category 1
ay O - B . . .
da% vaccine perturbation > differentiation
% o timepoint g timepoint
c _ c - B s] =
5 \/\J\ % " @ é o
mRNA component 1 2 u% o
i ,,| SN E
classical monocyte N [
Pseudotime ivati Q [
activation O . =00
QA2 =
< 5 B 0 3 s
Q Pseudotime Pseudotime
c
[e]
g’ mTOR and hypoxia Interferon response
Q 20 T '
3, kS : o :
< g8 - : 58 :
Z 28 ! 23 4
o s ; 22, :
c inflammatory 5> ; 5 i
o monocyte 55 3 £s S
differentiation g% oo| Sepsage R ==
2 =O h & 00O '
2 . : - :
6 8 ' 10 12 6 8 ' 10
mRNA Component 1 Pseudotime Pseudotime
CD16 mmm GO (biological process) GO (biological process)
CD14 ATF6-mediated unfolded protein response  cellular response to type | interferon
response to ER stress type | interferon signaling pathway
protein KEGG pathways KEGG pathways
N Protein processing in endoplasmic Epstein-Barr virus infection
expression reticulum Influenza A

STzTIoxEcInzE
STIRROZM: T SIMZT
P eRORELES: 526 22XR5 TS T, o
sl St S I T
pites SHCSE
o o =
5 &
D5 TmO:
SIS TROT
Rt
SH~N=2500
8 R

SUON A0 W
SUONGIA0 1

Figure 2

3
23

Category 2
differentiation > vaccine perturbation

timepoint

logFC | e e o

9 timepoint timepoint
H EH EEE = I batch 2 a1

4 I HLA-DQAT

R

i batch

U ol 3955

us 12 | | ) HLA-C 1

8 FITM2 o

%: FI6 2

k. OAS2

c

8 S =

[ RE

5 3

i w

~ G

=5 £

= m}

w Q.

w
6 8 i i 5 k3 2
Pseudotime Pseudotime
mTOR and hypoxia Interferon response

] : :

X i |

g g ! S8. !

s : 58 ;
5 : 58 ;
Ta H TN |

T 20 | o |
58 1 £ :
Q Tos : s3 4
o8 : 88 t
ECu : go |

8 ' 10 12 8 ' 10 12
Pseudotime Pseudotime

GO (biological process) GO (biological process)
canonical glycolysis

glucose catabolic process to pyruvate
KEGG pathways

Glycolysis / Gluconeogenesis

HIF-1 signaling pathway

KEGG pathways
Insulin signaling pathway
Allograft rejection

type | interferon signaling pathway
cellular response to type | interferon


https://doi.org/10.1101/2023.03.20.23287474

medRxiv preprint doi: https://doi.org/10.1101/2023.03.20.23287474; this version posted March 20, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available
for use under a CCO license.

Figure 2. Top down and bottom up deconstruction of transcriptome perturbations
induced day 1 post vaccination with seasonal TIV + 2009 pandemic strain vaccine

a. Day 1 post vaccination transcriptional response within protein-based cell types. Gene set
enrichment (orange = positive enrichment/upregulation, black= negative enrichment/
downregulation) of modules based on genes ranked by pseudobulk weighted linear mixed
effects model baseline vs day 1 effect size. The broad category of each curated module /
pathway is labeled on the right margin; see supplemental table 1. b. Leading edge genes from
the reactome interferon signaling module; cell types shown with enrichment at adjusted p value
< 0.05. c. Log counts per million of aggregated data for each subject within CD14 monocytes
defined by protein of leading edge genes from the "interferon signaling" module CD14 monocyte
day 1 enrichment demonstrate a coordinated post vaccination across individuals (hierarchically
clustered genes and samples). d. DDR-tree algorithm constructed with baseline and day 1 post
vaccination cells. Component 1 and component 2 are latent space embeddings based on
mRNA only for single monocytes as determined by the DDR-tree algorithm. Each point is a
single cell and is labeled by pseudotime as calculated by monocle. The timepoint relative to
vaccination of each cell along mRNA trajectory component 1 is highlighted in the top marginal
histogram; cells are colored by inferred pseudotime. Three branches from left to right are
enriched for resting classical monocytes, activated classical monocytes from post vaccination,
and nonclassical monocytes. Cells progressively downregulate CD14 and upregulate CD16
protein level along the rightmost branch; protein data shown in the bottom margin basis spline fit
to dsb normalized protein level for CD14 and CD16 (protein levels were not used to construct
the trajectory). e. Gene expression of select leading edge genes from enrichments in CD14
monocytes based on branch-dependent differential expression show two broad patterns.
Pattern 1 genes are perturbed by vaccination with highest expression in post vaccination
classical monocytes — dashed line at pseudotime value of 9.5 represents the peak of activation.
Pattern 2 genes continuously increase across pseudotime and have highest expression in
CD16+ CD14- non-classical monocytes. The top row shows example genes from each
category. The bottom row shows the subset of genes falling into each category from the
combined hallmark MTORC1 signaling/Hypoxia pathways and reactome interferon signaling
pathways. Below each category / pathway, enrichment of gene ontology (GO) biological process
and KEGG pathways for the subset of genes from each pathway and category.
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days 0 and 1 samples, we derived a pseudotime, tree-based latent cell-phenotype
space via a “reversed graph embedding” algorithm5657 (Figure. 2d). CD14 and CD16
surface protein expression patterns allowed identification of cell subset enrichment at
the ends of the three tree branches (Figure 2d, bottom margin): pre-vaccination
classical monocytes along the left branch, their day 1 counterparts in the top branch,
and the non-classical monocytes from both before and after vaccination enriched in the
right branch. Integrating the monocyte specific vaccination response phenotypes from
above (Figure 2a) with this latent space visualization identified two categories of genes
based on branch-dependent differential expression (see Methods). Category 1 genes
mainly reflected vaccine perturbation effects within either CD14 monocytes alone (e.g.,
CCL2) or both within CD14 and CD16 monocytes (e.g., TNFSF10), whereas category 2
genes (e.g., IFITM2, FCERG1) captured differences and potential differentiation
between classical and non-classical monocytes; these genes continuously increased
across the spectrum of pseudotime with the highest expression in nonclassical
monocytes (Figure 2e, top row). This analysis also revealed that IFN response genes
in Figure 2c mostly belonged to category 1 (more than 40 genes) except for 5 genes,
PTPN1, IFITM2, IFITM3, HLA-C and EIF4E2 which belonged to category 2. The mTOR
and hypoxia pathway genes followed a similar pattern, though notably the genes falling
in category 2 were more enriched for glycolysis than those in category 1, which were
more enriched for ER stress (Figure 2e, bottom). These results illustrate how
integrating effects associated with day 1 changes following vaccination (“real time”) and
single-cell latent space/pseudotime reconstruction can highlight interwoven cellular
activation and differentiation processes and reveal finer shades of phenotypic variation

in response to vaccination.

The AS03 adjuvant induces unique myeloid innate-sensing and B-cell anti-

apoptosis enhancement signatures compared to unadjuvanted vaccination

We next examined early response (day 1) variations attributable to the vaccine adjuvant

AS03. AS03 is known to elicit both higher level and diversity of anti-influenza antibodies
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compared to unadjuvanted vaccines, even when formulated with a low antigen dose3:.
Previous studies of transcriptional responses to AS03 adjuvanted vaccines revealed
strong early induction of ISGs in innate immune cells333536.58 when comparing against a
low-dose antigen control formulated with PBS. Here we applied a statistical contrast
defining the difference in the day 1 responses (relative to baseline) between the AS03
adjuvanted vaccine versus the unadjuvanted vaccine described above. We then
validated these signatures using an independent data set from profiling FACS-sorted
immune cells (e.g., total B and T cells) from subjects receiving the same vaccine
formulated with AS0O3 versus PBS®8 (Figure 3a, Figure S3a). We first noticed positive
enrichment of several pathways related to surface receptors in monocytes and mDCs
(Figure 3b, red); these were highly concordant with data from similar innate cell
subsets in the validation cohort (Figure 3b, light blue). The leading-edge genes driving
these enrichments include immune receptors recognizing different classes of pathogens
(beyond just the receptors recognizing specific molecular patterns in the vaccine), thus
suggesting expansive upregulation of receptors to increase the capacity of cells to
sense environmental signals. For example, Toll Like Receptors (TLRs) recognizing both
bacterial and viral molecular patterns TLR1, TLR4, TLR5, and TLR8 were among the
leading-edge genes in the CD14 monocyte module “M16”, as was FPR2, which is
known to induce immune cell chemotaxis in response to bacterial metabolites®°.
Examination of genes with strong AS03-specific effects beyond genes in these specific
sensing pathways identified additional PRRs in monocytes, for example c-GAS, a
cytosolic DNA sensor that activates antiviral response via STING®° (Figure 3c). Within
mDCs, day 1 enrichment of the “rhodopsin like receptors” module was driven by genes
related to inflammatory chemotaxis such as FPR1%° and CCR1¢' and P2RY13, an ADP
sensor active during inflammation®?, which were induced to a greater degree by AS03.
As with CD14+ monocytes, mDCs also had evidence of AS03 specific upregulation of
TLR4, the PRR for bacterial lipopolysaccharide®® (Figs. 3c-d).

While our observations thus far are consistent with the expectation that myeloid cells

are key players mediating the effects of AS03, we also detected a lymphocyte signature
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suggestive of apoptosis suppression in naive B cells in subjects vaccinated with AS03;
this signature included AS03-specific downregulation of genes related to apoptosis
(Figure 3e). Further examination of genes with the largest difference in post vaccination
effects in naive B cells revealed additional AS03 specific downregulation of canonical
pro-apoptotic genes, including BTG1 and NOXA (PMAIP1) (Figure 3e,f). NOXA
deficiency is known to increase lymphocyte repertoire diversity465. B cells from NOXA-"
mice outcompete wild type cells for entry into the germinal center following influenza
vaccination and infection, and they persist longer due to inefficient apoptosis® and thus
increase the diversity of anti-influenza antibodies. As we and others have shown, AS03
induces antibody production against influenza clades beyond those in the vaccine3334,
The naive B cells in humans after vaccination with ASO3 may thus phenocopy those in
NOXA- mice after influenza vaccination. Naive B cells from subjects vaccinated with
ASO03 also appeared more activated based on increased expression of genes linked to
CDA40 activation®67 (Figure S3c). The fold-change in the CD40 activation signature
score (day 1/day 0) was also negatively correlated with that of an apoptosis signature
score in naive B cells across individuals (Figure 3g). Both the apoptosis and CD40
activation signatures had consistent directions of change in sorted total B cells in the
validation cohort (Figure S3d), although the apoptosis signature itself was not
significant. Together, these observations suggest that AS03 may function to suppress
apoptosis in naive B lymphocytes early after vaccination to prolong their survival and
subsequent activation. This potential increase in the diversity of the naive B cell pool
(presumably with varying specificity to vaccine antigens) may help increase the diversity
of the subsequent B cell response. We further found that the day 42 antibody avidity to
both the vaccine and non-vaccine influenza strains was tightly correlated across
individuals immunized with the ASO3 adjuvant (Figure 3h), supporting the hypothesis
that AS03 may tune the size of the initial naive B cell pool available to be proportionally
expanded in the germinal center. Together these results highlight two potential
mechanisms by which AS03 may drive more robust antibody responses: 1) activation of
broad innate sensing pathways unrestricted to only those specific to the molecular

patterns in the vaccine; 2) suppression of apoptosis in naive B cells to increase the
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Figure 3. Early transcriptional responses to AS03 adjuvanted vs non-adjuvanted
vaccines

a. Schematic illustrating the approach to define AS03 adjuvant specific perturbation
transcriptome phenotypes within protein based cell types. Left: unadjuvanted individuals were
combined and compared to individuals receiving the AS03 adjuvanted vaccine; protein based
cell types are the same as those used in Fig 2 and Supplementary Fig 2 which were defined
together with the adjuvanted subjects here in combined clustering. Middle: a cohort of
individuals vaccinated with AS03 vs an unadjuvanted formulation from Howard et al. 2017. Cell
types including total T cells, B cells, monocytes and DCs were defined using surface protein and
sorted using FACS followed by RNAseq at baseline and day 1. Right: the model contrasts within
each cell type applied to the CITE-seq discovery and FACS validation cohorts—for each cell type
genes are fit with a mixed effects model and the difference in day 1 fold change between AS03
adjuvanted and unadjuvanted subjects is calculated as shown with boxplots. Genes are then
ranked for enrichment based on the effect size of this contrast reflecting AS03 specificity, e.g.
modules with positive normalized enrichment score have higher day 1 fold change in the AS03
vaccine group compared to the unadjuvanted vaccine. b. Gene set enrichment analysis of
genes ranked based on the difference in transcriptional response 24-hours post vaccination vs
baseline between AS03+H5N1 vs. H1IN1 non adjuvated vaccine (i.e. ranked by the contrast
effect shown as in a) in classical monocytes and mDCs. Leading edge genes driving the
enrichments of the selected pathways highlighted in light blue are shown to the right. Pathways
with adjusted p < 0.01 in the validation cohort are highlighted with an asterisk. ¢. The
distribution of log counts per million from aggregated CITE-seq data for each subject of select
genes driving difference in perturbation response distinct to AS03 adjuvant within CD14
monocytes. Individual gene statistics from the mixed effects model contrast: FPR2 standardized
z: 2.57 p value 0.010, P2RY 13 standardized z: 2.56 p value 0.010, MB21D1 (CGAS)
standardized z: 2.26 p value 0.022, TLR4 standardized z 1.99 p value 0.047 and d. As in ¢ for in
mDCs Individual gene statistics from mixed model contrast: FPR1 standardized z 2.91 p value
0.004 P2RY13 standardized z 2.8 p value 0.0051 CCR1 standardized z 2.33 p value 0.02
TLR4 standardized z 1.85 p value 0.0642. e. For naive B cells, the distribution of genes from the
mixed effects model showing x axis: estimated difference in baseline vs day 1 log fold changes
between AS03 adjuvanted and unadjuvanted vaccination and y axis: standardized z statistics of
the fold change difference contrast. Leading edge genes from M160 are highlighted in blue, with
additional canonical apoptosis genes not in M160 PMAIP1 (NOXA) and BTG1 highlighted, each
with strong AS03-specific downregulation (NOXA standardized z: -2.83, p value: 0.005, BTG1
standardized z: -3.05, p value: 0.002) f. Expression distribution of PMAIP1 (NOXA) log counts
per million of aggregated CITE-seq data across donors within naive B cells pre and post
vaccination. g. Pearson correlation between the day 1 fold change in the CD40 activation score
and the apoptosis signature in naive B cells. h. The correlation between antibody avidity to the
heterologous strain (x-axis — H5N1 Vietham HA) vs the vaccine strain (y-axis — Indonesia H5N1
HA) (Pearson correlation) measured by surface plasmon resonance assay on day 42 post
vaccination in subjects receiving AS03 adjuvant.
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diversity of naive B cells entering germinal center reaction with potential positive
impacts on antibody response breadth. Detailed information on these AS03 specific cell

perturbation phenotypes are provided in Supplementary Table 2.

Linking baseline set point signatures to early vaccination responses reveals

natural adjuvanted baseline immune states in healthy humans

We previously described a baseline immune set point signatures predictive of antibody
responses to vaccination in healthy individuals and plasma cell-associated disease
activities in SLE patients?2. However, we had only focused on a single class of
signatures that was discovered earlier via flow cytometry and bulk transcriptomic
analyses; we also did not assess how baseline immune status overlaps with
transcriptional and cellular responses early after vaccination. Here we used multivariate
models to first perform an unbiased analysis of baseline immune cell phenotypes
associated with antibody responses. To understand how these baseline cell phenotypes
associated with the high responders were related to one another, we used correlation
network analysis. We then further investigated how these baseline phenotypes were
linked to early innate responses and how they were correlated with later cellular
responses (see Methods). Our first analysis revealed that effector lymphocyte and
innate cell phenotypes comprising the baseline predictive signatures could be grouped
into several functional categories based on their correlation across individuals. Together
these defined a multicellular set point network (Figure 4a, Figure S4a). Interestingly,
the phenotypes with the highest “hub”-like properties tended to reflect innate cell
surface receptor pathways in CD14+ monocytes and ISG pathways in CD16+ non-
classical monocytes (Figure S4b). Full details on the cell phenotypes and genes driving
the high responder network phenotype are provided in Supplementary Table 2. Two
example cell phenotypes from the network are highlighted (Figure 4b, ¢). Within CD14
monocytes, the “FC receptors and phagocytosis” genes include those encoding Fc
receptors (e.g. FCGR3A, FCGR1A, FCGR2A), regulators of cytoskeletal reorganization
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active during phagocytosis (e.g. PAK1, ARPC5, CFL1, ARF6), and second messenger
signaling molecules (PIP5K1A, PIK3CD, AKT1, MAPK12, ARPC2). Remarkably, this
monocyte signature was correlated with 27 cell phenotypes elevated in high responders
(adjusted p < 0.05) (Figure 4b), including both antigen presentation genes in naive B
cells and interferon response genes in CD16 monocytes (Figure. 4b, bottom). ISG
expression was elevated in a variety of cell types beyond CD16 monocytes, including
CD161+ MAIT-like CD8+ T cells (Figure 4c, bottom), within which the level of IFITM1,
IFITM2, ISG15 and IFI6 was increased in high responders. These baseline phenotypes
were also correlated to the day 7 plasmablast signature score in blood (Figure. 4d),
which was predictive of antibody responses. Thus, these correlated transcriptional
phenotypes at baseline, both within and across cell types, are associated with the

extent of day 7 plasmablast and subsequent antibody increases following vaccination.

Interestingly, the phenotypes comprising the above baseline set point network and the
innate signatures induced early following unadjuvanted (i.e., without AS03) vaccination
(see Figure 2a) appeared similar. We thus asked whether the cell phenotypes
comprising the high responder set point network were induced by vaccination by
statistically modeling the early (day 1) post—vaccination response of the baseline set
point signature genes in a cell type specific manner. This analysis revealed the same
phenotypes driving this multicellular high responder set point (including CD14 and CD16
monocytes, mDCs, and MAIT cells), were induced by vaccination coherently across all
individuals within the same cell subsets (Figure 4e).This suggests that the high
responder baseline set point signature indeed reflected an immune state mirroring the
early inflammatory responses induced by vaccination. This baseline state may have
primed innate responses to vaccination since it was itself further induced by vaccination.
Further supporting this idea, the baseline signature in monocytes and mDCs was also
induced one day after either dose of BNT162b2 mRNA SARS-Cov2 vaccination®, with
greater elevation after the second dose in classical monocytes (Figure 4f). Given that
the lipid nanoparticle carrier in the mRNA vaccine is thought to act as an adjuvant®®,

these results further suggest that the baseline set point signatures might have reflected
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Figure 4. The multicellular setpoint network of high responders their day 1 post-
vaccination kinetics and coupling to day 7 plasmablast activity

a. ldentification of the multicellular baseline high responder setpoint network. Gene set
enrichment of modules enriched pre-vaccination (baseline) in high vs. low responders within
each cell type based on genes ranked using multivariate models adjusting for age, sex, and
batch. The leading edge genes from these cell type specific high responder pathway
enrichments were correlated across donors within and between cell types. Within cell types, the
Jaccard similarity of each pairwise leading edge gene was subtracted from the spearman
correlation coefficient to correct for correlation due to two signals sharing the same genes
(within a cell type) and connectivity edges were retained in the network (see methods). b-c Two
selected highly coupled cell phenotypes in the high responder setpoint network. The edges
highlighted in red are shown below as correlations of the activity of the leading edge genes from
those modules across donors within the cell type indicated by the edge. Correlation values
reflect Bonferroni adjusted Spearman correlation of phenotypes across the entire network. d.
The correlation of signature expression within cell types with the day 7 fold change in the
predictive signature we previously found was predictive of antibody response associated with
plasmablast activity from microarray data. e. The post vaccination kinetics of the components of
the high responder innate setpoint network. A single cell mixed effects model of module activity
was used to estimate the baseline high vs low responder effect size (red) and day 1 fold change
across subjects adjusting for age, sex, number of cells per donor and a random effect for donor
ID. f. Day 1 vs 0 prime and day 22 vs 21 boost kinetics of baseline high responder states tested
in an external cohort of monocytes and DCs manually gated from CITE-seq data (GSE171964)
collected on individuals vaccinated with mRNA vaccine BNT162b2. The difference in the fold
change between boost (d22 vs d21) and prime (d1 vs d0) p values: mDC 0.59, CD14 monocyte
< 0.001 and day 1 vs baseline p<0.001 calculated by the emmeans package based on a mixed
model with a donor random effect as in e.
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a naturally “adjuvanted” state that can enhance innate immune response potential prior

to stimulation.

Interestingly, we noticed that the aggregated AS03 specific early response phenotypes
(the union of leading edge genes driving the gene set enrichments in each cell type
shown in Figure 3b) were decreased rather than increased after unadjuvanted
vaccination, further demonstrating that they were unique to the response to AS03
(Figure 5a,b). To further test the naturally adjuvanted baseline hypothesis, we next
tested whether these specific DC and monocyte signatures specifically induced by the
ASO03 adjuvant were phenocopied by the baseline of high responders. Indeed, these
ASO03-specific innate response phenotypes were higher at the baseline of high than low
responders to the unadjuvanted vaccine (Figure 5c¢). A previous study of AS03
identified increased frequencies of activated HLA-DR+ monocytes 24h following
vaccination®. Again, here the high responders to unadjuvanted vaccination already had
elevated frequencies of HLA-DR+ monocytes® at baseline (Figure 5d). Furthermore, by
day 1 post vaccination, the frequency of these activated HLA-DR+ monocyte increased
with a larger effect in the high responders (effect size 3.17, p = 0.0005) than the low
responders (1.89, p = 0.14) (Figure 5e). Thus, multiple lines of evidence, including
those from transcriptional and innate immune cell frequency analysis, support the
conclusion that the baseline immune statuses of high responders correspond to a
naturally adjuvanted innate immune state that mirrors not only the early responses
induced by the unadjuvanted vaccine, but also those specifically elicited by the AS03

adjuvant.

The naturally adjuvanted baseline statuses may partly reflect cell-intrinsic differences in
response capacity to innate immune cell stimulation. To evaluate this hypothesis, we
stimulated PBMCs from the same 10 high and 10 low responders (to the unadjuvanted
influenza vaccine) with interferon alpha, PMA plus ionomycin, and LPS, and used early
phosphorylation signaling responses within 15 minutes after stimulation to assess

whether certain cell subsets were intrinsically more responsive in transducing these
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Figure 5 High responders have a naturally adjuvanted immune setpoint with monocytes
more poised to enter blood and respond to PRR stimulation

a. Average expression of a combined gene signature reflecting the AS03 specific induced states
within DCs and CD14 monocytes. b. Gene set enrichment of the combined AS03 specific
signature on the validation cohort in analogous subsets; select adjuvant specific genes in the
leading edge of the validation are shown. ¢. The average expression in high vs low responders
of the mDC and CD14 monocyte AS03 specific day 1 induced validated signature tested in
analogous subsets. d. Log cell frequency of HLA-DR+ classical monocytes as a percentage of
total classical monocytes in high vs low responders at baseline, p value from a Wilcoxon rank
test. e. The kinetics over two baseline timepoints and three post vaccination timepoints for HLA-
DR+ classical monocytes. Mixed effects model with an interaction for time and response group
and a random effect for subject ID—high responder effect size 3.17 p value = 0.0005, low
responder effect size 1.89, p value = 0.14, difference in estimated marginal day 1 vs baseline
fold change not significant, response time vs time only interaction model ANOVA p = 0.063. f.
Schematic outlining CyTOF stimulation experiment. PBMCs isolated from high and low
responders were stimulated with PRR ligands. Stimulation phenotype and markers driving
stimulation were defined with HDStIM. g. UMAP plot of a random subset of 5000 monocytes pre
and post stimulation with stimulated cells in orange and unstimulated cells in blue. h. Variable
importance for individual phospho-protein markers determined by the Boruta algorithm which
are used for automatic determination of responding cells in HDStIM. i. The post stimulation
median marker intensity of phosphor markers within the CD14 monocyte cluster, the post
stimulation aggregated data are shown due to variable baseline phospho-marker detection and
effects were tested using a mixed model adjusting for batch and modeling individual variation
with a random effect for donor ID. The difference in pre vs post stimulation fold changes in high
vs low responders contrast estimate and p values: p38 contrast effect: 0.104, p = 0.058, pCREB
contrast effect: 0.223, p = 0.024, pERK contrast effect: 0.58, p = 0.055.



external stimulatory signals (Figure 5f). We used CyTOF profiling for both cell surface
protein and intracellular phosphorylation-based signaling readouts, and defined the
responding cell populations and associated response markers by using a computational
algorithm we recently developed called HDStIM?© (Figure 5g-h). As expected, CD14
monocytes responded strongly to LPS as evident by increased levels of phosphorylated
p38, CREB, IkBa, and ERK (Figure 5h). Supporting the idea that the naturally
adjuvanted set point reflected cell intrinsic signaling response capacity, the difference in
the post-stimulation fold-change of p38, pERK, and pCREB (after adjusting for batch
and individual variation) was elevated to a greater extent in high compared to low
responders (Figure 5i). This cell intrinsic, TLR-dependent increase in the signaling
capacity of monocytes suggest that the high responders possess a baseline set point
poised to mount a stronger response to stimulatory signals from the vaccine.
Specifically, if this intrinsic signaling response difference extends to pattern-recognition
receptors that might recognize influenza vaccine components, such as TLR3, TLR7, or
TLR9, these may signal through transcription factors including IRF3 or IRF7 to activate
interferon response genes, such as those encoding for ISG15 and IFN-f3; these could
further induce antiviral gene expression programs in both monocytes and DCs via
autocrine / paracrine circuits’!72. Furthermore, enhanced p38 signaling could also play
arole in RIG-I induced interferon response to the vaccine’374 Together these
observations provide additional insights into the mechanistic underpinnings of a
naturally adjuvanted human immune set point found in healthy individuals primed to

respond with more robust innate and adaptive responses following vaccination.

Discussion

In this work we introduce a framework for integrating natural human population variation
with multimodal single cell variation capturing cellular states before and after a
perturbation. While prevailing analysis approaches for single cell data often rely on
qualitative visualization’® and univariate analysis, these approaches are often

insufficient for complex experiment designs with many samples”® and do not provide a
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quantitative means to integrate human and single cell variations to extract biological
insights. Our approach provides robust statistical methods for these complex
experimental designs; its application to the multimodal single cell data in this work
illustrated how new insights can be obtained, e.g., regarding adjuvant specific response
phenotypes involving naive B cells as well as the cellular and transcriptional signatures
of a naturally-adjuvanted baseline immune set point. These findings advance the
concept that modulating baseline set points may improve immune response outcomes
in diverse contexts?!. For example, the baseline immune states of the low responders
could be tuned to phenocopy the naturally adjuvanted innate immune state to enhance
their future vaccination responses; these low responders include patients who require
continued immunosuppression e.g. after transplantation, but need urgent vaccination in

a pandemic setting.

A host of approaches can be used to tune immune set points including vaccination
itself. For example, BCG vaccination has been known to confer nonspecific protection
(i.e., not just against TB) and reduce all-cause mortality in infants’’; it has also been
shown to potentiate nonspecific secondary innate immune cell responses in mice’8.
Recent phase Il human trials evaluating BCG vaccination as a nonspecific
immunomodulator showed promise in demonstrating protection against respiratory
infections in the elderly’®, who tend to be immunosuppressed. It remains to be seen
whether the naturally adjuvanted phenotype we describe here is similar to the innate
immune training conferred by BCG vaccination®8', which can induce short-term innate
immune memory attributed to chromatin remodeling®?. Indeed, the molecular
underpinnings of the naturally adjuvanted baseline transcriptional phenotype remain to
be determined. Preliminarily by using a computational approach® to look for
transcriptional factor motif enrichments, we detected significant enrichment of SPI11/
PU.1, IRF family members, and CEBPB, which were ranked near the top among other
transcription factors (TFs) predicted to regulate the above set point signature genes in
classical monocytes (these were ranked between 2 and 32 among 1632 tested, data not

shown). Intriguingly, these were some of the same TFs whose binding motifs tended to
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have altered chromatin accessibility after LPS “training” in mouse monocytes, leading to
enhanced myelopoiesis and elevated extravasation of monocytes into the blood®4.
Future work could evaluate vaccination regimens which might optimize the longitudinal

persistence of this naturally adjuvanted set point.

Evaluation of larger cohorts using similar multimodal single cell approaches will help
assess the generalizability of our naturally occurring baseline set points. While lacking
the resolution of the multimodal single cell analysis framework introduced here, our
earlier work analyzing bulk blood transcriptome data from multiple influenza vaccine
studies provide independent support, including the observation of substantial inter-
subject variation in baseline immune states'2685 and an “inflammatory signaling”
module predictive of antibody response to influenza vaccination in multiple cohorts of
subjects under the age of 65'6. More recent work using bulk blood transcriptomic data
assessing different types of vaccines revealed that individuals with a high “inflammation”
phenotype tended to have better antibody responses?3. What is less clear is how age
related inflammation is similar to or distinct from such baseline inflammatory states.
Earlier work suggests that tonic levels of interferon in the young are distinct from age
related inflammation, which may be more related to TNF signaling and its downstream
effects®87. Our work provides a basis for future studies to identify the extent by which
these bulk signatures can be resolved further by using the kind of approaches

introduced here.

Our study has several limitations. Profiling blood alone misses cells and processes in
tissues. Assessing tissues such as lymph nodes would give a more comprehensive
picture of vaccination response variations across individuals. Despite logistical
challenges of human tissue profiling, recent pioneering work using fine needle aspirates
or biopsies from lymph nodes®-°0 following influenza vaccination®! have helped link
blood and tissue phenotypes. For example, our single cell deconvolution revealed that
the predictive day-7 bulk expression signatures were derived nearly exclusively from a

small number of plasmablast cells (Figs S2c-e). Circulating plasmablasts have been
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shown to shared B-cell receptor sequences with those obtained from lymph node
biopsies®!, thus the whole blood based plasmablast transcriptional signatures that have
been widely detected post vaccination in previous studies are, as expected and
supported by our results, originated from B cells in lymph nodes with shared clonality.
Determining the origin of the innate immune cells and their states in circulation,
including both DCs and monocytes, on day 1 and their connection to the cells
“encoding” the naturally adjuvanted baseline states remains an open problem. Given
that monocytes have relatively short halflife, the dynamics and status of the myeloid
progenitors need to be considered and may hold a key to linking immune cell status in
the bone marrow and shorter-lived circulating cells in blood. Tracking the clonal origins
of innate immune cells lacking clonal receptors in humans presents a major challenge,
however, recent developments in mitochondrial DNA mutation profiling using single cell
ATAC-seq data could be informative in this context®?. Another open issue is the origin of
the naturally adjuvanted baseline immune state within individuals — what sets the set
point? Our recent work suggest that prior infections could modulate and establish new
baseline set points in humans, e.g., months after clinical recovery from mild COVID-19
both men and women had a temporally stable altered baseline immune state compared
to matching controls, and men tended to mount more robust innate and adaptive
responses to the seasonal influenza vaccine®. As future work we can assess whether
and how the monocyte and DC naturally adjuvanted phenotypes overlap with those
stably modified by prior infections in the same cells. Finally, vaccination itself, such as
BCG discussed above as well as recent evidence from influenza vaccination with
adjuvants®, can also potentially modulate baseline immune states. Together, our
framework paves the way for further studies to integrate human and single cell
variations over space and time in response to perturbations across biological
disciplines; our findings help advance a more quantitative, predictive understanding of

the human immune system.

Methods
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Human vaccination comparison cohorts and antibody response assessment
Healthy volunteers were enrolled on the National Institutes of Health (NIH) protocols 09-
H-0239 (Clinicaltrials.gov: NCT01191853) and 12-H-0103 (www.clinicaltrials.gov:
NCTO01578317). Subjects enrolled in 09-H-0239 received the 2009 seasonal influenza
vaccine (Novartis), and the 2009 H1N1 pandemic (Sanofi-Aventis) vaccines, both
without an adjuvant. Subjects in 12-H-0103 received a vaccine formulated with the
adjuvant AS03 containing avian influenza strain H5SN1 A/Indonesia/05/2005 (GSK). In
both cohorts, virus neutralizing antibody titers assessed using a microneutralization
assay were determined as previously reported. The highest titer that suppressed virus
replication was determined for each strain in the 2009 inactivated influenza vaccine:
A/California/07/2009 [H1N1pdmQ09], H1N1 A/Brisbane/59/07, H3N2 A/Uruguay/716/07,
and B/Brisbane/60/2001 or for AS03 adjuvanted influenza vaccine, H5N1 A/Indonesia,
clade 2.1. High and low antibody responders to the unadjuvanted vaccination were
defined using the adjusted maximum fold change (AdjMFC) which adjusts the fold
change for the baseline antibody titer (methodological details in the supplementary
methods of our previous report®). In the unadjuvanted cohort, n=10 high responders and
n=10 low responders were selected for CITE-seq profiling. All subjects were analyzed
pre—vaccination, with a subset of 8 and 12 donors profiled on days 1 and 7 post-
vaccination also split evenly between high and low responders. In the adjuvant cohort,

n=6 subjects with robust titer responses were selected for CITE-seq.

CITE-seq profiling of peripheral blood mononuclear cells

We optimized a custom CITE-seq antibody panel of 87 markers using titration
experiments and stained cells with a concentration of antibody appeared to saturate
ligand of the cell population with the highest marker expression, or used the
manufacturers recommended concentration when below saturation. We stained the 52
PBMC samples across three experimental batches using a single pool of which were
combined in the optimal concentration and concentrated in an Amicon Ultra 0.5mL

centrifugal filter by spinning at 14,000 x g for 5 minutes. Three aliquots of 12uL from the
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36pL volume of optimized antibody mixture was used on 3 subsequent days to minimize
between experiment technical variability. Frozen PBMC vials from each donor were
washed in pre-warmed RPMI with 10% FBS followed by PBS. 1x10¢ cells from each
sample were stained with a hashing antibody® simultaneously with 1uL FC receptor
blocking reagent for 10 minutes on ice. After washing the hashing reaction 3 times in
cold PBS, cells were counted and pooled in equal ratios into a single tube and mixed.
The sample pool was concentrated to 5x10° cells in 88uL of staining buffer. 12uL of the
concentrated optimized 87 antibody panel was added to stain cells (total reaction
volume 100uL) for 30 mins on ice. After washing cells, we diluted cells to 1400 cells /
uL, recounted 4 aliquots of cells and 30uL of the stained barcoded cell pool containing
cells from all donors was partitioned across 6 lanes of the 10X Genomics Chromium
Controller for each of the 3 batches for 18 total lanes. We proceeded with library prep
for the 10X Genomics Chromium V2 chemistry according to the manufacturer’s
specifications with additional steps to recover ADT and HTO libraries during SPRI bead

purification as outlined in the publicly available CITE-seq protocol (https://cite-seq.com)

version 2018-02-12. We clustered lllumina HiSeq 2500 flow cells with V4 reagents with
pooled RNA, ADT and HTO libraries in a 40:9:1 ratio (20uL RNA, 4.5 uL ADT, 0.5uL
HTO). Libraries were sequenced using the lllumina HiSeq 2500 with v4 reagents. CITE-

seq antibody information is provided in Supplemental Table 5.

CITE-seq data sequence alignment and sample demultiplexing

Bcl2fastq version 2.20 (lllumina) was used to demultiplex sequencing data. Cell Ranger
version 3.0.1 (10x Genomics) was used for alignment (using the Hg19 annotation file
provided by 10x Genomics) and counting UMIs. The fraction of reads mapped to the
genome was above 90% for all lanes and sequencing saturation was typically around
90%. ADT and HTO alignment and UMI counting was done using CITE-seqg-Count
version 1.4.2. We retained the “raw” output file from Cell Ranger containing all possible
10X cell barcodes for each 10X lane, and merged the CITE-seqg-count output. For each
10X lane, barcodes were concatenated with a string denoting the lane of origin and data

for ADT, HTO and mRNA. We then utilized combined sample demultiplexing to assign
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the donor ID and timepoint to each single cell. Both the timepoint and response class
were identifiable based on the hashing antibody. The first round of demultiplexing was
carried out via cell hashing antibodies. The union of singlets defined by the multiseq
deMUTIplex procedure® and Seurat’'s HTODemux function were retained for further
QC. Negative drops identified by HTODemux were retained for further QC and use in
denoising and normalizing protein data. The second round of sample demultiplexing
was carried out via Demuxlet®” to assign the unique donor ID by cross-referencing
unique SNPs detected in mMRNA single cell data against a vcf file with non-imputed
illumina chip based genotype data from the same donors. Demuxlet provided an
additional round of doublet removal via an orthogonal assay (mRNA) to antibody
barcode (HTO) based demultiplexing thus providing further data QC. Only cells that met
the following conditions were retained for further downstream QC, normalization and
analysis: 1) The cell must be defined as a “singlet” by antibody barcode based
demultiplexing and by demuxlet. 2) The identified donor from demuxlet must match one
of the expected donors based on cell hashing. Cells were then further QCd based on
mRNA using calculateQCmetrics function in scater®®. Cells were removed that had with
greater or less than 3.5 median absolute deviations from the median log mRNA library

size.

Surface protein and mRNA count data normalization

We denoised and normalized ADT data using an open source R package we developed
for this work called dsb®” which removes noise derived from ambient unbound
antibodies and cell to cell technical noise. We used function DSBNormalizeProtein with
default parameters. We normalized mRNA on the entire dataset with the normalizeSCE
and multiBatchNorm functions from scran® using library size-based size factors.
Various analysis utilized aggregated mRNA data which was were separately normalized
for analysis at the subset level as a “pseudobulk” library; single cell MRNA data were

also renormalized or rescaled for specific analysis as outlined below.

Surface protein-based clustering and cell type annotation
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Using protein to define cell type facilitated improved interpretation of transcriptome
differences between vaccination groups. Cell types were defined with statistically
independent information, protein, from transcriptome data being modeled within each
cell type (Figure. 1a). We clustered cells directly on a distance matrix using the
parallelDist package calculated from the non-isotype-control proteins all cells using
Seurat’s FindClusters function using parameters: res =1.2, modularity.fxn = 1, algorithm
=3 (SLM'%), We annotated cell types in the resulting clusters post hoc, based
canonical protein expression in immune cell populations. This procedure improved
separation of known immune populations compared to compressing protein data using
principal components as commonly done for higher dimensional mRNA data (data not
shown). Analysis of unadjuvanted vaccination responses was first done blind to the
adjuvanted cohort data. We thus first applied high dimensional clustering of the
unadjuvanted cohort and annotated cell types with additional manual gates to purify
canonical cell populations such as memory and naive T cells. We next merged
unadjuvanted and adjuvanted cohort cells and used annotations to guide combined
clustering annotation, again manually refining cell populations using biaxial gating
scripts in R to purify cell some cell populations. For annotation, the distribution of
marker expression within and between clusters was compared using density histogram
distributions of marker expression across clusters at the single cell level, biaxial marker

distribution and median and mean aggregated protein expression across clusters.

Hierarchical transcriptome variance deconstruction to infer individual (subject
intrinsic), cell type, and vaccine effects

To estimate the contribution of subject intrinsic and contributors to the observed
variation in expression of each gene within specific cell clusters/subsets, we used the
variancePartition package'?'. The set of models used for estimating variance fractions
are distinct from but related to those used for testing differential expression and contrast
vaccination effects within cell subsets (see below). We first aggregated data across
individual, timepoint and cell type. The normalized aggregated expression was used to

first model the mean variance relationship using observation level weights using
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voom'%2, Mixed effects linear models of the expression of each gene across the
aggregated libraries were then fitted using Ime41% with variancePartition. For each gene
“y” the total variance was defined by 780 measurements derived from the 52 PBMC
samples deconvolved into the 15 major protein-based cell clusters/types tested. The

model fit to each gene “g” was:

g = ijﬁ] + szak+ Sg
j k

Where X and Z are the matrices of fixed and varying / random effects respectively, with
random effects modeled with a Gaussian distribution and errors incorporating weights

calculated with voom.
ai ~ N(0,08)
g,~ N(0,diag(w,)a2)
The variancePartition package then incorporates both fixed and random effects in
calculating the fraction of variation attributable to each variable in the model. For

example, the variance in g attributable to “subjectID” (i.e., differences between

individuals) was modeled as a random effect is:

2
O-BSubjectID
2 2 2
2 ag, + Yy 05, + 0

2 —
O-gSubjectID -

The denominator in the fraction above is the total variance of gene g, with both fixed
and random effects contributing to total variance. In the first model above, age, sex,

subjectlID, timepoint, response /vaccine group (unadjuvanted group high vs low
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responders, or AS03 group) cell type, and a cell type and timepoint interaction term as
categorical random effect variables as required by the variancePartition framework. As
expected, a second set of models fit within each cell type/cluster (i.e., without having
cell type as a variable in the model) increased the apparent variance explained by the
other factors given that major cell type specific expression was a key factor driving gene
expression variation. This model included age, sex, subjectID, timepoint, and response /

vaccine group (as above) and an interaction term for time and group.

Within cell type linear mixed effect models of vaccination effects on gene
expression

We used linear mixed models to test coherent effects of vaccination across individuals
while adjusting for subject intrinsic factors including age and gender and estimating
individual subject level variation. Gene expression counts were aggregated within each
surface protein-based cell type by summing counts within each sample. The lowest
frequency cell types without representation across some individuals and time relative to
vaccination (e.g., HSCs, donor-specific cell types, or plasmablasts which were mainly
detected on day 7) were excluded from this specific analysis. Three main analysis were
carried out to model gene expression within each cell type to estimate the following
vaccination effects over time across individuals: model 1) unadjuvanted subjects day 1
vs baseline, model 2) unadjuvanted subjects day 7 vs baseline, model 3) A contrast of
the difference in day 1 fold change between unadjuvanted and adjuvanted subjects in a
combined model — the goal of this model is to assess adjuvant specific response
effects. All models were fit with the 'dream' method®® which incorporates precision
weights®” in a mixed effects linear model fit using using Ime4%. For models 1 and 2
above (unadjuvanted vaccination effects) we fit the following model: gene ~ 0 + time +

age + sex + (1lsubjectID).

The fitted value for expression y of each gene g corresponds to:
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Yg = Bog * ijﬁj t &
J

With variables time, age, and sex represented by covariate matrix X. The g, term
corresponds to the varying intercept for each donor represented by the (1lsubjectID) term.
This model thus estimates the baseline expression variation across subjects S, around
the average y, using a Gaussian distribution with standard deviation 7,2 to shrink
estimated vaccination effects toward the population mean and adjust for non-

independence of repeated measures from the same individuals, as follows:
ﬁOg = Yo + So

So~ N(0,7,2)

Errors ¢

g incorporate observational weights w,

gy Calculated using the function

voomWithDreamWeights in a procedure similar to that described by Law et al'%? but using

the mixed model fit:

gg~ N(O, diag(wg)agz)

In this model, the day 1 or day 7 effect across subjects was the time effect from the model.
The mixed model standardized z statistic was then used to rank genes for gene set
enrichment testing for each cell type. Model 3 was specified as gene ~ 0 + group + age
+ sex + (1lsubjectID). The “group” variable corresponds to a combined factor representing
the vaccine formulation received (adjuvanted vs unadjuvanted) and timepoint (baseline
or day 1 post vaccination) with 4 level: “d0_AS03”, “d1_AS03”, “d0_unadjuvanted”,
“‘d1_unadjuvanted”. A contrast matrix Lg.;:, corresponding to the difference in fold
changes between adjuvanted and unadjuvanted subjects was applied to test the null

hypothesis of 0 difference in fold changes between the groups.
Ligeita = —111 =100 ]

Mulé MP et al. 2023 25



With the first four columns representing the group factor and the two 0s representing age
and sex effects. The contrast fit outputs the difference in fold change after adjusting
estimates for age, sex and subject variation with positive effects representing increased
fold change in the adjuvant group compared to the unadjuvanted group. This contrast
approach was designed to also capture genes with opposite vaccination effects in the two
groups, for example, upregulation in the AS03 group and downregulation in the

nonadjuvanted subjects.

Transcriptome data was uniformly processed for all fitted models above. Aggregated
(summed) single cell UMI counts were normalized within each protein based cell type
using the trimmed means of M values method with only genes retained with a pooled
count per million above 3 using the edgeR filterByExprs function4. Cell type specific
gene filtering removed genes non expressed by each lineage from analysis ensured the
model assumptions used to derive precision weights and account for the mean variance
trend were met. We verified the log count per million vs. fitted residual square root
standard deviation had a monotonically decreasing trend within each cell type. For the
AS03 validation cohort, pre normalized data were downloaded from the study
supplemental data® and a similar model to model 3, contrasting the difference in fold

change was fit with a contrast again using a donor random intercept.

Gene set enrichment testing of vaccination effects within cell types using specific
hypothesis-driven gene sets or unbiased analysis

To test enrichment of pathways based on the estimated gene coefficients corresponding
to the three vaccination effects defined above, we performed gene set enrichment
analysis using the fgsea'%® package multilevel split Monte Carlo method (version
1.16.0). Genes for each coefficient (i.e. models 1-3) and each cell type were ranked by
their effect size, (the dream package empirical Bayes moderated signed z statistic),
corresponding to pre vs post vaccination or the difference in fold change for model 3

(comparing unadjuvanted vs. AS03). For enrichment of the day 1 response, five gene
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sets were derived from bulk transcriptomic data of influenza vaccination (see
Supplementary Table 1), and an additional 25 pathways/gene sets curated from public
databases were tested. For Day 7 responses and the difference in fold change between
adjuvanted and unadjuvanted subjects, an unbiased set of pathways were tested from
the Li et al. Blood Transcriptional Modules (BTM)1%, MSigDB Hallmark, reactome and
kegg databases. Over-representation of GO terms for the monocyte pseudotime gene

categories was assessed using enrichr’07.

Inference of the baseline immune set point network

To define cell type specific transcriptional phenotypes robustly associated with high vs
low responders of the unadjuvanted vaccine at baseline, we used limma' to fit linear
models of gene expression as a function of antibody response class (high vs low, coded
as a two-level factor) adjusting for age sex and batch (e.g. in R symbolic notation, gene
~ AdjMFC + age + sex + batch) as fixed effects on aggregated (summed) data for each

cell type, similar to models above without varying effects for individuals:

Yg = ijﬁj T &
J

Errors incorporated voom weights as above. Gene coefficients for each cell type
corresponding to model adjusted empirical Bayes regularized estimates for high vs low
responder effect at baseline were input into gene set enrichment analysis against the
unbiased set of pathways described above. We then calculated the average module z
score?? using log counts per million from each cell type of the high responder associated
cell phenotypes (using only high responder associated leading edge genes from gene
set enrichment analysis), resulting in a matrix of baseline normalized expression of
pathways across 20 individuals (10 high and low responders) for each cell type. We
next tested for correlation of these signals, both within and between cell types, by

calculating the spearman correlation and adjusted p values with the FDR method. We
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noticed that within the same cell type, pathway enrichments could sometimes be driven
by a shared set of genes among gene sets with different pathway labels but essentially
shared a substantial fraction of genes. We therefore calculated the Jaccard similarity
coefficient of each pairwise enrichment signal (leading edge genes driving the high vs
low responder difference) within each cell type, and use that to adjust the correlation
effect sizes computed above such that the resulting quantity reflected “shared latent
information” (SLI) by subtracting the Jaccard similarity index from the Spearman

correlation coefficient p:

ANB
AUB

SLI = p—

For example, given enriched pathways A and B within a cell type, if at one extreme,
these two pathways are driven by the same exact shared 10 leading edge genes, the
Spearman p of their normalized expression would be equal to 1, yet this apparent
correlation is arbitrary since the two pathways reflect the same genes. However, the
shared latent information would be equal to 0 because the Jaccard similarity of the two
sets is also equal to 1 since the leading edge genes from the enrichments are also the
same. The remaining correlation strength better reflects the phenotypic coupling of
intracellular states across individuals after removing the signal due to leading-edge
gene sharing between gene sets. For inter-cellular correlations between two distinct cell
types, we do not subtract the Jaccard similarity of gene content from p as we consider
the same genes to be distinct signals when measured in different cell types. We further
constructed a sub network from a subset of cell types forming the high responder
baseline set point network. To identify the most highly connected processes,
correlations with adjusted p values < 0.05 were retained and a weighted undirected
network was constructed using igraph, retaining only the strongest links above the
median weight with weights reflecting Spearman’s Rho for intercellular connections and
the SLI metric described above for intracellular connections. Each node (high responder

cell phenotype) was also correlated across individuals with the day 7 fold change of a
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gene expression signature® reflective of plasmablast activity derived from bulk
microarray data from the same subjects and select high degree nodes were highlighted

in the text.

Single-cell mixed-effect models of gene expression

In addition to the pseudo-bulk models fitted above, we also used single cell mixed effects
models to assess consistency and to specifically test the early response kinetics of the
baseline states enriched above, including select AS03 associated response signatures

within innate immune cell subsets.

Early kinetics of baseline set point phenotypes. Each cell type specific transcriptional
phenotype enriched in high vs low responders in the aggregated/pseudo-bulk linear
model described above were scored in single cells from subjects on day 0 and day 1 as
the average expression of the specific leading edge genes enriched in high vs low
responders. The per single cell module scores were fitted with a linear mixed model for
each cell type to 1) re-test the baseline association (high vs. low responders) at the single
cell level, and 2) to test their post vaccination effect size within the same cell subset.
These models estimated the variance at the single-cell level instead of at the individual
donor cell-aggregated level. Otherwise these represent conceptually similar models as
the ones described above fitted using Ime4 with a donor random intercept, but without
voom weights. Two models were tested with highly concordant resulting effect sizes: 1)
a parsimonious model of time relative to vaccination with a subject random effect, and 2)
a more complex model including the time relative to vaccination, the number of cells per
individual sample for a given cell type, age, sex, and a subject random effect. Normalized
expression of each module was standardized within each surface protein-based cell
cluster/subset by subtracting the mean and dividing by the standard deviation of the
module score across single cells within the cell type. After fitting models, the baseline
high vs low responder effect and the day 1 vs baseline effect sizes and standard errors
across subsets was calculated using the emmeans'®® package with a custom contrast

(e.g., see Figure. 4e). All models were checked for convergence criteria.
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ASO03 specific regulation. Naive B cells were tested for expression of modules
hypothesized to be involved in B cell survival (see below; partly based on the literature or
derived from existing independent data sets). These modules were tested here for their
effects at the single cell level; they were then independently assessed in sorted total B
cells in the validation cohort®®. Two modules were defined to reflect survival of human
naive B cells: 1) A CD40 activation signature®?> which was derived from studies of in vitro
CDA40 activated human B cells; 2) An apoptosis signature derived by combining signals
from the CITE-seq naive B cell day 1 gene set enrichment comparing AS03 adjuvanted
to unadjuvanted individuals. The signals combined the specific naive B cell leading edge
genes from the negatively enriched (reflecting ASO3 specific downregulation) apoptosis
modules (with unadjusted p values < 0.1-we opted for a loser cutoff to increase
sensitivity): reactome activation of BH3 only proteins, KEGG p35 signaling pathway, and
LI.M160 leukocyte differentiation. The cell type specific leading edge genes were scored
as above and fitted with age and sex covariates, a combined factor for vaccine group,
timepoint, and random effect for subject ID, with the difference in fold changes calculated

using the emmeans package.

Software for implementing analysis workflow

The analysis framework described above is available in an R software package
“scglmmr” (https://github.com/MattPM/scglmmr) for analysis of single cell perturbation
experiment data with repeated measures and multi-individual nested group designs.
The software provides workflows for fitting single cell mixed models, deriving cell
signatures, visualization, and also includes wrapper functions to implement the
weighted gene level mixed effects differential expression models described Hoffman et

al. 2021 (dream) and enrichment using fgsea.

Monocyte differentiation and perturbation pseudotime analysis
To construct a combined monocyte differentiation and perturbation single cell map we

used the DDR tree algorithm with monocle 2%7. The trajectory was constructed using the
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genes that changed as a function of time (q value <0.15 using the differentialGeneTest
in monocle, with ribosomal genes and genes expressed in less than 15 cells removed).
The DDRitree algorithm> was implemented using the monocle function
reduceDimension with arguments residualModelFormulaStr = subjectID and
max_components = 2 and pseudotime calculated with function orderCells.
Independently of the genes used to construct the trajectory, we then tested the genes
from the mixed effects model of vaccination effects from monocytes (specific leading
edge genes from 'reactome interferon signaling', 'GO IL6 PRODUCTION', 'reactome IL4
and IL13 signaling', 'HALLMARK inflammatory response', 'KEGG JAK STAT signaling')
for branch dependent differential expression using the BEAM function from monocle.
Select genes were highlighted and categorized based on their expression dynamics

along real time and pseudotime.

Cell frequency analysis

Cell frequencies of activated monocytes gated as HLA-DR+ cells were computed as a
fraction of total CD45+CD14+ classical monocytes using flow cytometry data®. These
cell frequencies were compared across subjects (high vs. low responders) at baseline
using a two sided Wilcoxon rank test. The kinetic change of the cell frequency following
vaccination was modeled using a mixed effects model with a single random effect for
subject ID similar to the models described above. The kinetics over time were modeled
using an interaction for time and antibody response group (high vs. low AdjMFC). This
interaction model was compared to a timepoint only without the group interaction effect
with analysis of variance. The baseline versus day 1 effects for each antibody response

group was calculated using the emmeans package.

Analysis of phospho-signaling responses after stimulation of high and low
responder baseline PBMCs using CyTOF

Samples were thawed in a 37°C water bath and washed twice with warmed complete
media with Universal Nuclease (Pierce) added. Cells were then washed a final time and

resuspended in complete media. 1 million cells per condition were added to individual
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wells and rested in a tissue culture incubator for 2 hours (37°C, 5% COz2). Samples were
then stimulated with either PMA/lonomycin (final concentration [10 ng/mL])/([1ug/mL]);
Sigma-Aldrich), LPS (final concentration [1ug/mL]; Sigma-Aldrich), IFN-a (final
concentration [10,000U/ml], PBL Assay Science), or left unstimulated. After 15 minutes
at 37°C, samples were fixed with paraformaldehyde (2.2% PFA final concentration) for
10 minutes at 25°C. Samples were washed twice with Maxpar Barcode Perm Buffer (1X
concentration; Standard Biotools). Samples were then barcoded with Cell-ID 20-Plex Pd
Barcoding Kit (Standard Biotools) and incubated at 25°C for 30 minutes. Samples were
then washed twice with Maxpar Cell Staining Buffer (Standard Biotools) and combined
into corresponding barcoded batches of 5 samples (4 conditions per sample) and
washed a final time with Maxpar Cell Staining Buffer. Samples were then stained with a
titrated antibody-panel for extracellular markers (Supplementary Table) for 30 minutes
at 25°C. After staining, the cells were washed twice with Maxpar Cell Staining Buffer
and permeabilized in methanol (Fisher Scientific) overnight at -80°C. The next day,
samples were washed twice with Maxpar Cell Staining Buffer, and stained with a titrated
panel of antibodies for intracellular signaling markers (Supplementary Table) at 25°C for
30 minutes. Samples were then washed twice with Maxpar Cell Staining Buffer, and
labeled with Cell-ID Intercalator Ir ([1:2000] in Maxpar Fix-Perm Buffer; Standard
Biotools) overnight at 4°C. The following day, samples were washed twice with Maxpar
Cell Staining Buffer and resuspended in 500uL freezing media (90% FBS (Atlanta
Biologicals) + 10% DMSO (Sigma-Aldrich)), and stored at -80°C until acquisition. The
day of acquisition, samples were thawed and washed twice with Maxpar Cell Staining
Buffer and then once with Cell Acquisition Solution (Standard Biotools) before being
resuspended in Cell Acquisition Solution supplemented with 10% EQ Four Element
Calibration Beads at a concentration of 6 x 10° cells/mL (to approximate 300
events/sec). Samples were acquired on the Helios system (Standard Biotools) using a
WB Injector (Standard Biotools). After acquisition, samples were normalized and
debarcoded using the CyTOF Software’s debarcoder and normalization tools (Standard
Biotools). The panel and protocol were adapted for use at CHI from the Stanford

HIMC'19, The phosphor markers driving the stimulated phenotype and responding cells
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were automatically defined using the HDStIM R package’®. The median phosphorylation
protein intensity for each individual sample and cell type and stimulation was calculated
and modeled with a mixed effects model adjusting or batch and using a random effect
for donor ID. The difference in fold change between unstimulated and stimulated cells
was calculated using a custom contrast with the emmeans package. CyTOF antibody

information is provided in Supplemental Table 6.

Code availability
Code to replicate all analysis in this paper and create all figures is available in the

following repository: https://github.com/NIAID/fsc.

Data availability

All data can be downloaded from the following repository: 10.5281/zenodo.7365959
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Figure S1. (related to Figure 1) quality control of CITE-seq transcriptome and surface
protein phenotypes and clustering

a. Manually gated cell populations based on dsb normalized CITE-seq surface protein
expression, orange box: plasmablast (CD19+CD71+IgD-CD20-CD38++) and blue box:
activated B cell (CD19+CD71+IgD-CD20+CD38+/-). b. Transcriptome analysis of gene module
scores specific to each gated populations (as in Ellebedy et. al. 2016) p-values shown reflect an
unpaired two-sided Wilcoxon test between populations. €. Density distribution of dsb normalized
protein expression binned by protein based cluster for select populations. d. Histograms of dsb
normalized protein distribution within each protein-based cluster — rows and columns are
hierarchically clustered based on the average expression per cluster. A select subset of proteins
are shown and are colored by the main cell populations that they are most informative for
discriminating. Red = T cell proteins, light blue = B cell proteins, green = monocyte proteins,
dark blue = NK cell proteins, orange = pDC proteins, pink = pDC/HSC markers, black = cell
state markers. e. The percentage of total cells for each PBMC sample in each major lineage
black = B cell, orange = CD4 T cells, blue = CD8 T cells, red = myeloid (all monocytes, HSC,
mDC and pDC), green = NK cells, light grey = unconventional T cells (MAIT-like and CD103 + T
cells). f. The log number of cells per sample by protein based cluster shows that rare individual
specific proteins are detected at both timepoints within a given individual.
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Figure S2 (related to Figure 2). Deconvolution of day 7 antibody titer associated
transcriptome signatures and additional shared and cell type specific day 1 cell
perturbation phenotypes.

a. Perturbation phenotypes of naive B cells day 7 post vaccination. Gene set enrichment as in
Fig. 2 based on model adjusted post vaccination effect size, adjusted -log10 p values shown as
circle size; pathways with unadjusted p values < 0.01 and NES > 0.1 were included. b. As in a,
for memory CD4 T cells. c. Protein based cell type specificity of day-7 bulk transcriptomic based
gene expression signatures predictive of antibody response from previous systems biology
studies of influenza vaccination (Supplementary table 1). Single cell level module score
distribution shown for day 7 cells for each cell type. d. Correlation between genes in M156
detected in CITE-seq (sample level pseudobulk) vs microarray data (Pearson correlation). e.
Composition of raw counts of the TNFRSF17 gene, a driver of M156 on day 7 across protein-
based cell types shows the CD38++ B cells (plasmablasts) are the primary source of the signal.
f. Left: Heatmap of estimated log fold change 24h post vaccination vs baseline of a core
interferon signature shared across subsets — genes selected were increased in at least 5
subsets with logFC > 0.1 and p value < 0.05. Right: the average expression of the core shared
interferon signature genes across subsets over time. g. Log fold changes as in f, here
highlighting genes more specifically induced within a single cell type post vaccination.
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Figure S3 (related to Figure 3) external cohort validation of AS03 perturbation
phenotypes and additional analysis of AS03 B cell phenotypes

a. Schematic illustrating the contrast applied to each gene comparing unadjuvanted subjects to
subjects receiving the AS03 adjuvanted vaccine. The gene set enrichment effect sizes
(normalized enrichment score—NES) reflect the genes ranked by the difference in the day 1 fold
changes. b. Gene set enrichment of the contrast effect shown in a from the mixed effect model
for Naive B cells. ¢. Naive B cells single cell mixed effects model of a combined apoptosis
signature comparing the day 1 fold change AS03 vs unadjuvanted subjects as a function of time
post vaccination. The effect size for the time effect for each cohort was opposite, (bottom
contrast on bottom margin of plot). The right margin shows the estimated marginal means of the
mixed model over levels of the combined vaccine formulation cohort + timepoint variable as
calculated by the emmeans package. d. External cohort validation of Naive B cell CITE-seq
derived perturbation phenotypes tested in validation cohort (see Fig 3a) of total sorted B cells
(Naive B cell AS03-specific leading edge genes from CITE-seq analysis as shown in
Supplementary Fig 3b tested in all CD19+ cells in the validation cohort). The additional survival
signals highlighted in light blue hypothesized to be enriched in naive B cells after AS03
adjuvanted vaccination based on the M160 genes and top AS03 specific downregulated genes
(Fig 3e) and their expression in the CITE-seq cohort include the combined “apoptosis signature”
and CD40 activation (CD40 ACT) signature (see methods).
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Figure S4. (related to Figure 4) immune setpoint network of high responders

a. Correlated multicellular baseline high responder cell phenotypes as a network.

The matrix shows the Spearman correlation of expression of each gene module leading edge
genes defined in high vs low responders across donors. Correlations within a given cell type are
adjusted for gene content (see methods) as exhibited by the diagonal of the matrix (correlations
between the same signals) showing a correlation of 0 instead of 1. b. The hub score of nodes in
the high responder setpoint network after removing edges with correlation adjusted p < 0.05 and
those with connection strength (Spearman’s Rho for intercellular connections or shared latent
information for intracellular connections) below the median in the network. Nodes highlighted
with text include all CD14 and CD16 monocyte nodes including those show in in Figs 4b-c.
Points are colored by cell type; the annotation of modules may be the same for a given row (e.g.
reactome interferon in CD14 and CD16 monocytes) but the same module is captured by
different genes driving the high responder effect in each cell type (e.g. they reflect cell type
specific cell phenotypes).



