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Abstract 

Background & Aims: We aimed to investigate the effect of polygenic risk scores 

(PRSs) derived from individuals of European (EUR) ancestry on common diseases 

among individuals of South Asian (SAS) ancestry in the UK Biobank (UKB). 

Additionally, we studied the interaction between PRS and family history (FH) in the 

same population. 

Methods: To calculate the PRS, we used a previously published panel of SNPs derived 

from the EUR population and applied it to the individuals of SAS ancestry from the UKB 

study. We applied the PRS using summary statistics from genome-wide association 

studies (GWAS) for cardiometabolic and lifestyle diseases such as coronary artery 

disease (CAD), obesity, and type 2 diabetes (T2D). Each PRS was adjusted according 

to an individual's predicted genetic ancestry to derive an adjusted PRS (aPRS). We 

calculated the percentiles based on aPRS and divided them according to the percentiles 

into three categories: low, intermediate, and high. Considering the intermediate-aPRS 

percentile as a reference, we compared the low and high aPRS categories and 

generated the odds ratio (OR) estimates. 

Results: The risk of developing severe obesity for individuals of SAS ancestry was 

almost threefold higher for individuals with high aPRS than for those with intermediate 

aPRS, with an OR of 3.67 (95% CI = 2.47-5.48, P < 0.01). While the risk of severe 

obesity was lower in the low-aPRS group (OR = 0.19, CI = 0.05–0.52, P < 0.01). 

Comparable results were found in the EUR data, where the low-PRS group had an OR 

of 0.26 (95% CI= 0.24-0.3, P < 0.01) and the high-PRS group had an OR of 3.2 (95% CI 

= 3.1-3.3, P < 0.01). We observed similar results for CAD and T2D. Further, we show 

that SAS individuals with a familial history of CAD and T2D with high-aPRS exhibit 

further higher risk to these diseases, thereby implying a greater genetic predisposition 

to these conditions. 

Conclusion: Our findings suggest that using CAD, obesity, and T2D GWAS summary 

statistics predominantly from the EUR population have sufficient power to identify SAS 

individuals with higher genetic risk. With future GWAS recruiting more SAS participants 
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and tailoring the PRSs towards SAS ancestry, we believe that the predictive power of 

PRS would improve. 
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Background: 

Several genome-wide association studies (GWAS) for more than 5000 traits in GWAS 

Catalog(1) have been conducted to date, and very few of the GWASs have had 

significant success translating into the clinical setting (2). Hence, it is a significant 

milestone to translate GWAS findings to clinical settings, particularly for traits with high 

heritability. One of the drawbacks of the GWAS findings is that the identified genome-

wide significant SNPs do not have such a large effect size in most cases. However, a 

current approach of combining those SNPs to a single score known as a polygenic risk 

score (PRS) has become popular to enhance the accuracy of predicting individuals at 

risk and has thus shifted the focus of the genetic community towards the use of GWAS 

findings again(3). PRS can be a precious tool for risk stratification, particularly in 

identifying groups of people with extremely high or low genetic risk of developing a 

specific disease or trait. Moreover, based on our recent work and others, it has become 

clear that for certain traits high PRS along with rare disease-causing variants can further 

increase the individuals' risk of developing a disease compared to carriers without a 

high PRS (4–7).    

Identifying the risk SNPs using GWAS requires a considerable sample size as even 

most disease-related SNPs have relatively small effect sizes. Today, most of the larger 

GWASs are mainly conducted with individuals with European (EUR) ancestries. 

Although improving polygenic prediction in non-EUR populations are needed, studies on 

South Asian (SAS) population become the second most studied ancestry group after 

EURs. Other than that, all other ancestries constitute less than 5% of GWAS. This bias 

in GWAS results impedes the use of PRS on an absolute scale for several complex 

traits in non-EUR populations (8). Thus, despite ongoing efforts to increase global 
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genetics research diversity, it seems that it will take still some time to attain sufficient 

GWAS sample sizes to identify population-specfic risk SNPs. 

As mentioned earlier, PRS is a potent tool to identify the sub-populations at risk. 

However, this inability to use it across populations with different ancestries is an 

important research topic. This lack of portability of PRS is due to differences in linkage 

disequilibrium (LD), risk variants, effect sizes, and allele frequencies. Further, methods 

to genotype or impute the missing SNPs initially developed with EUR ancestry in mind 

can increase those differences (9). 

 

Several studies were being performed to study the portability of EUR-derived PRSs into 

other ancestries and an SAS specific PRS has been developed for CAD using 

previously published GWAS statistics (10). However, the majority of them had limited 

success (11–13). The PRS derived from EUR performed poorly in African population 

(14) and similar results were observed in a Latino/Hispanic population for some traits 

(15). While EUR-derived PRSs showed similar results for quantitative traits like blood 

count and anthropometric features, it performed poorly for blood pressure traits (16). 

Others have shown a connection between PRS and genetic ancestry (11,17). In other 

words, the studies show that applying PRSs derived from the EUR population directly 

on other ancestries might not be ideal. However, few studies used an approach to 

developing an ancestry-adjusted PRS (aPRS) that is mainly derived from EUR and can 

be transferred to other ethnicities (18). For example, a study showed a compromised 

solution where they found a minimal decrease in the prediction power of the PRS in 

SAS compared to EUR (19). Recently, it has been shown that in breast cancer, the PRS 

derived from EURs with an ancestry correction performed well in the SAS (13). 

 

Compared to other ethnicities, SAS are at an increased risk of developing complex 

diseases such as coronary artery disease (CAD), obesity,  and type 2 diabetes (T2D) 

(20). However, it is still unclear to what extent populations of EUR and SAS ancestry 

share the same genetic underpinnings of such cardiometabolic/lifestyle traits. The 

interplay between PRS, and family history (FH) in predicting the risk of various diseases 

has been a topic of interest in recent years (5,21–23). Although previous studies have 
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examined the independent effects of FH and PRS, there is a lack of systematic 

research on the relative contributions and overlap of these factors across different types 

of familial risk in SAS. 

 

Here, we systematically assessed the portability of the aPRS derived from EUR 

ancestry for obesity, CAD, and T2D to the SAS population and the interplay of FH and 

PRS in the same individuals. Hence, we used a published list of SNPs derived from the 

PGS catalog(24), then generated the aPRS and applied it to the EUR and SAS samples 

from the UK Biobank (UKB). 
 

Methods: 

Data Source 

The UKB is a prospective study that collects data over a long period and recruits 

volunteers aged between 40 and 69, mostly from Scotland, Wales, and England, 

totaling over 500,000 individuals. All participants have provided written consent and 

collected data is available for research purposes. The UK Biobank Axiom Array was 

used to generate genotyping data, which included around 850,000 variants and the 

imputation of over 90 million variants (25). 

Study cohort 

CAD and T2D diagnoses were based on self-reported illness codes and ICD-10 

diagnosis codes, including hospitalization records. Diagnosis of obesity was based on 

body mass index (BMI), with individuals having a BMI > 30 were considered obese. The 

UKB conducted quality control for the genetic data, and processed files were used in 

downstream analysis. We analyzed individuals of EUR and SAS ancestry and samples 

with discordant genotypic versus reported sex, sex chromosome aneuploidy, and high 

heterozygosity or missing genotype rates were considered as outliers (coded as “YES” 

in the fields 22001, 22019, and 22027 respectively) and excluded from further analysis. 

The outliers are defined as those coded as “YES” in the fields 22019, 22027, and 22001 

respectively. We included only individuals who are unrelated up to the second degree, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.20.23287470doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287470


and from each pair of related individuals, one member was randomly retained (kinship 

coefficient > 0.0884, according to the UKB). 

Polygenic risk score analysis 

PRSs were calculated using panel of SNPs identified in the previous studies (3,26) and 

the effect sizes were downloaded from PGS catalog (21) using the ids PGS000027, 

PGS000013, PGS000014 for BMI, CAD and T2D respectively. PRSice-2 was used to 

generate the PRS, which account automatically for allele-flipping and removing 

ambiguous SNPs (27). Strand-ambiguous SNPs are the ones with A/T or C/G alleles. 

Since many GWAS studies do not report the strand assignments, it is a standard 

practice in PRS calculations to exclude ambiguous SNPs. Since we already obtained 

the list of SNPs for the PRS calculation, we utilized the '–no clumping' and '–no regress' 

parameters along with the other default parameters, to bypass the time-consuming 

steps of regression and clumping.   PRS values were standardized using the mean and 

standard deviation (PRS). 

Adjustment of PRS 

Based on an previously applied approach (5,18) to reduce the variation in the PRS 

distribution due to genetic ancestry, we calculated an adjusted PRS (aPRS). A linear 

regression model was fitted using the first four principal components (PC) of ancestry 

derived from UKB (PRS ~ PC1 + PC2 + PC3 + PC4). A predicted PRS was calculated 

based on this model. Finally, the aPRS was calculated by subtracting the predicted PRS 

from the raw PRS and standardized using the mean and standard deviation. 

Statistical analysis 

After generating the aPRS, the next step involved stratifying SAS individuals based on 

aPRS percentiles. We divided individuals by their aPRS percentiles into three groups: 

<20% (low), 20-80% (intermediate), or >80% (high). First, we used logistic regression to 

compare low and high aPRS categories to an intermediate reference group, adjusting 

for age, sex, and the first four ancestry PCs. Second, we calculated odds ratios to 

determine the combined effect of aPRS, family history (FH), and disease development, 
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using the "Intermediate" aPRS samples without FH as the reference group and 

adjusting for covariates such as sex, age, and the first four ancestry PCs. 

Model performance 

For assessing the performance of the different models, the area under the curve (AUC) 

was used. Using the R package pROC, estimates with 95% confidence intervals (CIs) 

and AUC were computed. We divided the data to (75%) training and (25%) testing 

datasets. Logistic regression was used on the training data set, and model prediction 

and AUC calculations were made using the testing data set. 

 

Survival analysis 

To calculate the lifetime cumulative risk based on PRS strata and FH status, a Cox 

proportional hazard model was used. Age served as the time scale, indicating span 

between the age at diagnosis and the event for observed cases and the age at the most 

recent visit for censored controls. Adjusted survival curves were produced considering 

the aPRS, age, sex, FH, and the first four ancestry PCs. R packages survival and 

survminer were used to perform Cox proportional hazard models, and R 4.2.2 was used 

for all statistical calculations. 

Results: 

UK biobank dataset description 

We identified a total 24,156 CAD cases among individuals of EUR ancestry and 822 

SAS cases, with a mean age of 61.51 and 58.71 years at recruitment, respectively. The 

remaining individuals were considered controls. For T2D, we identified 25,526 cases 

among EUR individuals and 1,718 cases among SAS individuals, with a mean age of 

60.39 and 57.42 years, respectively. For obesity, we identified 8,463 EUR and 105 SAS 

cases, with a mean age of 55.73 and 53.6 years, in EUR and SAS respectively 

(Table1). 
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In the SAS population, there were significantly more CAD cases with a positive FH of 

CAD (55.6%) than controls (40.72%) with OR 1.98 [1.70-2.31], P < 0.01. Comparing 

cases with a positive FH of T2D (64.78%) to controls with positive FH (49.84%), CAD 

were found to be significantly more common (OR = 2.09 [1.86-2.34], P < 0.01) in cases 

with a positive FH. 
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Table 1: Characteristics of the participants by CAD, T2D, and Obesity diagnosis. coronary artery disease (CAD), type 2 diabetes (T2D), European (EUR), South 
Asian (SAS) 

 CAD T2D Obesity 

Ethnicity EUR SAS EUR SAS EUR SAS 

Diagnosis Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls Cases Controls 

Participants, N 24156 428610 822 7842 25526 427240 1718 6946 8463 442811 105 8358 

Male, N  
(%) 

18514 
(76.64) 

188835 
(44.06) 

690 
(83.94) 

3959 
(50.48) 

15756 
(61.73) 

191593 
(44.84) 

1055 
(61.41) 

3594 
(51.74) 

2770 
(32.73) 

203841 
(46.03) 

29 
(27.62) 

4457 
(63.33) 

Female, N  
(%) 

5642 
(23.36) 

239775 
(55.94) 

132 
(16.06) 

3883 
(49.52) 

9770 
(38.27) 

235647 
(55.16) 

663 
(38.59) 

3352 
(48.26) 

5693 
(67.27) 

238970 
(53.97) 

76 
(72.38) 

3901 
(46.67) 

Age, mean 
(SD) 

61.51 
(6.19) 

56.53 
(8.03) 

58.71 
(7.69) 

53.05 
(8.35) 

60.39 
(6.77) 

56.58 
(8.04) 

57.42 
(7.79) 

52.64 
(8.34) 

55.73 
(7.64) 

56.81 
(8.02) 

51.99 
(8.11) 

53.6 
(8.47) 

Family history 
of CAD, N (%) 

14759 
(61.1) 

188340 
(43.94) 

457 
(55.6) 

3193 
(40.72) 

13131 
(51.44) 

189968 
(44.46) 

754 
(43.89) 

2896 
(41.69) 

4276 
(50.53) 

198168 
(44.75) 

50 
(47.62) 

3520 
(42.12) 

Family history 
of T2D, N (%) 

5290 
(21.9) 

90086 
(21.02) 

431 
(52.43) 

4144 
(52.84) 

10120 
(39.65) 

85256 
(19.96) 

1113 
(64.78) 

3462 
(49.84) 

2737 
(32.34) 

92324 
(20.85) 

69 
(65.71) 

4420 
(52.88) 
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Ancestry correction and PRS distribution within the UKBB cohort 

 

When studying individuals of a particular ancestry, it is crucial to apply ancestry 

correction using principal components (PCs) derived from the reference population. This 

step ensures a normal distribution of both PRS and aPRS (aPRS_CAD, aPRS_T2D, 

and aPRS_BMI) as shown in Figure 1. However, when using only PRS without any 

ancestry correction, we observed a striking difference in the number of individuals 

assigned to high PRS (where high PRS was defined as an individual belonging to a 

PRS percentile >80%). Specifically, there were significant variations between ethnic 

groups (EUR and SAS). For example, 18.5% of EUR samples (83,955/452,766) had a 

high PRS, while almost all SAS samples (96.2%, 8,331/8,664) showed a high PRS. 

However, applying aPRS reduced this variation. For instance, 20% of EUR samples 

(90,627/452,766) and 19.2% of SAS samples (1,659/8,664) had a high aPRS, leading 

to a more comparable distribution of PRS across ethnic groups. Similar results have 

been observed for CAD and Obesity as well (Table 2). Our findings are in line with a 

previous study where they show that ancestry correction is crucial to place an individual 

in the correct aPRS percentile for disease risk prediction. 

Table 2: Comparison of the distribution of (a) PRS (defined as PRS percentile >80%).  

Coronary artery disease (CAD), type 2 diabetes (T2D), European (EUR), South Asian (SAS) 

 Ancestry correction EUR samples with High PRS SAS samples with High PRS 

T2D PRS 83955 (18.5%) 8331 (96.2%) 

adjusted PRS (aPRS) 90627 (20%) 1659 (19.2%) 

CAD PRS 89,438 (19.8%) 2,848 (32.9%) 

adjusted PRS (aPRS) 90,440 (20%) 1,846 (21.3%) 

Obesity PRS 85853 (19%) 6433 (74.3%) 
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Figure 1. The distribution of PRSs before and after ancestry corrections across the various diseases.  

European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes (T2D), and adjusted polygenic 

risk scores (aPRS). 

 

 

adjusted PRS (aPRS) 90794 (20.1%) 1492 (17.2%) 
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We next examined the performance of aPRS on SAS individuals. The aPRS were 

significantly higher in cases than in controls for all three phenotypes. The ORs of aPRS 

as a continuous variable were 1.53 (95% CI, 1.41-1.65, P < 0.01), 1.48 (95% CI, 1.37-

1.60, P < 0.01), and 3.34 (95% CI, 2.59-4.34, P < 0.01) in SAS for T2D, CAD and 

obesity respectively. These ORs were comparable to the ones using the EUR PRS, 

which were 1.81 (95% CI, 1.78-1.84, P < 0.01), 1.67 (95% CI, 1.64-1.10, P < 0.01), and 

2.62 (95% CI, 2.56-2.69, P < 0.01) for T2D, CAD and obesity respectively. 

 

In the SAS population, aPRS improved the model discrimination over age, sex, and PCs 

(covariates). The AUCs for obesity, CAD and T2D obtained from the models that 

included PRS and covariates (0.79 (95% CI, 0.75-0.83), 0.79 (95% CI, 0.77-0.8), 0.69 

(95% CI, 0.68-0.7)) were higher than those obtained from models based on only the 

covariates (0.67 (95% CI, 0.62-0.72), 0.76 (95% CI, 0.75-0.78), 0.67 (95% CI, 0.66-

0.68)). The AUCs for obesity, CAD, and T2D were comparable to the EUR-based 

models including PRS and covariates: 0.74 (95% CI, 0.73-0.75), 0.78 (95% CI, 0.78-

0.79), 0.7 (95% CI, 0.7-0.71) (Figure 2). 
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Figure 2. Comparison of models AUC including aPRS and covariates (age, sex, first four principal components). 
European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes (T2D), and adjusted polygenic 

risk scores (aPRS). 
 

 

We stratified individuals based on their PRS or aPRS into three groups: low (< 20%), 

intermediate (20-80%), or high (> 80%) risk. In the SAS population, using the 

intermediate aPRS as reference, the CAD risk ranged from 0.56 (95% CI, 0.45–0.7) for 

individuals with low aPRS to 1.72 (95% CI, 1.44–2.05) for individuals with high PRS. 

The ORs for CAD based on PRS strata in SASs was comparable to those in EURs; the 

CAD risk ranged from 0.53 (95% CI, 0.51–0.56) for those with low aPRS to 2.06 (95% 

CI, 2.0–2.12) with high aPRS. The same trend was also seen for obesity and T2D. In 

SASs, people in the high obesity risk group had an OR of 3.67 (95% CI, 2.47–5.48), 

comparable to the one for high EUR risk of 3.2 (95% CI, 3.05-3.33). T2D risk was 

calculated in SASs in the high group as 1.55 (95% CI, 1.36–1.77) and as 1.87 (95% CI, 

1.81-1.92) in EURs (Figure 3).  
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Figure 3. Odds ratio for CAD, T2D, and Obesity based on aPRS strata.  
European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes (T2D), and adjusted polygenic 
risk scores (aPRS). If a p-value is less than 0.01, it is flagged with two stars (**). 

 

 

 
Individuals with a positive FH and high aPRS showed a higher risk of developing CAD 

compared to those with no FH and intermediate PRS (Figure 4).  This trend was 

comparable in both SAS and EUR populations. In SAS, those with both positive FH and 

high aPRS had a five-fold increased OR of developing CAD compared to those with low 

aPRS and no FH, 3.44 (95% CI, 2.7-4.4). This was comparable to CAD ORs for EURs, 

ranging from 0.6 (CI=0.52-0.6) with no FH and low PRS to 3.85 (95% CI, 3.73-4.01) with 

FH and high PRS. No significant interaction was observed between FH status and PRS 

in both EUR and SAS individuals (p=0.12, and p=0.11, respectively). Notably, in SAS 

and EUR, individuals with negative FH and high aPRS had comparable risks of 
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developing CAD as those with positive FH and intermediate aPRS (2-fold risk). 

However, individuals with low aPRS, even with a positive FH, had a CAD risk 

comparable to the reference group. The same trend was also shown in T2D. 

 
 

 
Figure 4. Odds ratio for CAD, T2D, and obesity based on aPRS strata and FH status.  
European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes (T2D), family history (FH) and 
adjusted polygenic risk scores (aPRS). If a p-value is less than 0.01, it is flagged with two stars (**). 

 

 

 

 

The cumulative CAD incidence among SAS with positive FH increases from 46% with 

low aPRS to 75% with high aPRS by age 70 (Figure 5). Notably, SAS individuals with 

an intermediate aPRS and a positive FH had a cumulative CAD incidence (65%) 
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comparable to those with a high aPRS and a negative FH (63%). The cumulative 

incidence of T2D among SAS individuals ranges from 58% with a negative FH and low 

aPRS to 95% with a positive FH and high aPRS. Cumulative incidence of T2D among 

individuals with high-aPRS of SAS ancestry (95%) were higher than EUR individuals 

(70%) in the corresponding PRS groups. A similar trend was observed in CAD. 

 

 
Figure 5: Cumulative incidence of CAD, T2D, and obesity based on aPRS strata and FH status.  

European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes (T2D), family history (FH) and 

adjusted polygenic risk scores (aPRS). 

 

 

  

 Discussion 
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Extending the previous studies, we aimed to investigate the transferability of EUR-

derived PRSs to the SAS population and explore the relationship between PRS and FH 

in contributing to the burden of CAD, T2D and obesity. The findings of this study using 

UK Biobank data demonstrate that an aPRS based on a large-scale GWAS of 

cardiometabolic diseases in EUR ancestry can identify individuals with high risk of 

disease predisposition in the SAS population in a comparable manner to those of EUR 

ancestry. Additionally, the aPRS stratifies SAS individuals with and without positive FH 

for both T2D and CAD, and a low aPRS compensates for the effect of FH, while a high 

PRS being linked to a considerably elevated risk. Among high aPRS individuals with 

positive FH, we noticed an increased cumulative incidence in individuals of SAS 

ancestry compared to EUR individuals stratified by PRS (Figure 5). 

It has been shown that the UKB is a valuable resource for evaluating the utility of PRS, 

as it provides both phenotypic and genotypic data (28). While the majority of UKB 

participants have EUR ancestry, the dataset involves more than 20,000 participants of 

self-reported non-EUR. 

However, a major challenge with using PRS in clinical settings is that the distribution of 

genetic variants can vary widely among different ethnic populations (8). This can result 

in inaccurate predictions of disease risk and hinder the validation of PRS in diverse 

populations (see Figure 1).  The observed dissimilarity between the distributions for 

EURs and SASs highlights the need of adjusting for the correct ancestral background to 

accurately assign an individual to their respective percentile within the reference 

distribution. 

To address this issue, we have used a technique called population structure adjustment 

(19), which involves accounting for the genetic differences between different 

populations when calculating PRS. By adjusting for population structure, we minimized 

the impact of genetic variability on the accuracy of PRS predictions and facilitate the 

validation of PRS in diverse populations. 

The generalizability of the study's findings is subject to limitations stemming from 

several factors. The study participants were recruited exclusively within the UK, 
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including individuals of EUR and SAS ancestry. Thus, healthcare access and non-

genetic risk factors may be more comparable among these ethnic groups as they would 

be expected using two cohorts recruited in EUR and SAS separately. Nevertheless, it is 

important to acknowledge that socioeconomic determinants, lifestyle choices, and 

health disparities may differ across various ethnic groups even living in the same region. 

Although certain risk variants are likely specific to certain populations, the findings 

indicating similar performance of the PRS across ancestry groups suggest that non-

EUR groups, including SAS, may share some of the identified risk variants found in 

EUR-based GWAS for cardiometabolic disorders. 

The findings of our study reveal that a higher PRS was found to be associated with an 

increase in obesity, T2D and CAD cases among individuals of SAS ancestry. However, 

the performance of the EUR-based PRSs was observed to be inadequate in the African 

(AFR) population, suggesting the existence of ancestry-specific differences (29). Hence, 

PRSs should be evaluated carefully by ancestry groups to assess their transferability 

across ancestries and diseases. Whenever possible PRS should be constructed based 

on GWAS based on the same ancestry group(30). 

PRS based on EUR GWAS may not be ideal for all diseases in non-EUR groups but 

can aid in risk assessments for some diseases(31). Various strategies, such as 

deferring implementation until ancestry-specific GWAS are available or modifying 

current PRS with clear limitations for specific individuals or groups, can be used to 

evaluate PRS usefulness. Methodological advancements utilizing local ancestry or 

GWAS statistics from diverse populations will enhance the performance of PRS across 

different ancestry groups. In the meanwhile, we validated the efficacy of the latter 

strategy for risk categorization in SAS individuals using and adjusted PRS from the EUR 

population.  

The increasing availability of data from larger and more diverse populations, coupled 

with technological advancements, has spurred interest in the clinical adoption of PRS. 

Recent research has demonstrated that combining clinical risk scores with PRS can 

help identify more people who are at risk of developing T2D, especially in SAS 
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populations. Our study provides a potential model for laboratories and health systems 

seeking to utilize a EUR-derived PRS in SAS populations. Additionally, our study 

contributes to literature that supports the use of PRS and FH as complementary 

measures in assessing inherited disease susceptibility for T2D and CAD (5). 

Conclusion 

Taken together, our study provides evidence supporting the transferability of EUR-

derived PRSs to SAS populations for identifying individuals at high risk of T2D, obesity 

and CAD. Our findings emphasize the importance of considering both polygenic risk 

and family history in assessing disease risk in clinical practice, which can improve risk 

prediction and inform personalized prevention and management strategies for these 

common non-communicable diseases. To assess the clinical utility and cost-

effectiveness of implementing these measures in diverse populations, further research 

is needed. 
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Figure 1: The distribution of PRSs before and after ancestry corrections across 

the various diseases.  

European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes 

(T2D), and adjusted polygenic risk scores (aPRS). 

Figure 2: Comparison of models AUC including aPRS and covariates (age, sex, 

first four principal components). 

European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes 

(T2D), and adjusted polygenic risk scores (aPRS). 

Figure 3: Odds ratio for CAD, T2D, and Obesity based on aPRS strata.  
European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes 
(T2D), and adjusted polygenic risk scores (aPRS). If a p-value is less than 0.01, it is 
flagged with two stars (**). 

 

Figure 4: Odds ratio for CAD, T2D, and obesity based on aPRS strata and FH 
status.  
European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes 
(T2D), family history (FH) and adjusted polygenic risk scores (aPRS). If a p-value is less 
than 0.01, it is flagged with two stars (**). 

 

Figure 5: Cumulative incidence of CAD, T2D, and obesity based on aPRS strata 
and FH status.  

European (EUR), South Asian (SAS), coronary artery disease (CAD), type 2 diabetes 

(T2D), family history (FH) and adjusted polygenic risk scores (aPRS). 
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