1 Global longitudinal strain and plasma biomarkers for prognosis in heart failure 2 complicated by diabetes.

- 3
- Nithin R. Iyer MD^{1,2}, Siew-Pang Chan PhD³, Oi Wah Liew⁴, Jenny P.C. Chong⁴, Jennifer A. Bryant PhD¹, Thu-Thao Le PhD^{1,5}, Chanchal Chandramouli PhD^{6,7}, Patrick J. Cozzone PhD⁸, Frank Eisenhaber MD PhD^{9,10,11}, Roger Foo MD^{4,10}, A. Mark Richards MD PhD^{4,12}, Carolyn S.P. Lam MD PhD^{1,6,7,13}, Martin Ugander§ MD PhD^{2,14}, Calvin W-L. Chin§ MD PhD^{5,6} and 4
- 5
- 6
- 7
- 8 on behalf of the ATTRaCT investigators
- 9
- ¹National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore 19
- ²Kolling Institute, Royal North Shore Hospital, and University of Sydney, Australia 12 ³Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- 13 ⁴Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University
- 14 of Singapore, Singapore
- ⁵Cardiovascular Sciences ACP, Duke NUS Medical School, Singapore 15
- ⁶National Heart Centre Singapore, Singapore 16
- ⁷Duke-National University Singapore, Singapore 17
- ⁸Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 18
- Singapore 19
- ⁹Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 20
- 21 ¹⁰Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
- ¹¹School of Biological Sciences, Nanyang Technological University, Singapore 22
- ¹²Christchurch Heart Institute, University of Otago, Christchurch, New Zealand 23
- ¹³University Medical Centre Groningen, Groningen, The Netherlands ₽₹
- ¹⁴Department of Clinical Physiology, Karolinska University Hospital, and Karolinska 26 Institutet, Stockholm, Sweden
- 27 § denotes equal contribution
- 28
- 29

30 **Address for Correspondence**

- 31
- 32 Calvin W-L. Chin, MD PhD
- Department of Cardiology, National Heart Centre Singapore, 5 Hospital Drive Singapore 33
- 34 169609
- E: calvin.chin.w.l@singhealth.com.sg 35
- 36 T: +65 67048962
- 37
- 38
- 39
- 40
- 41

42 Abstract

Background: Heart failure (HF) and diabetes are associated with increased incidence and
worse prognosis of each other. The prognostic value of global longitudinal strain (GLS)
measured by cardiovascular magnetic resonance (CMR) has not been established in HF
patients with diabetes.

47 Methods: Consecutive patients (n=315) with HF underwent CMR at 3T, including GLS, late 48 gadolinium enhancement (LGE), native T1, and extracellular volume fraction (ECV) 49 mapping. Plasma biomarker concentrations were measured including: N-terminal pro B-type 50 natriuretic peptide(NT-proBNP), high-sensitivity troponin T(hs-TnT), growth differentiation 51 factor 15(GDF-15), soluble ST2(sST2) and galectin 3(Gal-3). The primary outcome was a 52 composite of all-cause mortality or HF hospitalisation.

Results: Compared to those without diabetes (n=156), the diabetes group (n=159) had a higher LGE prevalence (76 vs 60%, p<0.05), higher T1 (1285±42 vs 1269±42ms, p<0.001) and higher ECV (30.5±3.5 vs 28.8±4.1%, p<0.001). The diabetes group had higher NT-pro-BNP, hs-TnT, GDF-15, sST2 and Gal-3. Diabetes conferred worse prognosis (hazard ratio (HR) 2.33 [95% confidence interval (CI) 1.43-3.79], p<0.001). In multivariable Cox regression analysis including clinical markers and plasma biomarkers, sST2 alone remained

independently associated with the primary outcome (HR per 1 ng/mL 1.04 [95% CI 1.02-1.07], p=0.001). In multivariable Cox regression models in the diabetes group, both GLS and sST2 remained prognostic (GLS: HR 1.12 [95% CI 1.03-1.21], p=0.01; sST2: HR per 1

62 ng/mL 1.03 [95% CI 1.00-1.06], p=0.02).

63 Conclusions: Compared to HF patients without diabetes, those with diabetes have worse 64 plasma and CMR markers of fibrosis and a more adverse prognosis. GLS is a powerful and 65 independent prognostic marker in HF patients with diabetes.

66

67 Keywords

68 magnetic resonance imaging, heart failure, global longitudinal strain, biomarkers, prognosis

- 69
- 70

71

72

90 Background

91	The Asian continent has the highest prevalence of heart failure (HF) cases globally [1].
92	Diabetes is especially common in South East Asian HF populations, where a unique 'lean-
93	diabetic' phenotype with worse outcomes has been identified [2]. The Asian Sudden Cardiac
94	Death in Heart Failure (ASIAN-HF) registry (across 11 Asian countries) reported a 42.5%
95	prevalence of diabetes among HF patients, specifically in higher-income countries such as
96	Singapore, Hong Kong, and Thailand [3].
97	
98	The diabetic heart is characterised by a number of structural abnormalities including diffuse
99	interstitial myocardial fibrosis, myocyte hypertrophy, and impaired coronary microvascular
100	perfusion, which have all been implicated in the development of both diastolic and systolic
101	dysfunction [4, 5]. Patients with HF and diabetes have consistently worse clinical outcomes,
102	including higher risk of hospitalisation for HF and death, compared to those without diabetes
103	[6-8]. These findings appear to hold regardless of whether the HF is ischaemic or non-
104	ischaemic in etiology, and regardless of left ventricular (LV) ejection fraction [7, 8].
105	
106	Cardiac magnetic resonance (CMR) imaging has become the non-invasive reference standard
107	for evaluating HF due to its ability to accurately assess cardiac morphology, function, and
108	myocardial tissue characteristics. In particular, late gadolinium enhancement (LGE) permits
109	visualisation of focal replacement myocardial fibrosis, while T1 mapping pre- and post-
110	gadolinium contrast enables non-invasive measurement of the myocardial extracellular
111	volume fraction (ECV), a quantitative marker of myocardial diffuse interstitial fibrosis.
112	Additionally, global longitudinal strain (GLS), defined as the change in the LV myocardial
113	length between diastole and systole divided by the original end-diastolic length, provides a

measure of LV systolic function by CMR that is effectively the same as GLS measured byechocardiography [9, 10].

116

an incremental prognostic association in this group, beyond plasma HF biomarkers, LV

135 ejection fraction and CMR markers of myocardial fibrosis.

136

137 Methods

138 Study Population

139	Patients with HF were recruited prospectively across six tertiary cardiac centres in Singapore
140	(Asian neTwork for Translational Research and Cardiovascular Trials [ATTRaCT],
141	ClinicalTrials.gov NCT02791009). Patients were included if they presented to hospital with a
142	primary diagnosis of HF, or if they attended a hospital clinic within 6 months of an episode of
143	decompensated HF (requiring hospitalization or treatment in an out-patient setting). In all
144	cases, a trained cardiologist adjudicated the clinical diagnosis of HF. The exclusion criteria
145	were: HF primarily due to severe valve disease, HF due to acute coronary syndrome resulting
146	in a transient episode of acute pulmonary oedema, severe renal failure (estimated glomerular
147	filtration rate < 15 mL/min per 1.73m ²), specific causes of HF (constrictive pericarditis,
148	complex adult congenital heart disease, hypertrophic cardiomyopathy, eosinophilic
149	myocarditis, cardiac amyloidosis, and acute chemotherapy-induced cardiomyopathy), isolated
150	right HF, and life threatening non-cardiac co-morbidity with life expectancy of <1 year. All
151	patients underwent clinical assessment at baseline. Diabetes status was identified by baseline
152	questionnaire at recruitment.
153	
154	Biomarkers
155	Blood was collected in dipotassium (K ₂)-EDTA vacutainer tubes and transported on ice for

processing within one hour. Plasma was separated by centrifugation at 3500g for 10 minutes
at 4°C and stored at -80°C until analysis.

158

159 Plasma N-terminal pro B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin

160 T (hs-TnT) were measured by electrochemiluminescence immunoassay using the Elecsys

161 proBNP G2 V2.1 and Elecsys Troponin T hs V2.1 assays on the Cobas e411 immuno-

162 analyser (Roche Diagnostic GmbH, Mannheim, Germany). The measurement ranges of NT-

proBNP and hs-TnT were 10-35000 pg/ml and 3-10000 pg/ml, respectively. Laboratory

164	average concentration and inter-assay coefficient of variation (%CV) of low (NT-proBNP:
165	147 pg/ml, 4.48%; hs-TnT: 26.8 pg/ml, 5.05%) and high (NT-proBNP: 4679 pg/ml, 4.97%;
166	hs-TnT: 2120 pg/ml, 3.69%) quality control samples of the NT-proBNP and hs-TnT assays
167	were established over 84 and 73 independent assays, respectively.
168	
169	Human GDF-15 (R&D Systems, Minneapolis, MN, USA; Cat#DGD150), sST2 (Presage ST2
170	assay, Critical Diagnostics, California, USA) and Gal-3 (R&D Systems, Minneapolis, MN,
171	USA; Cat#DGAL30) were measured by ELISA on the Enspire Multimode Microplate Reader
172	(Perkin Elmer, Waltham, MA, USA). Results were interpolated from standard curves fitted
173	on 5-parameter logistic model (5-PL) using the instrument's Enspire®software. Laboratory
174	inter-assay %CV of quality control samples were 7.41% at 126 pg/ml, 7.71 % at 360 pg/ml
175	and 8.43% at 778 pg/ml for GDF-15 (n=98), 18.0% at 30.0 ng/ml and 15.2% at 63.6 ng/ml
176	for sST2 (n=98) and 10.4% at 0.83 ng/ml, 10.6% at 2.41 ng/ml and 12.3% at 4.82 ng/ml for
177	Galectin-3 (n=56).

178

179 *Clinical Outcomes*

180 The primary outcome was a composite of time to either first hospitalization for HF

181 (regardless of prior history of hospitalization for HF) or all-cause mortality. Follow-up was

182 conducted through a clinic visit at 6 months after baseline assessment and structured phone

- 183 interviews with the participants at the 1- and 2-year timepoints. Data in patients who were
- lost to follow-up were censored at the date when the patient was last known to be alive and
- 185 had not experienced an event.

186

187 *Cardiovascular magnetic resonance image acquisition*

188 All patients in the ATTRaCT cohort were invited and assessed for suitability for CMR. Those

189	who agreed and were eligible underwent a standardized CMR protocol with a 3 Tesla MRI
190	scanner (Ingenia, Philips Healthcare, Best, The Netherlands). Balanced steady-state free
191	precision cines were acquired in the standard long-axis views and a short-axis stack from
192	base to apex, as described previously [22]. LGE images were acquired at 10 min after 0.1
193	mmol/kg of gadobutrol (Gadovist®, Bayer Pharma AG, Germany) with a phase sensitive
194	inversion-recovery gradient-echo imaging sequence. Typical parameters were: repetition time
195	$(TR) = 6.1$ ms; echo time $(TE) = 3$ ms; time to inversion $(TI) = 320-340$ ms, flip angle 25° ,
196	voxel size = $1.5x1.7x8$ mm, SENSE factor = 2.4, slice thickness 8mm with 2mm gap to
197	match short-axis cine slice positions. The inversion time for optimal myocardial nulling was
198	selected from an inversion time scout sequence. T1 maps were acquired at the basal and mid-
199	ventricular short-axis levels, pre- and 15-min post-contrast with modified Look-Locker
200	Inversion-recovery (MOLLI) 5s(3s)3s and 4s(1s)3s(1s)2s acquisition schemes, respectively
201	[23].

202

203 CMR analysis

204 Image analysis was performed using CVI42 software (Circle Cardiovascular Imaging, 205 Calgary, Canada) by trained imaging fellows at the National Heart Research Institute of 206 Singapore CMR Core Laboratory, who were blinded to the clinical information of the 207 patients. Ventricular volumes, mass and ejection fraction were measured from the short-axis 208 cine stack, using manual contouring of the left ventricle in end-diastole and end-systole, 209 excluding papillary muscles, as detailed previously [22]. LV volumes and mass data were 210 indexed to body surface area. The presence of LGE was assessed qualitatively by two readers 211 according to the recommendations by the Society of CMR [24]. Average native and post-212 contrast myocardial T1 values were measured by placing a region of interest (ROI) within the 213 middle third of the short-axis myocardial wall at the basal- and mid-ventricular levels, while

214	avoiding regions of focal LGE. The myocardium-blood pool interface was carefully avoided
215	in order to prevent partial volume effects. Pre- and post-contrast blood T1 values were
216	measured in a ROI drawn within the blood pool. ECV was calculated from the pre- and post-
217	contrast average blood and myocardial T1 values, as described previously [25, 26].
218	Myocardial strain was analysed in the cine images using the Tissue Tracking Plugin [27].
219	
220	Statistics
221	Normality was assessed for continuous variables using the Shapiro-Wilk test. Normally
222	distributed data are presented as mean \pm standard deviation. Non-normally distributed data
223	are presented as median [interquartile range]. Comparisons were performed for continuous
224	variables using the parametric Student <i>t</i> -test or the non-parametric Mann-Whitney U test.
225	Categorical variables are presented as number (percentage) and compared using the χ^2 test.
226	
227	Univariable Cox regression analysis was performed to identify prognostic variables in the
228	entire cohort and also in the diabetes subgroup. Clinically relevant variables (age, sex, body
229	mass index, diabetes, smoking, coronary artery disease, hypertension, New York Heart
230	Association functional class and systolic blood pressure), circulating biomarkers (NT-
231	proBNP, hs-TnT, GDF-15, sST2 and Gal-3) and CMR markers of function, remodelling and
232	fibrosis (LV end diastolic volume index, mass index, ejection fraction, GLS, LGE, Native T1,
233	ECV) were tested in the Cox models. Covariates with a p-value <0.05 in univariable analyses
234	were entered into the multivariable Cox model to identify independently prognostic variables,
235	using forward stepwise selection. Event-free survival curves were examined using the
236	Kaplan-Meier method and compared with the log-rank test. Statistical analyses were
237	performed using SPSS Version 28 (Statistical Package for the Social Sciences, International
238	Business Machines, Inc., Armonk, New York, USA) and GraphPad Prism 9.4.1 (GraphPad

239	Software, Inc., San Diego, California, USA). A two-sided p-value <0.05 was considered as
240	statistically significant.

241

242	Results
243	Figure 1 shows a flow chart describing patient inclusion. Of the 623 patients enrolled in the
244	ATTRaCT study, 523 patients underwent a baseline CMR study. We excluded 168 studies
245	performed without contrast. An additional 40 patients were excluded due to incomplete
246	baseline clinical or CMR data sets, alternative diagnosis on the basis of CMR, or loss to
247	follow-up. In total, 315 subjects (diabetes, $n=159$; without diabetes, $n=156$) were included in
248	the study cohort.
249	
250	The baseline clinical characteristics are shown in Table 1. Compared to patients without
251	diabetes, patients with diabetes were older (60±10 vs 56±12 years, p<0.001), more likely to
252	have a history of hypertension (76 vs 52%, p<0.001), coronary artery disease (72 vs 52%,
253	p<0.001) and had worse NYHA Functional Class (median Class II vs I, p=0.04). Patients
254	with diabetes had higher creatinine (96 [81-118] vs 91 [77-105] μ mol/L, p=0.02) and
255	elevated cardiac biomarkers: NT-proBNP (1091 [326-2272] vs 579 [232-1136] pg/mL,
256	p<0.001), hs-TnT (27 [14-41] versus 15 [9-22] ng/L, p<0.001), GDF-15 (2412 [1603-3331]
257	versus 1039 [753-1470] pg/mL, p<0.001), sST2 (28 [23-38] versus 26 [21-32] ng/mL,
258	p=0.038) and Gal-3 (10.0 [8.0-12.0] versus 8.0 [7.0-10.0] ng/mL, p<0.001). There was no
259	difference in LV ejection fraction and GLS between the groups. The diabetes group had a
260	higher prevalence of LGE (76 vs 60%, p=0.002, driven by higher rates of ischaemic LGE (51
261	vs 33%, p=0.003). Prevalence of non-ischaemic LGE did not differ between the groups. The
262	diabetes group had higher native T1 (1285±42 vs 1269±42 ms, p<0.001) and ECV (30.5±3.5
263	vs 28.8±4.1%, p<0.001). After adjustment for potential confounders, including age, sex,

- 264 hypertension and coronary artery disease, diabetes remained independently associated with
- the presence of LGE and increased ECV (p<0.005 for both analyses).
- 266

267 Predictors of Primary Outcome in All Patients with Heart Failure

- 268 Over a median follow-up of 23 [18-24] months, 74 patients experienced the primary outcome
- 269 (52 hospitalisations for HF, 22 all-cause deaths). In univariable Cox regression analyses for
- the entire cohort, clinical markers associated with the primary outcome included diabetes,
- 271 NYHA functional class and systolic blood pressure. Circulating biomarkers associated with
- the primary outcome included NT-proBNP, hs-TnT, GDF-15, sST2 and Gal-3. CMR markers
- 273 of adverse remodelling (LV mass index and end diastolic volume index), contractile function
- 274 (LV ejection fraction and GLS) and myocardial fibrosis (presence of LGE, native T1 and
- ECV) were predictors of worse outcomes. Diabetes, NT-proBNP and GLS remained
- independently associated with outcomes in the multivariable analysis (Table 2 and Figure 2).
- 277

278 Predictors of Primary Outcome in Patients with Heart Failure and Diabetes

279 In the diabetes group, 50 patients experienced the primary outcome (35 hospitalisations for

280 HF, 15 all-cause deaths). In univariable analyses, systolic blood pressure, NT-proBNP, hs-

- 281 TnT, GDF-15, sST2, LV ejection fraction, GLS and native T1 were associated with the
- primary outcome (Table 3). GLS and sST2 remained associated with outcomes in the
- multivariable analysis. Patients with diabetes and worse than median GLS (GLS > -9.9%)
- had the worst prognosis (log-rank p<0.001, Figure 3). Of note, patients with diabetes and
- 285 GLS better than median had similar outcomes to patients without diabetes and GLS worse
- than median (Figure 2B; p=0.70).

287

288	In a multivariab	le model inclu	ding clinical	markers and	nlasma	biomarkers	only sST2
200	In a munuvanau		ume cinnca	i markets and	Diasma	Ulumarkets.	OIII V SOIZ

- remained independently associated with the primary outcome, demonstrating stronger
- 290 prognostic associations than NT-proBNP (Table 4).
- 291
- 292 The diabetes group was also stratified into four groups based on GLS (above or below
- 293 diabetes group median of -9.7%) and plasma biomarker (above or below median for NT-
- 294 proBNP, hs-TnT, GDF-15, sST2 and Gal-3). Amongst patients with above median GLS, NT-
- proBNP and GDF-15 showed additional prognostic value (Supplemental Figure 1). On the
- other hand, the combination of below median GLS and sST2 demonstrated particularly
- adverse prognosis (Supplemental Figure 2).
- 298

299 Discussion

300 The main finding of this study is that GLS is a powerful independent predictor of adverse

301 outcomes in patients with HF and diabetes, providing incremental prognostic information

302 beyond several circulating plasma biomarkers and CMR markers of cardiac remodelling,

inflammation and fibrosis. In the diabetes group, worse GLS (> median -9.9%) was

304 associated with adverse prognosis. GLS is known to have prognostic value in HF, regardless

305 of whether the cause is ischemic or non-ischemic and whether the EF is reduced or preserved

- 306 [14, 15]. In this study, we have extended those findings to the diabetes subgroup, who are
- known to have a higher risk of adverse cardiovascular outcomes. Our findings are in

308 agreement with a prior study which showed that speckle tracking echocardiography (STE)

309 GLS has prognostic value in diabetes patients with dilated cardiomyopathy [28]. The results

310 from the current study raise the possibility of GLS-guided risk stratification and management

311 in patients with HF and diabetes. Indeed, there is emerging evidence of improvement in GLS

312 with anti-diabetic medications which may enable this in future [28-30].

314	GLS by CMR is well-suited for routine clinical use. The technique relies on software
315	packages which track the endocardial and epicardial borders, and reference values are
316	specific for the software used for analysis. STE has a number of limitations, including
317	dependence on high quality 2D images, and results are often affected by foreshortening,
318	dropout of the apical and anterolateral segments on apical views, and/or suboptimal acoustic
319	windows [15, 31, 32]. GLS by CMR overcomes these limitations and can be measured from
320	routinely acquired bright-blood, steady-state free precession long-axis cine imaging.
321	Disadvantages of GLS by CMR include its susceptibility to through-plane motion artefacts,
322	limited temporal resolution for quantification of strain rate, and limitations in patients with
323	contraindications to CMR [15]. Furthermore, GLS by CMR values may be affected by inter-
324	vendor differences in algorithms, similar to STE, which has resulted in difficulties
325	establishing reference values [32]. Nonetheless, GLS has shown close correlation with STE
326	and has become an important component of the CMR examination alongside volumetric
327	analysis and tissue characterisation in the assessment of HF [33].
328	
329	In this study, sST2 demonstrated incremental prognostic value over other biomarkers
330	including NT-proBNP and hs-TnT in HF patients with diabetes. sST2 is produced by
331	cardiomyocytes and cardiac fibroblasts in response to myocardial stress, inflammation or
332	injury [34-36]. Other sources of sST2 include endothelial cells of the aorta and coronary
333	arteries as well as certain immune cells [34]. It acts as a decoy receptor for interleukin-33,
334	attenuating its cardioprotective biological effects which include blunting myocardial
335	hypertrophy and fibrosis, and inhibiting cardiomyocyte apoptosis [18, 34, 37]. We have
336	confirmed that sST2 levels are higher in HF patients with diabetes [38, 39]. Furthermore,
337	sST2 has known prognostic value in acute and chronic HF, independent of plasma natriuretic

peptides [40-42]. We have extended these findings to the subgroup of HF patients with
diabetes. This result provides further strength to the possibility that the prognostic value of
sST2 in heart failure may result from its association with metabolic perturbances that are also
commonly found in diabetes [43]. Our findings therefore suggest a possible role for sST2 in
risk stratification amongst HF patients with diabetes and in monitoring response to treatment
[44-49].

344

345 Diabetes was a strong independent predictor of the composite outcome of hospitalisation for 346 HF or all-cause mortality in this HF cohort. This is in agreement with prior studies which 347 have consistently shown worse cardiovascular outcomes in HF patients with diabetes, 348 regardless of HF etiology and whether the ejection fraction is reduced or preserved [8, 50, 349 51]. Furthermore, Kaplan-Meier survival analysis showed similar event rates in the diabetes 350 group with above median GLS (\leq -9.9%) compared to those without diabetes and below 351 median GLS. These findings are similar to data from the Candesartan in Heart failure: 352 Assessment of Reduction in Mortality and morbidity (CHARM) study, which demonstrated 353 that patients with HF, preserved ejection fraction (EF> 40%), and diabetes had a greater rate 354 of HF hospitalisation than those with lower ejection fraction ($EF \le 40\%$) and no diabetes [8]. 355 These findings highlight the urgent need for therapeutic advances in patients with HF and 356 concomitant diabetes. 357 358 In this study, HF patients with diabetes had worse CMR markers of myocardial injury, 359 inflammation, and fibrosis. The association between diabetes and elevated ECV remained 360 after adjusting for potential confounders that differed between the diabetic and non-diabetic

361 groups including age, hypertension, coronary artery disease and presence of LGE.

362 Furthermore, diabetes remained associated with the presence of LGE in logistic regression

363	models, even accounting for age, sex, hypertension and coronary artery disease. These
364	findings are in agreement with prior studies, including a recent meta-analysis, which showed
365	an association between diabetes and a higher degree of myocardial fibrosis as assessed by
366	histology as well as ECV by CMR [11].
367	
368	Both focal and diffuse myocardial fibrotic processes are known to occur in patients with
369	diabetes independently of co-morbid conditions, including coronary atherosclerosis and
370	hypertension. Diffuse interstitial and perivascular fibrosis are structural hallmarks of diabetic
371	cardiomyopathy, but focal replacement fibrosis can also be seen, even in the absence of
372	coronary artery disease [52]. Several mechanisms may explain the fibrosis burden in diabetes.
373	Hyperglycaemia is thought to upregulate the expression of profibrotic factors such as
374	transforming growth factor beta 1 and down-regulate the activity of the matrix
375	metalloproteinases [53]. Hyperglycaemia is also known to promote the formation of
376	advanced glycation end products (AGEs) which can cross-link collagen in the interstitium,
377	increasing their resistance to degradation. AGEs can result in generation of reactive oxygen
378	species and oxidative stress which further promotes a pro-fibrotic state [11]. Pro-
379	inflammatory cytokines and chemokines, as well as increased renin-angiotensin-aldosterone
380	system activity in diabetes have also been implicated in the development of myocardial
381	fibrosis.
382	
383	Native T1 values were higher in the diabetes group and may reflect interstitial expansion due

to myocardial fibrosis as well as myocardial oedema affecting the cellular and interstitial

compartments [54]. There is some disagreement in the literature regarding whether native T1

386 values are increased in diabetes. Several studies have shown an association between diabetes

and increased T1 [55-58]. Although a positive association was found between diabetes and

388	native T1 in a recent meta-analysis, the result was not statistically significant [11]. The
389	authors of that study suggested that the lack of statistical significance may have resulted from
390	limited sample size of the included studies. Indeed, the diabetes cohort in the present study
391	was larger than any of those in the included studies. Furthermore, T1 values are known to be
392	dependent on a variety of factors, including field strength, pulse sequence, and region of
393	measurement within the myocardium. In the present study, T1 maps were obtained at 3T
394	using the same MOLLI sequence for all patients, and with experienced observers performing
395	standardized analyses that may improve reproducibility and eliminate technical cofounders
396	[59, 60]. Whilst it does appear that diabetes is associated with higher T1, larger studies
397	controlling for the variability in T1 are required to more conclusively answer this question.
398	
399	Limitations
400	
401	One limitation of this study is the absence of measures of glycaemic control, which are
402	known to be prognostic in patients with HF and diabetes [61]. However, STE GLS is known
403	to have prognostic value independent of glycaemic control in diabetes cohorts with preserved
404	and reduced ejection fraction, and therefore this is unlikely to have altered the prognostic
405	associations for GLS by CMR [16, 28]. Our HF cohort included patients with both ischaemic
406	and non-ischaemic etiologies, as well as both preserved and reduced ejection fraction.
407	Unfortunately, the study was not powered for analyses of these subgroups. Documented
408	history of coronary artery disease did not associate with outcomes in the univariable analysis
409	and therefore etiology of HF is unlikely to have affected the results. Finally, this was a single
410	centre study using feature tracking software from a single vendor, limiting generalizability of
411	the results.

413 Conclusions

- 414 Patients with HF and diabetes had worse CMR and plasma markers of injury, inflammation,
- and fibrosis, and an adverse prognosis. sST2 showed incremental prognostic value beyond
- 416 NT-proBNP in HF patients with diabetes. GLS is an important and independent prognostic
- 417 marker in this group. Future studies should explore whether GLS-guided risk stratification
- and management can improve outcomes in this group of patients.

419

420 Abbreviations

- 421 HF: heart failure, GLS: global longitudinal strain, CMR: cardiovascular magnetic resonance, LGE: late
- 422 gadolinium enhancement, ECV: extraceullar volume; NT-proBNP: N-terminal pro B-type natriuretic peptide,
- 423 hs-TnT: high-sensitivity troponin T, GDF-15: growth differentiation factor 15, sST2: soluble ST2, Gal-3:
- 424 galectin 3, left ventricle: LV.

425

426 Declarations

- 427 Ethics approval and consent to participate
- 428 Ethics approval was obtained from the local Centralized Institutional Review Board in Singapore, and all
- 429 participants provided written informed consent. The study was conducted in accordance with the principles of
- 430 the Declaration of Helsinki.

431

- 432 Consent for publication
- 433 Consent for the publication of images was given.

434

435 Availability of data and materials

- 436 The datasets generated and analysed for the current study are not publicly available. Please contact the
- 437 corresponding author for data requests.

438

439 Competing interests

440	CSPL is supported by a Clinician Scientist Award from the National Medical Research Council of Singapore;
441	has received research support from Boston Scientific, Bayer, Roche Diagnostics, AstraZeneca, Medtronic, and
442	Vifor Pharma; has served as consultant or on the Advisory Board/ Steering Committee/ Executive Committee
443	for Abbott Diagnostics, Amgen, Applied Therapeutics, AstraZeneca, Bayer, Biofourmis, Boehringer Ingelheim,
444	Boston Scientific, Corvia Medical, Cytokinetics, Darma Inc., Us2.ai, JanaCare, Janssen Research &
445	Development LLC, Medtronic, Menarini Group, Merck, MyoKardia, Novartis, Novo Nordisk, Radcliffe Group
446	Ltd., Roche Diagnostics, Sanofi, Stealth BioTherapeutics, The Corpus, Vifor Pharma and WebMD Global LLC;
447	and serves as co-founder & non-executive director of Us2.ai. MU is principal investigator for an institutional
448	research and development agreement regarding cardiovascular magnetic resonance imaging between Karolinska
449	University Hospital and Siemens. AMR receives research grants, consultancy fees, advisory board fees and/or
450	laboratory support-in-kind from Roche Diagnostics, Abbott Laboratories, Thermo Fisher, Novo Nordisk,
451	Sphyngotec and Novartis and holds the New Zealand Heart Foundation Chair in Cardiovascular Studies. All
452	other authors have reported that they have no relationships relevant to the contents of this paper to disclose.
453	
454	Funding
455	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT
455 456	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study
455 456 457	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
455 456 457 458	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
455 456 457 458 459	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions
455 456 457 458 459 460	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study
455 456 457 458 459 460 461	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC
455 456 457 458 459 460 461 462	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC interpreted the data and wrote the manuscript. CC and AMR made substantial revisions to the manuscript. All
455 457 458 459 460 461 462 463	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC interpreted the data and wrote the manuscript. CC and AMR made substantial revisions to the manuscript. All authors read and approved the final manuscript.
455 457 458 459 460 461 462 463 464	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC interpreted the data and wrote the manuscript. CC and AMR made substantial revisions to the manuscript. All authors read and approved the final manuscript.
455 457 458 459 460 461 462 463 464 465	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC interpreted the data and wrote the manuscript. CC and AMR made substantial revisions to the manuscript. All authors read and approved the final manuscript. Acknowledgements
455 456 457 458 459 460 461 462 463 464 465 466	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC interpreted the data and wrote the manuscript. CC and AMR made substantial revisions to the manuscript. All authors read and approved the final manuscript. Acknowledgements The contribution of all the site investigators and clinical co-ordinators is acknowledged.
455 457 458 459 460 461 462 463 464 465 466 467	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC interpreted the data and wrote the manuscript. CC and AMR made substantial revisions to the manuscript. All authors read and approved the final manuscript. Acknowledgements The contribution of all the site investigators and clinical co-ordinators is acknowledged.
455 456 457 458 459 460 461 462 463 464 465 466 467 468	The ATTRaCT study was supported by research grants from A*STAR Biomedical Research Council ATTRaCT program [SPF2014/003, SPF2014/004, SPF2014/005] (A*STAR, Singapore). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Authors' contributions CSPL and AMR designed the study. PJC, FE, RF and CWLC made substantial contributions to the study design. NRI, SPC, OWL, JPCC, JAB and TTL collected the data. NRI analysed the data. NRI, MU and CWLC interpreted the data and wrote the manuscript. CC and AMR made substantial revisions to the manuscript. All authors read and approved the final manuscript. Acknowledgements The contribution of all the site investigators and clinical co-ordinators is acknowledged.

470 **References**

471	1. Lam CS, Teng TK, Tay WT, Anand I, Zhang S, Shimizu W, et al. Regional and
472	ethnic differences among patients with heart failure in Asia: the Asian sudden cardiac death
473	in heart failure registry. Eur Heart J. 2016;37(41):3141-53. Epub 2016/08/10. doi:
474	10.1093/eurheartj/ehw331. PubMed PMID: 27502121.
475	2. Ang N, Chandramouli C, Yiu K, Lawson C, Tromp J. Heart Failure and
476	Multimorbidity in Asia. Curr Heart Fail Rep. 2023;20(1):24-32. Epub 2023/02/23. doi:
477	10.1007/s11897-023-00585-2. PubMed PMID: 36811820; PubMed Central PMCID:
478	РМСРМС9977703.
479	3. Yap J, Tay WT, Teng TK, Anand I, Richards AM, Ling LH, et al. Association of
480	Diabetes Mellitus on Cardiac Remodeling, Quality of Life, and Clinical Outcomes in Heart
481	Failure With Reduced and Preserved Ejection Fraction. J Am Heart Assoc.
482	2019;8(17):e013114. Epub 2019/08/23. doi: 10.1161/JAHA.119.013114. PubMed PMID:
483	31431116; PubMed Central PMCID: PMCPMC6755825.
484	4. Connelly KA, Sarak B. Diabetes and Myocardial Fibrosis: Is CMR the Force Leading
485	to the Rise of "Scar Wars"? JACC Cardiovasc Imaging. 2022;15(5):809-11. Epub
486	2022/05/06. doi: 10.1016/j.jcmg.2022.01.015. PubMed PMID: 35512953.
487	5. Ritchie RH, Abel ED. Basic Mechanisms of Diabetic Heart Disease. Circ Res.
488	2020;126(11):1501-25. Epub 2020/05/22. doi: 10.1161/CIRCRESAHA.120.315913. PubMed
489	PMID: 32437308; PubMed Central PMCID: PMCPMC7251974.
490	6. Rosano GM, Vitale C, Seferovic P. Heart Failure in Patients with Diabetes Mellitus.
491	Card Fail Rev. 2017;3(1):52-5. Epub 2017/08/09. doi: 10.15420/cfr.2016:20:2. PubMed
492	PMID: 28785476; PubMed Central PMCID: PMCPMC5494155.
493	7. Johansson I, Dahlstrom U, Edner M, Nasman P, Ryden L, Norhammar A. Prognostic
494	Implications of Type 2 Diabetes Mellitus in Ischemic and Nonischemic Heart Failure. J Am
495	Coll Cardiol. 2016;68(13):1404-16. Epub 2016/09/24. doi: 10.1016/j.jacc.2016.06.061.
496	PubMed PMID: 27659462. MacDanald MD, Datria MC, Varuani E, Octanoran J, Michalson EL, Vauna ID, et al.
497	8. MacDonald MR, Petrie MC, Varyam F, Ostergren J, Michelson EL, Young JB, et al.
490	failure: an analysis of the Candeserten in Heart failure: Assessment of Paduation in Mortality
499 500	and morbidity (CHARM) programme Fur Heart I 2008;29(11):1377-85 Epub 2008/04/17
500	doi: 10 1003/eurhearti/ehn153 PubMed PMID: 18/13309
502	9 Chamsi-Pasha MA Zhan Y Debs D Shah DI CMR in the Evaluation of Diastolic
502	Dysfunction and Phenotyping of HEnEF: Current Role and Future Perspectives IACC
504	Cardiovasc Imaging 2020:13(1 Pt 2):283-96 Epub 2019/06/17 doi:
505	10 1016/j icmg 2019 02 031 PubMed PMID: 31202753
506	10. Kinno M, Nagpal P, Horgan S, Waller AH, Comparison of Echocardiography.
507	Cardiac Magnetic Resonance, and Computed Tomographic Imaging for the Evaluation of
508	Left Ventricular Myocardial Function: Part 1 (Global Assessment). Curr Cardiol Rep.
509	2017;19(1):9. Epub 2017/02/09. doi: 10.1007/s11886-017-0815-4. PubMed PMID:
510	28176279.
511	11. Salvador DB, Jr., Gamba MR, Gonzalez-Jaramillo N, Gonzalez-Jaramillo V,
512	Raguindin PFN, Minder B, et al. Diabetes and Myocardial Fibrosis: A Systematic Review
513	and Meta-Analysis. JACC Cardiovasc Imaging. 2022;15(5):796-808. Epub 2022/05/06. doi:
514	10.1016/j.jcmg.2021.12.008. PubMed PMID: 35512952.
515	12. Marwick TH, Ritchie R, Shaw JE, Kaye D. Implications of Underlying Mechanisms
516	for the Recognition and Management of Diabetic Cardiomyopathy. J Am Coll Cardiol.
517	2018;71(3):339-51. Epub 2018/01/20. doi: 10.1016/j.jacc.2017.11.019. PubMed PMID:

518 29348027.

519 13. Frojdh F, Fridman Y, Bering P, Sayeed A, Maanja M, Niklasson L, et al. Extracellular 520 Volume and Global Longitudinal Strain Both Associate With Outcomes But Correlate 521 Minimally. JACC Cardiovasc Imaging. 2020;13(11):2343-54. Epub 2020/06/22. doi: 522 10.1016/j.jcmg.2020.04.026. PubMed PMID: 32563637. 523 14. Romano S, Judd RM, Kim RJ, Kim HW, Klem I, Heitner JF, et al. Feature-Tracking 524 Global Longitudinal Strain Predicts Death in a Multicenter Population of Patients With 525 Ischemic and Nonischemic Dilated Cardiomyopathy Incremental to Ejection Fraction and 526 Late Gadolinium Enhancement. JACC Cardiovasc Imaging. 2018;11(10):1419-29. Epub 527 2018/01/24. doi: 10.1016/j.jcmg.2017.10.024. PubMed PMID: 29361479; PubMed Central 528 PMCID: PMCPMC6043421. 529 Kammerlander AA, Dona C, Nitsche C, Koschutnik M, Schonbauer R, Duca F, et al. 15. 530 Feature Tracking of Global Longitudinal Strain by Using Cardiovascular MRI Improves Risk 531 Stratification in Heart Failure with Preserved Ejection Fraction. Radiology. 2020;296(2):290-532 8. Epub 2020/06/03. doi: 10.1148/radiol.2020200195. PubMed PMID: 32484413. 533 Holland DJ, Marwick TH, Haluska BA, Leano R, Hordern MD, Hare JL, et al. 16. 534 Subclinical LV dysfunction and 10-year outcomes in type 2 diabetes mellitus. Heart. 535 2015;101(13):1061-6. Epub 2015/05/04. doi: 10.1136/heartjnl-2014-307391. PubMed PMID: 536 25935767. 537 Wang Y, Yang H, Huynh Q, Nolan M, Negishi K, Marwick TH. Diagnosis of 17. 538 Nonischemic Stage B Heart Failure in Type 2 Diabetes Mellitus: Optimal Parameters for 539 Prediction of Heart Failure. JACC Cardiovasc Imaging. 2018;11(10):1390-400. Epub 540 2018/05/21. doi: 10.1016/j.jcmg.2018.03.015. PubMed PMID: 29778859. 541 18. Meijers WC, Bayes-Genis A, Mebazaa A, Bauersachs J, Cleland JGF, Coats AJS, et 542 al. Circulating heart failure biomarkers beyond natriuretic peptides: review from the 543 Biomarker Study Group of the Heart Failure Association (HFA), European Society of 544 Cardiology (ESC). Eur J Heart Fail. 2021;23(10):1610-32. Epub 2021/09/10. doi: 545 10.1002/ejhf.2346. PubMed PMID: 34498368; PubMed Central PMCID: PMCPMC9292239. 546 Chan MM, Santhanakrishnan R, Chong JP, Chen Z, Tai BC, Liew OW, et al. Growth 19. 547 differentiation factor 15 in heart failure with preserved vs. reduced ejection fraction. Eur J 548 Heart Fail. 2016;18(1):81-8. Epub 2015/10/27. doi: 10.1002/ejhf.431. PubMed PMID: 549 26497848. 550 20. Emdin M, Aimo A, Vergaro G, Bayes-Genis A, Lupon J, Latini R, et al. sST2 551 Predicts Outcome in Chronic Heart Failure Beyond NT-proBNP and High-Sensitivity 552 Troponin T. J Am Coll Cardiol. 2018;72(19):2309-20. Epub 2018/11/06. doi: 553 10.1016/j.jacc.2018.08.2165. PubMed PMID: 30384887. 554 21. Anand IS, Rector TS, Kuskowski M, Adourian A, Muntendam P, Cohn JN. Baseline 555 and serial measurements of galectin-3 in patients with heart failure: relationship to prognosis 556 and effect of treatment with valsartan in the Val-HeFT. Eur J Heart Fail. 2013;15(5):511-8. 557 Epub 2013/01/08. doi: 10.1093/eurjhf/hfs205. PubMed PMID: 23291728. 558 22. Le TT, Tan RS, De Deyn M, Goh EP, Han Y, Leong BR, et al. Cardiovascular 559 magnetic resonance reference ranges for the heart and aorta in Chinese at 3T. J Cardiovasc 560 Magn Reson. 2016;18:21. Epub 2016/04/14. doi: 10.1186/s12968-016-0236-3. PubMed 561 PMID: 27071974; PubMed Central PMCID: PMCPMC4830061. 562 Zhang S, Le TT, Kabus S, Su B, Hausenloy DJ, Cook SA, et al. Cardiac magnetic 23. 563 resonance T1 and extracellular volume mapping with motion correction and co-registration 564 based on fast elastic image registration. MAGMA. 2018;31(1):115-29. Epub 2017/12/23. doi: 565 10.1007/s10334-017-0668-2. PubMed PMID: 29270904; PubMed Central PMCID: 566 PMCPMC5813095. 567 24. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, 568 et al. Standardized image interpretation and post processing in cardiovascular magnetic

569 resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task 570 force on standardized post processing. J Cardiovasc Magn Reson. 2013;15(1):35. Epub 571 2013/05/03. doi: 10.1186/1532-429X-15-35. PubMed PMID: 23634753; PubMed Central 572 PMCID: PMCPMC3695769. 573 25. Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, et al. Extracellular 574 volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical 575 myocardial pathology. Eur Heart J. 2012;33(10):1268-78. Epub 2012/01/27. doi: 576 10.1093/eurheartj/ehr481. PubMed PMID: 22279111; PubMed Central PMCID: 577 PMCPMC3350985. 578 26. Arheden H, Saeed M, Higgins CB, Gao DW, Bremerich J, Wyttenbach R, et al. 579 Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR 580 imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography 581 in rats. Radiology. 1999;211(3):698-708. Epub 1999/06/03. doi: 582 10.1148/radiology.211.3.r99jn41698. PubMed PMID: 10352594. 583 Cai J, Bryant JA, Le TT, Su B, de Marvao A, O'Regan DP, et al. Fractal analysis of 27. 584 left ventricular trabeculations is associated with impaired myocardial deformation in healthy 585 Chinese. J Cardiovasc Magn Reson. 2017;19(1):102. Epub 2017/12/16. doi: 10.1186/s12968-586 017-0413-z. PubMed PMID: 29241460; PubMed Central PMCID: PMCPMC5729602. 587 Tanaka H, Tatsumi K, Matsuzoe H, Matsumoto K, Hirata KI. Impact of diabetes 28. 588 mellitus on left ventricular longitudinal function of patients with non-ischemic dilated 589 cardiomyopathy. Cardiovasc Diabetol. 2020;19(1):84. Epub 2020/06/15. doi: 590 10.1186/s12933-020-01063-y. PubMed PMID: 32534593; PubMed Central PMCID: 591 PMCPMC7293795. 592 29. Gamaza-Chulian S, Diaz-Retamino E, Gonzalez-Teston F, Gaitero JC, Castillo MJ, 593 Alfaro R, et al. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibitors on left ventricular remodelling and longitudinal strain: a prospective observational study. BMC 594 595 Cardiovasc Disord. 2021;21(1):456. Epub 2021/09/23. doi: 10.1186/s12872-021-02250-9. 596 PubMed PMID: 34548011; PubMed Central PMCID: PMCPMC8456580. 597 30. Tanaka H, Soga F, Tatsumi K, Mochizuki Y, Sano H, Toki H, et al. Positive effect of 598 dapagliflozin on left ventricular longitudinal function for type 2 diabetic mellitus patients 599 with chronic heart failure. Cardiovasc Diabetol. 2020;19(1):6. Epub 2020/01/09. doi: 600 10.1186/s12933-019-0985-z. PubMed PMID: 31910853; PubMed Central PMCID: 601 PMCPMC6947966. 602 31. Kalam K, Otahal P, Marwick TH. Prognostic implications of global LV dysfunction: 603 a systematic review and meta-analysis of global longitudinal strain and ejection fraction. 604 Heart. 2014;100(21):1673-80. Epub 2014/05/27. doi: 10.1136/heartjnl-2014-305538. 605 PubMed PMID: 24860005. 606 32. Taylor RJ, Moody WE, Umar F, Edwards NC, Taylor TJ, Stegemann B, et al. 607 Myocardial strain measurement with feature-tracking cardiovascular magnetic resonance: 608 normal values. Eur Heart J Cardiovasc Imaging. 2015;16(8):871-81. Epub 2015/02/26. doi: 609 10.1093/ehjci/jev006. PubMed PMID: 25711353. 610 33. Onishi T, Saha SK, Delgado-Montero A, Ludwig DR, Onishi T, Schelbert EB, et al. 611 Global longitudinal strain and global circumferential strain by speckle-tracking 612 echocardiography and feature-tracking cardiac magnetic resonance imaging: comparison with 613 left ventricular ejection fraction. J Am Soc Echocardiogr. 2015;28(5):587-96. Epub 614 2015/01/13. doi: 10.1016/j.echo.2014.11.018. PubMed PMID: 25577185. 615 34. Sciatti E, Merlo A, Scangiuzzi C, Limonta R, Gori M, D'Elia E, et al. Prognostic 616 Value of sST2 in Heart Failure. J Clin Med. 2023;12(12). Epub 2023/06/28. doi: 617 10.3390/jcm12123970. PubMed PMID: 37373664; PubMed Central PMCID: 618 PMCPMC10299183.

619 35. Pascual-Figal DA, Januzzi JL. The biology of ST2: the International ST2 Consensus 620 Panel. Am J Cardiol. 2015;115(7 Suppl):3B-7B. Epub 2015/02/11. doi: 621 10.1016/j.amjcard.2015.01.034. PubMed PMID: 25665766. 622 36. Berezin AE, Berezin AA. Circulating Cardiac Biomarkers in Diabetes Mellitus: A 623 New Dawn for Risk Stratification-A Narrative Review. Diabetes Ther. 2020;11(6):1271-91. 624 Epub 2020/05/21. doi: 10.1007/s13300-020-00835-9. PubMed PMID: 32430864; PubMed 625 Central PMCID: PMCPMC7261294. 626 37. Aimo A, Januzzi JL, Jr., Bayes-Genis A, Vergaro G, Sciarrone P, Passino C, et al. 627 Clinical and Prognostic Significance of sST2 in Heart Failure: JACC Review Topic of the 628 Week. J Am Coll Cardiol. 2019;74(17):2193-203. Epub 2019/10/28. doi: 629 10.1016/j.jacc.2019.08.1039. PubMed PMID: 31648713. 630 38. Ky B, French B, McCloskey K, Rame JE, McIntosh E, Shahi P, et al. High-sensitivity 631 ST2 for prediction of adverse outcomes in chronic heart failure. Circ Heart Fail. 632 2011;4(2):180-7. Epub 2010/12/24. doi: 10.1161/CIRCHEARTFAILURE.110.958223. 633 PubMed PMID: 21178018; PubMed Central PMCID: PMCPMC3163169. 634 39. AbouEzzeddine OF, McKie PM, Dunlay SM, Stevens SR, Felker GM, Borlaug BA, 635 et al. Suppression of Tumorigenicity 2 in Heart Failure With Preserved Ejection Fraction. J 636 Am Heart Assoc. 2017;6(2). Epub 2017/02/20. doi: 10.1161/JAHA.116.004382. PubMed 637 PMID: 28214792; PubMed Central PMCID: PMCPMC5523750. 638 40. Demissei BG, Cotter G, Prescott MF, Felker GM, Filippatos G, Greenberg BH, et al. 639 A multimarker multi-time point-based risk stratification strategy in acute heart failure: results 640 from the RELAX-AHF trial. Eur J Heart Fail. 2017;19(8):1001-10. Epub 2017/01/31. doi: 641 10.1002/ejhf.749. PubMed PMID: 28133908. 642 Aimo A, Vergaro G, Passino C, Ripoli A, Ky B, Miller WL, et al. Prognostic Value of 41. 643 Soluble Suppression of Tumorigenicity-2 in Chronic Heart Failure: A Meta-Analysis. JACC 644 Heart Fail. 2017;5(4):280-6. Epub 2016/11/07. doi: 10.1016/j.jchf.2016.09.010. PubMed 645 PMID: 27816512. 646 42. Aimo A, Vergaro G, Ripoli A, Bayes-Genis A, Pascual Figal DA, de Boer RA, et al. 647 Meta-Analysis of Soluble Suppression of Tumorigenicity-2 and Prognosis in Acute Heart 648 Failure. JACC Heart Fail. 2017;5(4):287-96. Epub 2017/02/13. doi: 649 10.1016/j.jchf.2016.12.016. PubMed PMID: 28189578. 650 43. Miller AM, Purves D, McConnachie A, Asquith DL, Batty GD, Burns H, et al. 651 Soluble ST2 associates with diabetes but not established cardiovascular risk factors: a new 652 inflammatory pathway of relevance to diabetes? PLoS One. 2012;7(10):e47830. Epub 653 2012/11/01. doi: 10.1371/journal.pone.0047830. PubMed PMID: 23112853; PubMed Central 654 PMCID: PMCPMC3480428. Gurgoze MT, van Vark LC, Baart SJ, Kardys I, Akkerhuis KM, Manintveld OC, et al. 655 44. 656 Multimarker Analysis of Serially Measured GDF-15, NT-proBNP, ST2, GAL-3, cTnI, 657 Creatinine, and Prognosis in Acute Heart Failure. Circ Heart Fail. 2023;16(1):e009526. Epub 658 2022/11/22. doi: 10.1161/CIRCHEARTFAILURE.122.009526. PubMed PMID: 36408685; 659 PubMed Central PMCID: PMCPMC9833118. 660 45. van Vark LC, Lesman-Leegte I, Baart SJ, Postmus D, Pinto YM, Orsel JG, et al. 661 Prognostic Value of Serial ST2 Measurements in Patients With Acute Heart Failure. J Am 662 Coll Cardiol. 2017;70(19):2378-88. Epub 2017/11/04. doi: 10.1016/j.jacc.2017.09.026. 663 PubMed PMID: 29096809. 664 46. Weir RA, Miller AM, Murphy GE, Clements S, Steedman T, Connell JM, et al. 665 Serum soluble ST2: a potential novel mediator in left ventricular and infarct remodeling after 666 acute myocardial infarction. J Am Coll Cardiol. 2010;55(3):243-50. Epub 2010/02/02. doi: 667 10.1016/j.jacc.2009.08.047. PubMed PMID: 20117403.

668 47. Gaggin HK, Motiwala S, Bhardwaj A, Parks KA, Januzzi JL, Jr. Soluble 669 concentrations of the interleukin receptor family member ST2 and beta-blocker therapy in 670 chronic heart failure. Circ Heart Fail. 2013;6(6):1206-13. Epub 2013/10/12. doi: 671 10.1161/CIRCHEARTFAILURE.113.000457. PubMed PMID: 24114865. 672 48. Maisel A, Xue Y, van Veldhuisen DJ, Voors AA, Jaarsma T, Pang PS, et al. Effect of 673 spironolactone on 30-day death and heart failure rehospitalization (from the COACH Study). 674 Am J Cardiol. 2014;114(5):737-42. Epub 2014/08/19. doi: 10.1016/j.amjcard.2014.05.062. 675 PubMed PMID: 25129066. 676 Bayes-Genis A, Aimo A, Jhund P, Richards M, de Boer RA, Arfsten H, et al. 49. 677 Biomarkers in heart failure clinical trials. A review from the Biomarkers Working Group of 678 the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 679 2022;24(10):1767-77. Epub 2022/09/09. doi: 10.1002/ejhf.2675. PubMed PMID: 36073112. 680 50. Domanski M, Krause-Steinrauf H, Deedwania P, Follmann D, Ghali JK, Gilbert E, et 681 al. The effect of diabetes on outcomes of patients with advanced heart failure in the BEST 682 trial. J Am Coll Cardiol. 2003;42(5):914-22. Epub 2003/09/06. doi: 10.1016/s0735-683 1097(03)00856-8. PubMed PMID: 12957443. 684 51. Shindler DM, Kostis JB, Yusuf S, Quinones MA, Pitt B, Stewart D, et al. Diabetes 685 mellitus, a predictor of morbidity and mortality in the Studies of Left Ventricular Dysfunction 686 (SOLVD) Trials and Registry. Am J Cardiol. 1996;77(11):1017-20. Epub 1996/05/01. doi: 687 10.1016/s0002-9149(97)89163-1. PubMed PMID: 8644628. 688 52. Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: Cellular effectors, 689 molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90:84-93. 690 Epub 2015/12/26. doi: 10.1016/j.yjmcc.2015.12.011. PubMed PMID: 26705059; PubMed 691 Central PMCID: PMCPMC4718740. 692 53. Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M. Diabetic 693 Cardiomyopathy: Current and Future Therapies. Beyond Glycemic Control. Front Physiol. 694 2018;9:1514. Epub 2018/11/15. doi: 10.3389/fphys.2018.01514. PubMed PMID: 30425649; 695 PubMed Central PMCID: PMCPMC6218509. 696 54. Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S. Cardiac T1 697 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review. J 698 Cardiovasc Magn Reson. 2016;18(1):89. Epub 2016/12/03. doi: 10.1186/s12968-016-0308-4. 699 PubMed PMID: 27899132; PubMed Central PMCID: PMCPMC5129251. 700 55. Swoboda PP, McDiarmid AK, Erhayiem B, Ripley DP, Dobson LE, Garg P, et al. 701 Diabetes Mellitus, Microalbuminuria, and Subclinical Cardiac Disease: Identification and 702 Monitoring of Individuals at Risk of Heart Failure. J Am Heart Assoc. 2017;6(7). Epub 703 2017/07/19. doi: 10.1161/JAHA.117.005539. PubMed PMID: 28716801; PubMed Central 704 PMCID: PMCPMC5586286. 705 56. Cao Y, Zeng W, Cui Y, Kong X, Wang M, Yu J, et al. Increased myocardial 706 extracellular volume assessed by cardiovascular magnetic resonance T1 mapping and its 707 determinants in type 2 diabetes mellitus patients with normal myocardial systolic strain. 708 Cardiovasc Diabetol. 2018;17(1):7. Epub 2018/01/06. doi: 10.1186/s12933-017-0651-2. 709 PubMed PMID: 29301529; PubMed Central PMCID: PMCPMC5755204. 710 57. Lam B, Stromp TA, Hui Z, Vandsburger M. Myocardial native-T1 times are elevated 711 as a function of hypertrophy, HbA1c, and heart rate in diabetic adults without diffuse fibrosis. 712 Magn Reson Imaging. 2019;61:83-9. Epub 2019/05/28. doi: 10.1016/j.mri.2019.05.029. 713 PubMed PMID: 31125612; PubMed Central PMCID: PMCPMC6663625. 714 Kucukseymen S, Neisius U, Rodriguez J, Tsao CW, Nezafat R. Negative synergism 58. 715 of diabetes mellitus and obesity in patients with heart failure with preserved ejection fraction: 716 a cardiovascular magnetic resonance study. Int J Cardiovasc Imaging. 2020;36(10):2027-38. 717 Epub 2020/06/14. doi: 10.1007/s10554-020-01915-4. PubMed PMID: 32533279.

59. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16(1):2. Epub 2014/01/07. doi: 10.1186/1532-429X-16-2. PubMed PMID: 24387626; PubMed Central PMCID: PMCPMC3927683. Treibel TA, Fridman Y, Bering P, Sayeed A, Maanja M, Frojdh F, et al. Extracellular 60. Volume Associates With Outcomes More Strongly Than Native or Post-Contrast Myocardial T1. JACC Cardiovasc Imaging. 2020;13(1 Pt 1):44-54. Epub 2019/05/20. doi: 10.1016/j.jcmg.2019.03.017. PubMed PMID: 31103587. 61. Aguilar D, Bozkurt B, Ramasubbu K, Deswal A. Relationship of hemoglobin A1C and mortality in heart failure patients with diabetes. J Am Coll Cardiol. 2009;54(5):422-8. Epub 2009/07/25. doi: 10.1016/j.jacc.2009.04.049. PubMed PMID: 19628117; PubMed Central PMCID: PMCPMC2753214.

745 Figure Titles and Legends

- 746 Figure 1. Flow chart of patient inclusion. Abbreviations: HF: heart failure; ECG: 12-lead
- 747 electrocardiogram; CMR: Cardiovascular magnetic resonance; HCM: Hypertrophic

748 cardiomyopathy.

- 749 Figure 2. Event-free survival curves showing: (A) Adverse prognosis in patients with heart
- failure and diabetes; (B) Patients with diabetes and GLS worse than cohort median (-9.9%) had
- vorst prognosis. Patients with either diabetes or GLS worse than median had similar outcomes.
- 752 Abbreviations: DM: diabetes mellitus; GLS: global longitudinal strain
- 753 Figure 3. Example of GLS measurement in apical 2-chamber view. Top panel shows a
- patient with heart failure, diabetes and GLS \leq -9.9%. Bottom panel shows a patient with heart
- failure, diabetes and GLS > -9.9%. Centre panel: event-free survival curves showing adverse
- prognosis in patients with heart failure, diabetes and GLS worse than cohort median (-9.9%).
- 757 Abbreviations: DM: diabetes mellitus; GLS: global longitudinal strain.

758 Supplemental Figures

759 Supplemental Figure 1. Event-free survival curves in patients with diabetes and above

760 median GLS (-9.7%) stratified by: (A) NT-proBNP; (B) hs-TnT; (C) GDF-15; (D) sST2 and

- (E) Gal-3. NT-proBNP and GDF-15 demonstrated additional prognostic value in this group.
- 762 Abbreviations: GLS: global longitudinal strain; NT-proBNP: N-terminal pro-brain natriuretic
- 763 peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation factor 15; sST2:
- soluble ST2; Gal-3: galectin 3.

765 Supplemental Figure 2. Event-free survival curves in patients with diabetes and below

766 median GLS (-9.7%) stratified by: (A) NT-proBNP; (B) hs-TnT; (C) GDF-15; (D) sST2 and

767	(E) Gal-3. sST2 demonstrated additional prognostic value in this group. Abbreviations: GLS:
768	global longitudinal strain; NT-proBNP: N-terminal pro-brain natriuretic peptide; hs-TnT: high-
769	sensitivity troponin T; GDF-15: growth differentiation factor 15; sST2: soluble ST2; Gal-3:
770	galectin 3.
771	
772	
773	
774	
775	
776	
777	
778	
779	
780	
781	
782	
783	
784	

	No Diabetes Mellitus (n=156)	Diabetes Mellitus (n=159)	p Value
Clinical			
Age, years	56 ± 12	60 ± 10	<0.001
Male sex, n (%)	129 (83)	126 (79)	0.436
Heart rate, beats/min	71 [63-81]	75 [68-83]	0.020
Systolic BP, mmHg	124 [111-138]	125 [113-143]	0.240
Diastolic BP, mmHg	73 [66-82]	70 [61-80]	0.008
Body mass index, kg/m ²	26 [23-30]	27 [23-31]	0.412
Co-morbidities, n (%)			
Hypertension	80 (52)	120 (76)	<0.001
Coronary artery disease	78 (52)	112 (72)	<0.001
Atrial Fibrillation	22 (14)	29 (18)	0.331
Medications at baseline, n (%)			
Beta Blocker	135 (87)	146 (92)	0.436
ACEi or ARB	129 (83)	140 (88)	0.178
Mineralocorticoid antagonist	98 (63)	102 (64)	0.806
Diuretic	116 (74)	129 (81)	0.148
Statin	120 (77)	146 (92)	<0.001
NYHA Functional Class, n (%)			0.041
Class I	91 (58)	75 (47)	
Class II	51 (33)	74 (47)	
Class III	14 (9)	10 (6)	
MLWHF Score	12 [0-30]	14 [3-29]	0.299
Haematocrit, (%)	43 ± 5	41 ± 6	<0.001
Creatinine, μmol/L	91 [77-105]	96 [81-118]	0.016
Plasma Biomarkers			

785 Table 1. Baseline clinical characteristics of the cohort according to presence or absence of786 diabetes.

NT-proBNP, pg/mL	579 [232-1136]	1091 [326-2272]	<0.001
hs-TnT, ng/L	15 [9-22]	27 [14-41]	<0.001
GDF-15, pg/mL	1039 [753-1470]	2412 [1603-3331]	<0.001
sST2, ng/mL	26 [21-32]	28 [23-38]	0.038
Gal-3, ng/mL	8.0 [7.0-10.0]	10.0 [8.0-12.0]	<0.001
CMR Markers			
LVEDVi, mL/m ²	112 [83-142]	99 [81-129]	0.029
LVESVi, mL/m ²	71 [43-105]	65 [40-94]	0.190
SVi, mL/m ²	39 [32-44]	35 [29-42]	0.005
LVMi, g/m²	70 [59-89]	67 [55-83]	0.125
LV ejection fraction, %	36 [25-49]	36 [26-49]	0.947
GLS, %	-10.1 ± 4.1	-9.8 ± 3.7	0.443
LAVi, mL/m ²	48 [38-68]	47 [33-65]	0.285
LGE Type			0.003
Nil, n (%)	63 (40)	38 (24)	
Non-ischaemic, n (%)	38 (24)	34 (21)	
Ischaemic, n (%)	52 (33)	81 (51)	
Both, n (%)	3 (2)	6 (4)	
Native T1, ms	1269 ± 42	1285 ± 42	<0.001
ECV, %	28.8 ± 4.1	30.5 ± 3.5	<0.001

Values are given as median [interguartile range], mean ± SD or number (percentage). Abbreviations:; ACEi: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin II receptor blocker; NYHA: New York Heart Association; MLWHF: Minnesota Living with Heart Failure; NT-proBNP: N-terminal pro-brain natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation factor 15; sST2: soluble ST2; Gal-3: galectin 3; LVEDVi: Left ventricular end-diastolic volume indexed to body surface area; LVESVi: Left ventricular end-systolic volume index; SVi: Stroke volume index; LVMi: Left ventricular mass index; GLS: Global longitudinal strain; LAVi: Left atrial end-systolic volume index; LGE: Late gadolinium enhancement; ECV: Extracellular volume.

	Univariable Model		Multivariable Model (n=314)	
	HR (95% CI) P Value		HR (95% CI)	p Value
Clinical				
Age (per 10-year increment)	1.20 (0.97-1.47)	0.101		
Male sex	0.82 (0.44-1.53)	0.537		
Body mass index	0.97 (0.93-1.01)	0.137		
Smoking	1.17 (0.74-1.86)	0.503		
Hypertension	0.86 (0.54-1.37)	0.528		
Diabetes	2.33 (1.43-3.79)	<0.001	2.30 (1.41-3.74)	<0.001
Coronary artery disease	1.54 (0.94-2.53)	0.090		
NYHA Functional Class	1.61 (1.15-2.25)	0.006	§	
Systolic blood pressure (per 10mmHg increment)	0.88 (0.78-0.98)	0.020	Ş	
Plasma Biomarkers				
NT-proBNP (per 100pg/mL increment)	1.01 (1.01-1.02)	<0.001	1.01 (1.00-1.01)	0.02
hs-TnT (per 1ng/L increment)	1.01 (1.01-1.02)	<0.001	§	
GDF-15 (per 100pg/mL increment)	1.02 (1.01-1.03)	<0.001	§	
sST2 (per 1ng/mL increment)	1.02 (1.01-1.04)	0.004	§	
Gal-3 (per 1ng/mL increment)	1.09 (1.04-1.14)	<0.001	Ş	
CMR Markers				
LVEDVi (per 10mL/m ² increment)	1.07 (1.03-1.12)	<0.001	§	
LVMi (per 10g/m ² increment)	1.10 (1.01-1.22)	0.032	§	
LV ejection fraction (per 5% increment)	0.90 (0.83-1.00)	0.010	§	
GLS	1.16 (1.09-1.24)	<0.001	1.14 (1.06-1.22)	<0.001
Presence of LGE	1.94 (1.10-3.42)	0.022	§	
Native T1 (per 10ms increment)	1.09 (1.04-1.15)	<0.001	§	
ECV	1.06 (1.02-1.11)	0.005	§	

Table 2. Univariable and multivariable Cox regression models (stepwise selection) in the entire cohort for the primary outcome of all-cause mortality or heart failure hospitalisation.

Abbreviations:; NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation factor 15; sST2: soluble ST2; Gal-3: galectin 3; LVEDVi: Left ventricular end-diastolic volume indexed to body surface area; LVMi: Left ventricular mass index; GLS: Global longitudinal strain; LGE: Late gadolinium enhancement; ECV: Extracellular volume.

- 809 § Assessed for inclusion in multivariable model but not retained.
- 810
- 811

Table 3. Univariable and multivariable Cox regression models (stepwise selection) in the

813 diabetes group for the primary outcome of all-cause mortality or heart failure

814 hospitalisation.

	Univariable Model		Multivariable Model (n=158)	
	HR (95% Cl)	HR (95% CI) P Value		p Value
Clinical				
Age (per 10-year increment)	1.21 (0.90-1.60)	0.202		
Male sex	0.85 (0.41-1.75)	0.665		
Body mass index	0.99 (0.94-1.05)	0.827		
Hypertension	0.94 (0.50-1.76)	0.838		
Diabetes Type	0.88 (0.28-2.84)	0.836		
Smoking	0.80 (0.46-1.40)	0.436		
Coronary artery disease	1.41 (0.72-2.75)	0.314		
NYHA Functional Class	1.34 (0.86-2.08)	0.200		
Systolic blood pressure (per 10mmHg increment)	0.86 (0.75-0.98)	0.028	§	
Plasma Biomarkers				
NT-proBNP (per 100pg/mL increment)	1.01 (1.00-1.02)	0.007	§	
hs-TnT (per 1ng/L increment)	1.01 (1.00-1.02)	0.016	§	
GDF-15 (per 100pg/mL increment)	1.02 (1.01-1.03)	0.003	§	
sST2 (per 1ng/mL increment)	1.03 (1.01-1.06)	0.003	1.03 (1.00-1.06)	0.02
Gal-3 (per 1ng/mL increment)	1.06 (1.00-1.12)	0.061		
CMR Markers				
LVEDVi (per 10mL/m ² increment)	1.07 (0.99-1.15)	0.076		
LVMi (per 10g/m ² increment)	1.01 (0.88-1.15)	0.928		

LV ejection fraction (per 5% increment)	0.89 (0.81-0.99)	0.031	§	
GLS	1.15 (1.06-1.25)	0.001	1.12 (1.03-1.21)	0.01
Presence of LGE	1.42 (0.69-2.92)	0.342	· · · ·	
Native T1 (per 10ms increment)	1.07 (1.00-1.14)	0.04	§	
ECV	1.06 (0.98-1.15)	0.139		

Abbreviations:; NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain
natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation
factor 15; sST2: soluble ST2; Gal-3: galectin 3; LVEDVi: Left ventricular end-diastolic
volume indexed to body surface area; LVMi: Left ventricular mass index; GLS: Global
longitudinal strain; LGE: Late gadolinium enhancement; ECV: Extracellular volume.
§ Assessed for inclusion in multivariable model but not retained.

- 821
- 822

Table 4. Multivariable Cox regression model (Clinical and Plasma biomarkers) in the diabetes group for the primary outcome of all-cause mortality or heart failure hospitalisation.

	Multivariable Model (n=158)	
	HR (95% CI)	p Value
Clinical		
Age (per 10-year increment)		
Male sex		
Body mass index		
Hypertension		
Diabetes Type		
Smoking		
Coronary artery disease		
NYHA Functional Class		
Systolic blood pressure (per 10mmHg increment)	Ş	
Plasma Biomarkers		
NT-proBNP (per 100pg/mL increment)	§	
high-sensitivity troponin T	§	
GDF-15 (per 100pg/mL increment)	§	
sST2	1.04 (1.02-1.07)	0.001

		1	
Gal-3			

Abbreviations:; NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation

- factor 15; sST2: soluble ST2; Gal-3: galectin 3.
- 828 § Assessed for inclusion in multivariable model but not retained.

829

