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Abstract 
Background: Heart failure (HF) and diabetes are associated with increased incidence and 
worse prognosis of each other. The prognostic value of global longitudinal strain (GLS) 
measured by cardiovascular magnetic resonance (CMR) has not been established in HF 
patients with diabetes.  
Methods: Consecutive patients (n=315) with HF underwent CMR at 3T, including GLS, late 
gadolinium enhancement (LGE), native T1, and extracellular volume fraction (ECV) 
mapping. Plasma biomarker concentrations were measured including: N-terminal pro B-type 
natriuretic peptide(NT-proBNP), high-sensitivity troponin T(hs-TnT), growth differentiation 
factor 15(GDF-15), soluble ST2(sST2) and galectin 3(Gal-3). The primary outcome was a 
composite of all-cause mortality or HF hospitalisation.  
Results: Compared to those without diabetes (n=156), the diabetes group (n=159) had a 
higher LGE prevalence (76 vs 60%, p<0.05), higher T1 (1285±42 vs 1269±42ms, p<0.001) 
and higher ECV (30.5±3.5 vs 28.8±4.1%, p<0.001). The diabetes group had higher NT-pro-
BNP, hs-TnT, GDF-15, sST2 and Gal-3. Diabetes conferred worse prognosis (hazard ratio 
(HR) 2.33 [95% confidence interval (CI) 1.43-3.79], p<0.001). In multivariable Cox 
regression analysis including clinical markers and plasma biomarkers, GDF-15 and sST2 
remained independently associated with the primary outcome (GDF-15: HR per 100 pg/mL 
1.02 [95% CI 1.00-1.03], p=0.035; sST2: HR per 1 ng/mL 1.03 [95% CI 1.00-1.05], 
p=0.036). In multivariable Cox regression models in the diabetes group, GLS was prognostic 
(HR 1.15 [95% CI 1.06-1.25], p<0.001).  
Conclusions: Compared to HF patients without diabetes, those with diabetes have worse 
plasma and CMR markers of fibrosis and a more adverse prognosis. GLS is a powerful and 
independent prognostic marker in HF patients with diabetes. 
 
 
Clinical Perspectives 
Patients with concomitant heart failure and diabetes have a particularly poor prognosis. Our 
study demonstrates that this group has adverse plasma and CMR markers of myocardial 
fibrosis. Furthermore, we have shown that GLS is a powerful and independent prognostic 
marker in this group. Our results raise the future possibility of GLS-guided risk stratification 
and management in patients with heart failure and diabetes to improve outcomes in this 
group.  
 

Non-standard Abbreviations and Acronyms 
HF: heart failure, GLS: global longitudinal strain, CMR: cardiovascular magnetic resonance, 
LGE: late gadolinium enhancement, ECV: extracellular volume; NT-proBNP: N-terminal pro 
B-type natriuretic peptide, hs-TnT: high-sensitivity troponin T, GDF-15: growth 
differentiation factor 15, sST2: soluble ST2, Gal-3: galectin 3, left ventricle: LV.  
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Background 

The Asian continent has the highest prevalence of heart failure (HF) cases globally [1]. 

Diabetes is especially common in South East Asian HF populations, where a unique ‘lean-

diabetic’ phenotype with worse outcomes has been identified [2]. The Asian Sudden Cardiac 

Death in Heart Failure (ASIAN-HF) registry (across 11 Asian countries) reported a 42.5% 

prevalence of diabetes among HF patients, specifically in higher-income countries such as 

Singapore, Hong Kong, and Thailand [3]. 

 

The diabetic heart is characterised by a number of structural abnormalities including diffuse 

interstitial myocardial fibrosis, myocyte hypertrophy, and impaired coronary microvascular 

perfusion, which have all been implicated in the development of both diastolic and systolic 

dysfunction [4, 5]. Patients with HF and diabetes have consistently worse clinical outcomes, 

including higher risk of hospitalisation for HF and death, compared to those without diabetes 

[6-8]. These findings appear to hold regardless of whether the HF is ischaemic or non-

ischaemic in etiology, and regardless of left ventricular (LV) ejection fraction [7, 8]. 

 

Cardiac magnetic resonance (CMR) imaging has become the non-invasive reference standard 

for evaluating HF due to its ability to accurately assess cardiac morphology, function, and 

myocardial tissue characteristics. In particular, late gadolinium enhancement (LGE) permits 

visualisation of focal replacement myocardial fibrosis, while T1 mapping pre- and post-

gadolinium contrast enables non-invasive measurement of the myocardial extracellular 

volume fraction (ECV), a quantitative marker of myocardial diffuse interstitial fibrosis. 

Additionally, global longitudinal strain (GLS), defined as the change in the LV myocardial 

length between diastole and systole divided by the original end-diastolic length, provides a 
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measure of LV systolic function by CMR that is effectively the same as GLS measured by 

echocardiography [9, 10]. 

 

Patients with diabetes frequently have impaired GLS and have a higher degree of myocardial 

fibrosis as assessed by ECV and histology [11, 12]. GLS by CMR appears to have prognostic 

value in HF regardless of ejection fraction and whether the cause of HF is ischemic or non-

ischemic [13-15]. There is a growing body of literature demonstrating the prognostic value of 

GLS in asymptomatic patients with diabetes [16, 17]. However, the prognostic utility of GLS 

in diabetes patients with established HF failure is unknown. 

 

Growth differentiation factor-15 (GDF-15), soluble ST2 (sST2) and galectin 3 (Gal-3) are 

circulating plasma biomarkers associated with inflammation, fibrosis and cardiac remodelling 

[18]. Plasma concentrations of these biomarkers appear to provide prognostic information in 

HF patients beyond established markers including cardiac troponins and natriuretic peptides 

[18-21]. The prognostic relevance of these biomarkers has not yet been established in HF 

patients with diabetes. 

 

This study aimed to assess the prognostic significance of GLS by CMR and novel HF plasma 

biomarkers associated with inflammation and fibrosis in a cohort of patients with HF and 

diabetes across the spectrum of LV ejection fraction. We hypothesized that GLS would have 

an incremental prognostic association in this group, beyond plasma HF biomarkers, LV 

ejection fraction and CMR markers of myocardial fibrosis. 

 

Methods 
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The data supporting the findings are available from the corresponding author upon reasonable 

request. 

 

Study Population 

Patients with HF were recruited prospectively across six tertiary cardiac centres in Singapore 

(Asian neTwork for Translational Research and Cardiovascular Trials [ATTRaCT], 

ClinicalTrials.gov NCT02791009). Patients were included if they presented to hospital with a 

primary diagnosis of HF, or if they attended a hospital clinic within 6 months of an episode of 

decompensated HF (requiring hospitalization or treatment in an out-patient setting). In all 

cases, a trained cardiologist adjudicated the clinical diagnosis of HF. The exclusion criteria 

were: HF primarily due to severe valve disease, HF due to acute coronary syndrome resulting 

in a transient episode of acute pulmonary oedema, severe renal failure (estimated glomerular 

filtration rate < 15 mL/min per 1.73m2), specific causes of HF (constrictive pericarditis, 

complex adult congenital heart disease, hypertrophic cardiomyopathy, eosinophilic 

myocarditis, cardiac amyloidosis, and acute chemotherapy-induced cardiomyopathy), isolated 

right HF, and life threatening non-cardiac co-morbidity with life expectancy of <1 year. All 

patients underwent clinical assessment at baseline. Diabetes status was identified by baseline 

questionnaire at recruitment.  

 

Ethics approval and consent to participate 

Ethics approval was obtained from the local Centralized Institutional Review Board in 

Singapore, and all participants provided written informed consent. The study was conducted 

in accordance with the principles of the Declaration of Helsinki.  

 

Biomarkers 
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Blood was collected in dipotassium (K2)-EDTA vacutainer tubes and transported on ice for 

processing within one hour. Plasma was separated by centrifugation at 3500g for 10 minutes 

at 4oC and stored at -80oC until analysis.  

 

Plasma N-terminal pro B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin 

T (hs-TnT) were measured by electrochemiluminescence immunoassay using the Elecsys 

proBNP G2 V2.1 and Elecsys Troponin T hs V2.1 assays on the Cobas e411 immuno-

analyser (Roche Diagnostic GmbH, Mannheim, Germany). The measurement ranges of NT-

proBNP and hs-TnT were 10-35000 pg/ml and 3-10000 pg/ml, respectively. Laboratory 

average concentration and inter-assay coefficient of variation (%CV) of low (NT-proBNP: 

147 pg/ml, 4.48%; hs-TnT: 26.8 pg/ml, 5.05%) and high (NT-proBNP: 4679 pg/ml, 4.97%; 

hs-TnT: 2120 pg/ml, 3.69%) quality control samples of the NT-proBNP and hs-TnT assays 

were established over 84 and 73 independent assays, respectively.   

 

Human GDF-15 (R&D Systems, Minneapolis, MN, USA; Cat#DGD150), sST2 (Presage ST2 

assay, Critical Diagnostics, California, USA) and Gal-3 (R&D Systems, Minneapolis, MN, 

USA; Cat#DGAL30) were measured by ELISA on the Enspire Multimode Microplate Reader 

(Perkin Elmer, Waltham, MA, USA). Results were interpolated from standard curves fitted 

on 5-parameter logistic model (5-PL) using the instrument’s Enspire®software.  Laboratory 

inter-assay %CV of quality control samples were 7.41% at 126 pg/ml, 7.71 % at 360 pg/ml 

and 8.43% at 778 pg/ml for GDF-15 (n=98), 18.0% at 30.0 ng/ml and 15.2% at 63.6 ng/ml 

for sST2 (n=98) and 10.4% at 0.83 ng/ml, 10.6% at 2.41 ng/ml and 12.3% at 4.82 ng/ml for 

Galectin-3 (n=56). 

 

Clinical Outcomes 
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The primary outcome was a composite of time to either first hospitalization for HF 

(regardless of prior history of hospitalization for HF) or all-cause mortality. Follow-up was 

conducted through a clinic visit at 6 months after baseline assessment and structured phone 

interviews with the participants at the 1- and 2-year timepoints. Data in patients who were 

lost to follow-up were censored at the date when the patient was last known to be alive and 

had not experienced an event. 

 

Cardiovascular magnetic resonance image acquisition  

All patients in the ATTRaCT cohort were invited and assessed for suitability for CMR. Those 

who agreed and were eligible underwent a standardized CMR protocol with a 3 Tesla MRI 

scanner (Ingenia, Philips Healthcare, Best, The Netherlands). Balanced steady-state free 

precision cines were acquired in the standard long-axis views and a short-axis stack from 

base to apex, as described previously [22]. LGE images were acquired at 10 min after 0.1 

mmol/kg of gadobutrol (Gadovist®, Bayer Pharma AG, Germany) with a phase sensitive 

inversion-recovery gradient-echo imaging sequence. Typical parameters were: repetition time 

(TR) = 6.1 ms; echo time (TE) = 3 ms; time to inversion (TI) = 320–340 ms, flip angle 25°, 

voxel size = 1.5x1.7x8 mm, SENSE factor = 2.4, slice thickness 8mm with 2mm gap to 

match short-axis cine slice positions. The inversion time for optimal myocardial nulling was 

selected from an inversion time scout sequence. T1 maps were acquired at the basal and mid-

ventricular short-axis levels, pre- and 15-min post-contrast with modified Look-Locker 

Inversion-recovery (MOLLI) 5s(3s)3s and 4s(1s)3s(1s)2s acquisition schemes, respectively 

[23].  

 

CMR analysis 
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Image analysis was performed using CVI42 software (Circle Cardiovascular Imaging, 

Calgary, Canada) by trained imaging fellows at the National Heart Research Institute of 

Singapore CMR Core Laboratory, who were blinded to the clinical information of the 

patients. Ventricular volumes, mass and ejection fraction were measured from the short-axis 

cine stack, using manual contouring of the left ventricle in end-diastole and end-systole, 

excluding papillary muscles, as detailed previously [22]. LV volumes and mass data were 

indexed to body surface area. The presence of LGE was assessed qualitatively by two readers 

according to the recommendations by the Society of CMR [24]. Average native and post-

contrast myocardial T1 values were measured by placing a region of interest (ROI) within the 

middle third of the short-axis myocardial wall at the basal- and mid-ventricular levels, while 

avoiding regions of focal LGE. The myocardium-blood pool interface was carefully avoided 

in order to prevent partial volume effects. Pre- and post-contrast blood T1 values were 

measured in a ROI drawn within the blood pool. ECV was calculated from the pre- and post-

contrast average blood and myocardial T1 values, as described previously [25, 26]. 

Myocardial strain was analysed in the cine images using the Tissue Tracking Plugin [27].  

 

Statistics 

Normality was assessed for continuous variables using the Shapiro-Wilk test. Normally 

distributed data are presented as mean ± standard deviation. Non-normally distributed data 

are presented as median [interquartile range]. Comparisons were performed for continuous 

variables using the parametric Student t-test or the non-parametric Mann-Whitney U test. 

Categorical variables are presented as number (percentage) and compared using the χ2 test.  

 

Univariable Cox regression analysis was performed to identify prognostic variables in the 

entire cohort and also in the diabetes subgroup. Clinically relevant variables (age, sex, body 
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mass index, diabetes, smoking, coronary artery disease, hypertension, New York Heart 

Association functional class and systolic blood pressure), circulating biomarkers (NT-

proBNP, hs-TnT, GDF-15, sST2 and Gal-3) and CMR markers of function, remodelling and 

fibrosis (LV end diastolic volume index, mass index, ejection fraction, GLS, LGE, Native T1, 

ECV) were tested in the Cox models. Covariates with a p-value <0.05 in univariable analyses 

were entered into the multivariable Cox model to identify independently prognostic variables, 

using forward stepwise selection. Event-free survival curves were examined using the 

Kaplan-Meier method and compared with the log-rank test. Statistical analyses were 

performed using SPSS Version 28 (Statistical Package for the Social Sciences, International 

Business Machines, Inc., Armonk, New York, USA) and GraphPad Prism 9.4.1 (GraphPad 

Software, Inc., San Diego, California, USA). A two-sided p-value <0.05 was considered as 

statistically significant. 

 

Results 

Figure 1 shows a flow chart describing patient inclusion. Of the 623 patients enrolled in the 

ATTRaCT study, 523 patients underwent a baseline CMR study. We excluded 168 studies 

performed without contrast. An additional 40 patients were excluded due to incomplete 

baseline clinical or CMR data sets, alternative diagnosis on the basis of CMR, or loss to 

follow-up. In total, 315 subjects (diabetes, n=159; without diabetes, n= 156) were included in 

the study cohort. 

 

The baseline clinical characteristics are shown in Table 1. Compared to patients without 

diabetes, patients with diabetes were older (60±10 vs 56±12 years, p<0.001), more likely to 

have a history of hypertension (76 vs 52%, p<0.001), coronary artery disease (72 vs 52%, 

p<0.001) and had worse NYHA Functional Class (median Class II vs I, p=0.04). Patients 
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with diabetes had higher creatinine (96 [81-118] vs 91 [77-105] μmol/L, p=0.02) and 

elevated cardiac biomarkers: NT-proBNP (1091 [326-2272] vs 579 [232-1136] pg/mL, 

p<0.001), hs-TnT (27 [14-41] versus 15 [9-22] ng/L, p<0.001), GDF-15 (2412 [1603-3331] 

versus 1039 [753-1470] pg/mL, p<0.001), sST2 (28 [23-38] versus 26 [21-32] ng/mL, 

p=0.038) and Gal-3 (10.0 [8.0-12.0] versus 8.0 [7.0-10.0] ng/mL, p<0.001). There was no 

difference in LV ejection fraction and GLS between the groups. The diabetes group had a 

higher prevalence of LGE (76 vs 60%, p=0.002, driven by higher rates of ischaemic LGE (51 

vs 33%, p=0.003). Prevalence of non-ischaemic LGE did not differ between the groups. The 

diabetes group had higher native T1 (1285±42 vs 1269±42 ms, p<0.001) and ECV (30.5±3.5 

vs 28.8±4.1%, p<0.001). After adjustment for potential confounders, including age, sex, 

hypertension and coronary artery disease, diabetes remained independently associated with 

the presence of LGE and increased ECV (p<0.005 for both analyses).  

 

Predictors of Primary Outcome in All Patients with Heart Failure 

Over a median follow-up of 23 [18-24] months, 74 patients experienced the primary outcome 

(52 hospitalisations for HF, 22 all-cause deaths). In univariable Cox regression analyses for 

the entire cohort, clinical markers associated with the primary outcome included diabetes, 

NYHA functional class and systolic blood pressure. Circulating biomarkers associated with 

the primary outcome included NT-proBNP, GDF-15, sST2 and Gal-3. CMR markers of 

adverse remodelling (LV mass index and end diastolic volume index), contractile function 

(LV ejection fraction and GLS) and myocardial fibrosis (presence of LGE, native T1 and 

ECV) were predictors of worse outcomes. Diabetes, NT-proBNP and GLS remained 

independently associated with outcomes in the multivariable analysis (Table 2 and Figure 2). 

 

Predictors of Primary Outcome in Patients with Heart Failure and Diabetes 
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In the diabetes group, 50 patients experienced the primary outcome (35 hospitalisations for 

HF, 15 all-cause deaths). In univariable analyses, systolic blood pressure, NT-proBNP, GDF-

15, sST2, LV ejection fraction, GLS and native T1 were associated with the primary outcome 

(Table 3). GLS remained associated with outcomes in the multivariable analysis (hazard ratio 

1.15 [95% confidence interval 1.06-1.25], p<0.001). In other words, each percentage point of 

worsening in GLS was associated with a 15% increase in risk of hospitalisation for HF or all-

cause mortality. Patients with diabetes and worse than median GLS (GLS > -9.9%) had the 

worst prognosis (log-rank p<0.001, Figure 3). Of note, patients with diabetes and GLS better 

than median had similar outcomes to patients without diabetes and GLS worse than median 

(Figure 2B; p=0.70). 

 

In a multivariable model including clinical markers and plasma biomarkers, GDF-15 and 

sST2 remained independently associated with the primary outcome, demonstrating stronger 

prognostic associations than NT-proBNP (Table 4).  

 

The diabetes group was also stratified into four groups based on GLS (above or below 

diabetes group median of -9.7%) and plasma biomarker (above or below median for NT-

proBNP, hs-TnT, GDF-15, sST2 and Gal-3). Amongst patients with above median GLS, NT-

proBNP and GDF-15 showed additional prognostic value (Supplemental Figure 1). On the 

other hand, the combination of below median GLS and sST2 demonstrated particularly 

adverse prognosis (Supplemental Figure 2). 

 

Discussion 

The main finding of this study is that GLS is a powerful independent predictor of adverse 

outcomes in patients with HF and diabetes, providing incremental prognostic information 
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beyond several circulating plasma biomarkers and CMR markers of cardiac remodelling, 

inflammation and fibrosis. In the diabetes group, worse GLS (> median -9.9%) was 

associated with adverse prognosis. GLS is known to have prognostic value in HF, regardless 

of whether the cause is ischemic or non-ischemic and whether the EF is reduced or preserved 

[14, 15]. In this study, we have extended those findings to the diabetes subgroup, who are 

known to have a higher risk of adverse cardiovascular outcomes. Our findings are in 

agreement with a prior study which showed that speckle tracking echocardiography (STE) 

GLS has prognostic value in diabetes patients with dilated cardiomyopathy [28]. The results 

from the current study raise the possibility of GLS-guided risk stratification and management 

in patients with HF and diabetes. Indeed, there is emerging evidence of improvement in GLS 

with anti-diabetic medications which may enable this in future [28-30]. 

 

GLS by CMR is well-suited for routine clinical use. The technique relies on software 

packages which track the endocardial and epicardial borders, and reference values are 

specific for the software used for analysis. STE has a number of limitations, including 

dependence on high quality 2D images, and results are often affected by foreshortening, 

dropout of the apical and anterolateral segments on apical views, and/or suboptimal acoustic 

windows [15, 31, 32]. GLS by CMR overcomes these limitations and can be measured from 

routinely acquired bright-blood, steady-state free precession long-axis cine imaging. 

Disadvantages of GLS by CMR include its susceptibility to through-plane motion artefacts, 

limited temporal resolution for quantification of strain rate, and limitations in patients with 

contraindications to CMR [15]. Furthermore, GLS by CMR values may be affected by inter-

vendor differences in algorithms, similar to STE, which has resulted in difficulties 

establishing reference values [32]. Nonetheless, GLS has shown close correlation with STE 
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and has become an important component of the CMR examination alongside volumetric 

analysis and tissue characterisation in the assessment of HF [33].  

 

GDF-15 and sST2 demonstrated incremental prognostic value over NT-proBNP in HF 

patients with diabetes. GDF-15 is a member of the transforming growth factor beta cytokine 

family that is expressed in the setting of oxidative stress, inflammation and tissue injury [34-

36]. These processes are known to underlie the development of diabetes and its complications 

[37]. sST2 is largely produced in the lungs and acts as a decoy receptor for interleukin-33, 

attenuating its systemic biological effects which include blunting myocardial hypertrophy and 

fibrosis, and inhibiting cardiomyocyte apoptosis [18, 38]. We have confirmed that GDF-15 

and sST2 levels are higher in HF patients with diabetes, in line with previous work [39-42]. 

Furthermore, circulating GDF-15 and sST2 have known prognostic value in acute and 

chronic HF, independent of plasma natriuretic peptides [42-47]. We have extended these 

findings to the subgroup of HF patients with diabetes. Our findings therefore suggest a 

possible role for GDF-15 and sST2 in risk stratification amongst HF patients with diabetes 

and in monitoring response to treatment [34, 48-53]. 

  

Diabetes was a strong independent predictor of the composite outcome of hospitalisation for 

HF or all-cause mortality in this HF cohort. This is in agreement with prior studies which 

have consistently shown worse cardiovascular outcomes in HF patients with diabetes, 

regardless of HF etiology and whether the ejection fraction is reduced or preserved [8, 54, 

55]. Furthermore, Kaplan-Meier survival analysis showed similar event rates in the diabetes 

group with above median GLS (≤ -9.9%) compared to those without diabetes and below 

median GLS. These findings are similar to data from the Candesartan in Heart failure: 

Assessment of Reduction in Mortality and morbidity (CHARM) study, which demonstrated 
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that patients with HF, preserved ejection fraction (EF> 40%), and diabetes had a greater rate 

of HF hospitalisation than those with lower ejection fraction (EF≤40%) and no diabetes [8]. 

These findings highlight the urgent need for therapeutic advances in patients with HF and 

concomitant diabetes. 

 

In this study, HF patients with diabetes had worse CMR markers of myocardial injury, 

inflammation, and fibrosis. The association between diabetes and elevated ECV remained 

after adjusting for potential confounders that differed between the diabetic and non-diabetic 

groups including age, hypertension, coronary artery disease and presence of LGE. 

Furthermore, diabetes remained associated with the presence of LGE in logistic regression 

models, even accounting for age, sex, hypertension and coronary artery disease. These 

findings are in agreement with prior studies, including a recent meta-analysis, which showed 

an association between diabetes and a higher degree of myocardial fibrosis as assessed by 

histology as well as ECV by CMR [11].  

 

Both focal and diffuse myocardial fibrotic processes are known to occur in patients with 

diabetes independently of co-morbid conditions, including coronary atherosclerosis and 

hypertension. Diffuse interstitial and perivascular fibrosis are structural hallmarks of diabetic 

cardiomyopathy, but focal replacement fibrosis can also be seen, even in the absence of 

coronary artery disease [56]. Several mechanisms may explain the fibrosis burden in diabetes. 

Hyperglycaemia is thought to upregulate the expression of profibrotic factors such as 

transforming growth factor beta 1 and down-regulate the activity of the matrix 

metalloproteinases [57]. Hyperglycaemia is also known to promote the formation of 

advanced glycation end products (AGEs) which can cross-link collagen in the interstitium, 

increasing their resistance to degradation. AGEs can result in generation of reactive oxygen 
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species and oxidative stress which further promotes a pro-fibrotic state [11]. Pro-

inflammatory cytokines and chemokines, as well as increased renin-angiotensin-aldosterone 

system activity in diabetes have also been implicated in the development of myocardial 

fibrosis. 

 

Native T1 values were higher in the diabetes group and may reflect interstitial expansion due 

to myocardial fibrosis as well as myocardial oedema affecting the cellular and interstitial 

compartments [58]. There is some disagreement in the literature regarding whether native T1 

values are increased in diabetes. Several studies have shown an association between diabetes 

and increased T1 [59-62]. Although a positive association was found between diabetes and 

native T1 in a recent meta-analysis, the result was not statistically significant [11]. The 

authors of that study suggested that the lack of statistical significance may have resulted from 

limited sample size of the included studies. Indeed, the diabetes cohort in the present study 

was larger than any of those in the included studies. Furthermore, T1 values are known to be 

dependent on a variety of factors, including field strength, pulse sequence, and region of 

measurement within the myocardium. In the present study, T1 maps were obtained at 3T 

using the same MOLLI sequence for all patients, and with experienced observers performing 

standardized analyses that may improve reproducibility and eliminate technical cofounders  

[63, 64]. Whilst it does appear that diabetes is associated with higher T1, larger studies 

controlling for the variability in T1 are required to more conclusively answer this question. 

 

Limitations 

 

One limitation of this study is the absence of measures of glycaemic control, which are 

known to be prognostic in patients with HF and diabetes [65]. However, STE GLS is known 
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to have prognostic value independent of glycaemic control in diabetes cohorts with preserved 

and reduced ejection fraction, and therefore this is unlikely to have altered the prognostic 

associations for GLS by CMR [16, 28]. Our HF cohort included patients with both ischaemic 

and non-ischaemic etiologies, as well as both preserved and reduced ejection fraction. 

Unfortunately, the study was not powered for analyses of these subgroups. Documented 

history of coronary artery disease did not associate with outcomes in the univariable analysis 

and therefore etiology of HF is unlikely to have affected the results. Finally, this was a single 

centre study using feature tracking software from a single vendor, limiting generalizability of 

the results.  

 

Conclusions 

Patients with HF and diabetes had worse CMR and plasma markers of injury, inflammation, 

and fibrosis, and an adverse prognosis. GDF-15 and sST2 showed incremental prognostic 

value beyond NT-proBNP in HF patients with diabetes. GLS is an important and independent 

prognostic marker in this group. Future studies should explore whether GLS-guided risk 

stratification and management can improve outcomes in this group of patients. 
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Figure Titles and Legends 

Figure 1. Flow chart of patient inclusion. Abbreviations: HF: heart failure; ECG: 12-lead 

electrocardiogram; CMR: Cardiovascular magnetic resonance; HCM: Hypertrophic 

cardiomyopathy. 

Figure 2. Event-free survival curves showing: (A) Adverse prognosis in patients with heart 

failure and diabetes; (B) Patients with diabetes and GLS worse than cohort median (-9.9%) had 

worst prognosis. Patients with either diabetes or GLS worse than median had similar outcomes. 

Abbreviations: DM: diabetes mellitus; GLS: global longitudinal strain 

Figure 3. Example of GLS measurement in apical 2-chamber view. Top panel shows a patient 

with heart failure, diabetes and GLS ≤ -9.9%. Bottom panel shows a patient with heart failure, 

diabetes and GLS > -9.9%. Centre panel: event-free survival curves showing adverse prognosis in 

patients with heart failure, diabetes and GLS worse than cohort median (-9.9%). Abbreviations: 

DM: diabetes mellitus; GLS: global longitudinal strain. 

Supplemental Figures 

Supplemental Figure 1. Event-free survival curves in patients with diabetes and above median 

GLS (-9.7%) stratified by: (A) NT-proBNP; (B) hs-TnT; (C) GDF-15; (D) sST2 and (E) Gal-3. 

NT-proBNP and GDF-15 demonstrated additional prognostic value in this group. Abbreviations: 

GLS: global longitudinal strain; NT-proBNP: N-terminal pro-brain natriuretic peptide; hs-TnT: 

high-sensitivity troponin T; GDF-15: growth differentiation factor 15; sST2: soluble ST2; Gal-3: 

galectin 3. 

Supplemental Figure 2. Event-free survival curves in patients with diabetes and below median 

GLS (-9.7%) stratified by: (A) NT-proBNP; (B) hs-TnT; (C) GDF-15; (D) sST2 and (E) Gal-3. 
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sST2 demonstrated additional prognostic value in this group. Abbreviations: GLS: global 

longitudinal strain; NT-proBNP: N-terminal pro-brain natriuretic peptide; hs-TnT: high-sensitivity 

troponin T; GDF-15: growth differentiation factor 15; sST2: soluble ST2; Gal-3: galectin 3. 
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Table 1. Baseline clinical characteristics of the cohort according to presence or absence of 

diabetes. 

 
No Diabetes Mellitus 

(n=156) 
Diabetes Mellitus 

(n=159) p Value 

 Clinical    

Age, years 56 ± 12 60 ± 10 <0.001 

Male sex, n (%) 129 (83) 126 (79) 0.436 

Heart rate, beats/min 71 [63-81] 75 [68-83] 0.020 

Systolic BP, mmHg 124 [111-138] 125 [113-143] 0.240 

Diastolic BP, mmHg 73 [66-82] 70 [61-80] 0.008 

Body mass index, kg/m2 26 [23-30] 27 [23-31] 0.412 

Co-morbidities, n (%)    

   Hypertension 80 (52) 120 (76) <0.001 

   Coronary artery disease 78 (52) 112 (72) <0.001 

   Atrial Fibrillation 22 (14) 29 (18) 0.331 

Medications at baseline, n (%)    

   Beta Blocker 135 (87) 146 (92) 0.436 

   ACEi or ARB 129 (83) 140 (88) 0.178 

   Mineralocorticoid antagonist 98 (63) 102 (64) 0.806 

   Diuretic 116 (74) 129 (81) 0.148 

      Statin 120 (77) 146 (92) <0.001 

NYHA Functional Class, n (%)   0.041 

   Class I 91 (58) 75 (47)  

   Class II 51 (33) 74 (47)  

   Class III 14 (9) 10 (6)  

MLWHF Score 12 [0-30] 14 [3-29] 0.299 

Haematocrit, (%) 43 ± 5 41 ± 6 <0.001 

Creatinine, μmol/L 91 [77-105] 96 [81-118] 0.016 

 Plasma Biomarkers    
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NT-proBNP, pg/mL 579 [232-1136] 1091 [326-2272] <0.001 

hs-TnT, ng/L 15 [9-22] 27 [14-41] <0.001 

GDF-15, pg/mL 1039 [753-1470] 2412 [1603-3331] <0.001 

sST2, ng/mL 26 [21-32] 28 [23-38] 0.038 

Gal-3, ng/mL 8.0 [7.0-10.0] 10.0 [8.0-12.0] <0.001 

 CMR Markers    

LVEDVi, mL/m2  112 [83-142] 99 [81-129] 0.029 

LVESVi, mL/m2 71 [43-105] 65 [40-94] 0.190 

SVi, mL/m2 39 [32-44] 35 [29-42] 0.005 

LVMi, g/m2 70 [59-89] 67 [55-83] 0.125 

LV ejection fraction, % 36 [25-49] 36 [26-49] 0.947 

GLS, % -10.1 ± 4.1 -9.8 ± 3.7 0.443 

LAVi, mL/m2 48 [38-68] 47 [33-65] 0.285 

LGE Type   0.003 

   Nil, n (%) 63 (40) 38 (24)  

   Non-ischaemic, n (%) 38 (24) 34 (21)  

   Ischaemic, n (%) 52 (33) 81 (51)  

      Both, n (%) 3 (2) 6 (4)  

Native T1, ms 1269 ± 42 1285 ± 42 <0.001 

ECV, % 28.8 ± 4.1 30.5 ± 3.5 <0.001 

Values are given as median [interquartile range], mean ± SD or number (percentage).  
Abbreviations:; ACEi: Angiotensin-converting enzyme inhibitor; ARB: Angiotensin II receptor 
blocker; NYHA: New York Heart Association; MLWHF: Minnesota Living with Heart Failure; NT-
proBNP: N-terminal pro-brain natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: 
growth differentiation factor 15; sST2: soluble ST2; Gal-3: galectin 3; LVEDVi: Left ventricular end-
diastolic volume indexed to body surface area; LVESVi: Left ventricular end-systolic volume index; 
SVi: Stroke volume index; LVMi: Left ventricular mass index; GLS: Global longitudinal strain; LAVi: 
Left atrial end-systolic volume index; LGE: Late gadolinium enhancement; ECV: Extracellular 
volume. 
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Table 2. Univariable and multivariable Cox regression models (stepwise selection) in the 

entire cohort for the primary outcome of all-cause mortality or heart failure hospitalisation. 

 

Univariable Model Multivariable Model  
(n=313)  

HR (95% CI) P Value HR (95% CI) p Value 

 Clinical     

Age (per 10-year increment) 1.20  
(0.97-1.47) 0.101    

Male sex 0.82 
(0.44-1.53) 0.537    

Body mass index 0.97  
(0.93-1.01) 0.137    

Smoking 1.17 
(0.74-1.86) 0.503   

Hypertension 0.86 
(0.54-1.37) 0.528   

Diabetes 2.33 
(1.43-3.79) <0.001 2.27  

(1.39-3.70) <0.001 

Coronary artery disease 1.54  
(0.94-2.53) 0.090    

NYHA Functional Class 1.61 
(1.15-2.25) 0.006 §  

Systolic blood pressure (per 10mmHg increment) 0.88  
(0.78-0.98) 0.020 §  

 Plasma Biomarkers     

NT-proBNP (per 100pg/mL increment) 1.01  
(1.01-1.02) <0.001 1.01  

(1.00-1.01) 0.02 

hs-TnT (per 1ng/L increment) 1.00  
(1.00-1.00) 0.301    

GDF-15 (per 100pg/mL increment) 1.02  
(1.01-1.03) <0.001 §  

sST2 (per 1ng/mL increment) 1.02  
(1.01-1.04) 

0.004 §  

Gal-3 (per 1ng/mL increment) 
1.09  

(1.04-1.14) <0.001 §  

 CMR Markers     

LVEDVi (per 10mL/m2 increment) 1.07  
(1.03-1.12) <0.001 §  

LVMi (per 10g/m2 increment) 1.10  
(1.01-1.22) 0.032 §  

LV ejection fraction (per 5% increment) 0.90  
(0.83-1.00) 

0.010 §   

GLS 
1.16  

(1.09-1.24) <0.001 
1.13  

(1.06-1.22) <0.001 

Presence of LGE 1.94 
(1.10-3.42) 0.022 §  

Native T1 (per 10ms increment) 1.09  
(1.04-1.15) <0.001 §   

ECV  1.06  
(1.02-1.11) 0.005 §  
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Abbreviations:; NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain 
natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation factor 
15; sST2: soluble ST2; Gal-3: galectin 3; LVEDVi: Left ventricular end-diastolic volume 
indexed to body surface area; LVMi: Left ventricular mass index; GLS: Global longitudinal 
strain; LGE: Late gadolinium enhancement; ECV: Extracellular volume. 
§ Assessed for inclusion in multivariable model but not retained. 
 
 
Table 3. Univariable and multivariable Cox regression models (stepwise selection) in the diabetes 

group for the primary outcome of all-cause mortality or heart failure hospitalisation. 

 

Univariable Model Multivariable Model 
(n=158)   

HR (95% 
CI) P Value HR (95% CI) p Value 

 Clinical     

Age (per 10-year increment) 1.21  
(0.90-1.60) 0.202    

Male sex 0.85 
(0.41-1.75) 0.665    

Body mass index 0.99  
(0.94-1.05) 0.827    

Hypertension 0.94  
(0.50-1.76) 0.838   

Diabetes Type 0.88  
(0.28-2.84) 0.836   

Smoking 0.80 
(0.46-1.40) 0.436   

Coronary artery disease 1.41  
(0.72-2.75) 0.314    

NYHA Functional Class 1.34 
(0.86-2.08) 0.200   

Systolic blood pressure (per 10mmHg increment) 0.86  
(0.75-0.98) 0.028 §  

 Plasma Biomarkers     

NT-proBNP (per 100pg/mL increment) 1.01  
(1.00-1.02) 0.007 §  

hs-TnT (per 1ng/L increment) 1.00  
(1.00-1.00) 0.864    

GDF-15 (per 100pg/mL increment) 1.02  
(1.01-1.03) 0.003 §  

sST2 (per 1ng/mL increment) 1.03  
(1.01-1.06) 0.003 §  

Gal-3 (per 1ng/mL increment) 1.06  
(1.00-1.12) 0.061   

 CMR Markers     

LVEDVi (per 10mL/m2 increment) 1.07  
(0.99-1.15) 0.076   

LVMi (per 10g/m2 increment) 1.01  
(0.88-1.15) 0.928   

LV ejection fraction (per 5% increment) 0.89  
(0.81-0.99) 0.031 §   
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GLS 1.15  
(1.06-1.25) 0.001  1.15 

(1.06-1.25) <0.001  

Presence of LGE 1.42 
(0.69-2.92) 0.342   

Native T1 (per 10ms increment) 1.07  
(1.00-1.14) 0.04 §   

ECV  1.06  
(0.98-1.15) 0.139   

Abbreviations:; NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain 
natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation factor 
15; sST2: soluble ST2; Gal-3: galectin 3; LVEDVi: Left ventricular end-diastolic volume 
indexed to body surface area; LVMi: Left ventricular mass index; GLS: Global longitudinal 
strain; LGE: Late gadolinium enhancement; ECV: Extracellular volume.  
§ Assessed for inclusion in multivariable model but not retained. 
 
 
Table 4. Multivariable Cox regression model (Clinical and Plasma biomarkers) in the diabetes 

group for the primary outcome of all-cause mortality or heart failure hospitalisation. 

 

Univariable Model Multivariable Model 
(n=158)   

HR (95% 
CI) P Value HR (95% CI) p Value 

 Clinical     

Age (per 10-year increment) 
1.21  

(0.90-1.60) 0.202    

Male sex 0.85 
(0.41-1.75) 0.665    

Body mass index 0.99  
(0.94-1.05) 0.827    

Hypertension 0.94  
(0.50-1.76) 0.838   

Diabetes Type 0.88  
(0.28-2.84) 0.836   

Smoking 0.80 
(0.46-1.40) 0.436   

Coronary artery disease 1.41  
(0.72-2.75) 0.314    

NYHA Functional Class 1.34 
(0.86-2.08) 0.200   

Systolic blood pressure (per 10mmHg increment) 0.86  
(0.75-0.98) 0.028 §  

 Plasma Biomarkers     

NT-proBNP (per 100pg/mL increment) 1.01  
(1.00-1.02) 0.007 §  

high-sensitivity troponin T 1.00  
(1.00-1.00) 0.864    

GDF-15 (per 100pg/mL increment) 1.02  
(1.01-1.03) 0.003 1.02  

(1.00-1.03) 0.035 

sST2 1.03  
(1.01-1.06) 0.003 1.03  

(1.00-1.05) 0.036 

Gal-3 1.06  
(1.00-1.12) 0.061   
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Abbreviations:; NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain 
natriuretic peptide; hs-TnT: high-sensitivity troponin T; GDF-15: growth differentiation factor 
15; sST2: soluble ST2; Gal-3: galectin 3. 
§ Assessed for inclusion in multivariable model but not retained. 
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