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<Abstract> 

Deep-intronic variants often cause genetic diseases by altering RNA splicing. However, 

these pathogenic variants are overlooked in whole-genome sequencing analyses, because 

they are quite difficult to segregate from a vast number of benign variants (approximately 

1,500,000 deep-intronic variants per individual). Therefore, we developed the 

Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing (PDIVAS), 

an ensemble machine-learning model combining multiple splicing features and regional 

splicing constraint metrics. Using PDIVAS, around 27 pathogenic candidates were 

identified per individual with 95% sensitivity, and causative variants were more 

efficiently prioritized than previous predictors in simulated patient genome sequences. 

PDIVAS is available at https://github.com/shiro-kur/PDIVAS. 
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Pathogenicity prediction, RNA splicing, Deep intron, Non-coding region, Genomics, 
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<Background> 

Causative variants of Mendelian diseases remain to be determined in 50-75% of 

patients, regardless of the technical progress of whole-exome sequencing (WES) and 

whole-genome sequencing (WGS) [1-4]. One of the major obstacles in the diagnostic 

process is the technical difficulty of evaluating genetic variants in deep-intronic regions. 

Intronic variants with splice alterations have been reported as the causative variants of 

dystrophinopathy, neurofibromatosis type I, and inherited retinal diseases [5-10] because 

these splice-altering variants (SAVs) create pathogenic pseudoexons or extend existing 

exons, by affecting recognition by splicing factors (e.g., small nuclear ribonucleoprotein 

and RNA-binding proteins). (Fig. 1a). The resulting splicing alterations subsequently lead 

to mRNA destabilization by nonsense-mediated decay (NMD) or functional defects in 

encoded proteins. Previously, most of the pathogenic deep-intronic SAVs were discovered 

through the “RNA-based” diagnosis using RT-PCR or RNA sequencing on patient-

derived cells or tissues [11-13]. However, causative genes are often expressed in patients’ 

specific tissues, such as the brain and heart, which are rarely available to clinicians. 

   In contrast to the RNA samples, the genetic variants of almost all genes can be 

identified through WGS analysis on blood or skin samples, which are readily accessible. 

However, distinguishing pathogenic deep-intronic variants from the vast number of 

benign variants is challenging owing to the presence of over 1,800,000 intronic variants 

in an individual [14]. Therefore, the variants must be filtered through a computational 

process with pathogenicity predictors to enable clinicians to manually evaluate the 

candidate variants.  

In this study, we present a novel pathogenicity predictor for deep-intronic variant 

prioritization, called Pathogenicity predictor for Deep-Intronic Variant causing Aberrant 

Splicing (PDIVAS). We demonstrate that PDIVAS offers a clinically applicable strategy 

for deep-intronic variant prioritization in the diagnosis of rare genetic diseases. 
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<Method> 

Variant annotation 

The effect of variants on genes was annotated by the ensemble variant effect predictor 

(VEP) (version 105, GRCh37) by referring to one transcript per genome region selected 

by the “--pick_allele_gene” option. The transcript annotation was based on GENCODE 

V19 [15, 16]. We selected deep-intronic variants according to HGVS nomenclature that 

describes the relative position of the variant within the gene [17]. The annotation of allele 

frequency in the gnomAD WGS database (r.2.0.1) was conducted through the VEP “--

custom” option referring to the tabix-indexed VCF file downloaded from the Ensembl 

FTP site [18]. 

The features from SpliceAI (delta_gain_max, delta_gain_mean, and raw_gain_mean) 

were obtained from the output-customized SpliceAI whose original version was 1.3.1. By 

default, SpliceAI only outputs four delta scores of acceptor gain/loss and donor gain/loss, 

which are calculated by subtracting the splice site score on reference from the alternative 

sequence with a variant of interest  [19]. Our customized SpliceAI script outputs the 

raw scores for the alternative sequence before subtraction, as well. Furthermore, while 

default SpliceAI converts the delta scores: acceptor/donor gain to zero when the predicted 

site matches the nearest annotated splice site on the gene (with the “-m” mask option), 

we extended the mask function to all of the referred annotated splice sites on the gene to 

reduce the number of false positives. The SpliceAI delta_gain_max and mean scores were 

calculated as the maximum and mean values of acceptor and donor gain delta scores, 

respectively. The SpliceAI raw_gain_mean score was calculated as the mean value of the 

raw scores of acceptors and donors. And finally, SpliceAI predictions were performed 

with the distance option of “-d 300”. 

The ConSplice feature was obtained from the score-precomputed bed file of the 

best_splicing_constraint_model provided by the authors [20]. MaxEntScan prediction of 

the variant’s effect on splicing was performed using the plugin module of VEP [21-23]. 

The feature-extraction algorithm from MaxEntScan is described in Supplemental Fig. 1, 

which corresponds to the interpretation algorithm of Shamsani et al. [23].  

Predictors to be compared to PDIVAS were SpliceAI, Pangolin [24], ConSpliceML 

[20], MaxEntScan, and CADD-Splice [25], which were selected based on the following 

criteria: 1) the program or the precomputed score file is freely available, 2) the program 
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can assess deep-intronic variants, and 3) the program is operated in a Linux environment 

and can be applied to large-scale variant analysis. SQUIRLS and SPiP also matched these 

criteria, but their developers recognized their lower performance on deep-intronic SAVs 

because of the limited number of training datasets [26, 27]. Therefore, we did not include 

them in this comparison. Pangolin (v1.0.1) was installed and run with the mask option (-

-mask True) and distance option (-d 300). To annotate ConSpliceML, we downloaded the 

score-precomputed VCF file provided by the authors and converted the genome version 

from GRCh38 to GRCh37 using Picard LiftoverVcf (v.2.27.1). The annotation of 

ConSpliceML was conducted through the VEP “--custom” option, referring to the 

precomputed VCF file on the GRCh37 version. Annotations in CADD-Splice (v1.6) were 

conducted on plugin modules of the Variant Effect Predictor (VEP). BCFtools, bash 

scripts, cyvcf2, and Python scripts were used to process the VCF files used in this research 

[28, 29]. 

 

Curated dataset of deep-intronic variants 

To focus solely on the variants within genes responsible for Mendelian diseases, we 

collected gene lists from the Online Mendelian Inheritance in Man (OMIM) and the 

Clinical Genomic Database (CGD) [30, 31]. In the OMIM gene list, there were many 

genes whose causative relationships with the registered phenotype were unclear, as well 

as those that only contributed to the susceptibility to multifactorial diseases (e.g., diabetes 

and asthma). To only focus on the genes whose contribution to the phenotype is clear in 

a way of Mendelian inheritance, we extracted genes with annotations of the mode of 

inheritance (autosomal dominant/recessive, X-linked, Y-linked), and the phenotype 

mapping key of the molecular basis of the diseases is known. Then, the OMIM and CGD 

gene lists were combined and non-coding genes were filtered out according to the 

GENCODE V19 annotation, resulting in a final list of Mendelian disease genes 

(https://github.com/shiro-kur/PDIVAS). 

For the benign dataset, the variant lists from the 1000 Genomes Project (Phase 3, 

GRCh37) were downloaded from the UCSC FTP site. Variants on chromosomes 1, 3, and 

5 whose sequences were not used to train SpliceAI were extracted to reduce data size. 

Additionally, copy number variants and variants in the multi-nucleotide variant format 
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were removed because they could not be evaluated with many of the predictors used in 

this research. We annotated the remaining variants with VEP and extracted only deep 

intronic variants (≥50 bp away from the nearest splice sites) with ≥5% allele frequency 

in the 1000 Genomes Project and gnomAD population located on Mendelian disease 

genes. Subsequently, Pathogenic deep-intronic SAVs were collected from Human Gene 

Mutation Database Professional online (HGMD) 2020 and the Keegan et al. dataset [7, 

32]. By utilizing the search function of HGMD, we extracted single nucleotide variants 

(SNVs) labeled with “disease-causing” and “splicing”, and located more than 30 bp away 

from the nearest splice sites. After we annotated the variants with VEP, only deep-intronic 

variants and variants with <1% allele frequency in the gnomAD population were 

extracted. The extracted variants were checked to determine if splice alterations were 

experimentally validated by reading all of the original reports. The variants whose splice 

alterations were validated using RT-PCR or RNA sequencing for patient RNA or 

minigene/midigene-expressed RNA were included in the final variant dataset. Other 

variants whose aberrant splicing was only predicted or not specified were filtered out. 

Keegan et al. [7] also cataloged deep-intronic SAVs with experimental validation in a 

process independent of HGMD and our reinspection. From the Keegan et al dataset, SNVs 

and short deletions (~54nt) were obtained and annotated with VEP to extract only deep-

intronic variants, those with <1% allele frequency in the gnomAD population, and located 

on the Mendelian disease genes. Non-overlapped SAVs were added to the reinforced 

HGMD dataset to complete the pathogenic dataset. Through the curation process, the 

relative variant positions to the nearest splice sites of the pseudoexons or extending exons 

were also checked and classified as “splicing motif region” or “outside” as described in 

Fig. 1d. The splicing motif region (region of the splice donor and acceptor site motif) 

conforms to the region defined in MaxEntScan [21].  

 

Model training and testing 

For model training and evaluation of PDIVAS, a random forest model provided by scikit-

learn (version 1.0.2) was used. We randomly split the curated dataset into 70% for model 

training and the remaining 30% for testing the trained model. Furthermore, within the 

training dataset, five-fold cross-validation was performed. In this process, the training 

dataset was equally split into five sub-datasets. Four of the five sub-datasets were used 
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for parameter tuning of random forest, and the remaining sub-dataset was used to evaluate 

the trained model. This process was iteratively repeated for all five combinations of the 

training and test sub-datasets. Through five-fold cross-validation, the best combination of 

hyperparameters was determined when the average precision metrics, calculated as the 

mean of the five iteration results were maximized. The tuned hyperparameters in this 

model were: 1) the number of decision trees in the forest and the maximum depth of each 

tree; 2) the ratio of samples extracted from the whole training dataset to train each tree; 

and 3) the number of features to be used in each tree. Using these optimal 

hyperparameters, the five-fold cross-validation was conducted again to compare the 

classification performance of the intermediate models of PDIVAS with SpliceAI and 

Pangolin and evaluate the stability of the PDIVAS performance. Finally, the random 

forest model was trained on the entire training dataset using the optimized 

hyperparameters. The final PDIVAS model was evaluated on the test dataset with 

precision, recall, and Matthews correlation coefficient (MCC) metrics for each score 

threshold. To calculate the average precision, we computed the weighted mean of the 

precision achieved at each threshold, divided by the difference in recall from the previous 

threshold. This metric is more accurate than the area under the curve and does not require 

empirical curve construction [33]. We employed the average precision and MCC for the 

performance comparison because they were stable even when the classes in a dataset were 

highly imbalanced. The predictive performance of PDIVAS was compared to the 

SpliceAI_delta_gain_max, Pangolin gain score, ConSpliceML, MaxEntScan, and 

CADD-Splice Phred scores. ConSpliceML and CADD-Splice could not score some of 

the variants because their score-precomputed files did not cover all variant types, such as 

genomic insertion and deletion. When we calculated the statistical measures, we only 

referred to the variants with scores. 

 

Variant prioritization for the 1000 Genomes Project 

We referred to the same variant lists of the 1000 Genomes Project under the sub-heading 

“Curated dataset of deep-intronic variants”, above. Variants on chrY were filtered out 

because the ConSplice score to calculate the PDIVAS score was not available there. 

Additionally, copy number variants and variants in the multi-nucleotide variant format 

were removed because they could not be evaluated with many of the predictors used in 
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this study. From the remaining variants, deep-intronic variants of 20,731 protein-coding 

genes defined on GENCODE V19 were extracted. Subsequently, variants on Mendelian 

disease genes and variants with <1% allele frequency in both the 1000 Genomes Project 

and gnomAD populations were extracted as candidates for pathogenic variants. Finally, 

the rare variants were scored by PDIVAS, SpliceAI, and Pangolin and filtered by 

thresholds based on the sensitivity of pathogenic SAVs.  
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<Results>   

We developed PDIVAS, a novel machine-learning framework to evaluate the 

pathogenicity of deep-intronic variants. PDIVAS was constructed and optimized through 

(1) setting up a labeled dataset of known pathogenic and benign deep-intronic variants, 

(2) selecting a set of features to classify pathogenic and benign variants, and (3) training 

the random forest model with selected features. Finally, we evaluated the performance of 

PDIVAS versus previous predictors through the classification of pathogenic and benign 

deep-intronic variants, WGS analysis in control individuals, and simulation analysis of 

patient genome sequences. 

 

Curating a dataset consisting of pathogenic and benign deep-intronic variants 

To train the PDIVAS model on truly pathogenic deep-intronic variants, we surveyed 

the original reports of the variants and collected only those pathogenic variants with 

experimentally validated splice alterations. As data sources of pathogenic deep-intronic 

SAVs, we referred to HGMD and a pathogenic pseudoexon dataset constructed by Keegan 

et al [7, 32]. From HGMD, we extracted 432 variants located within deep introns out of 

26,610 SNVs annotated as both "disease-causing" and "splicing mutation" (Fig. 1b). In 

this study, we defined deep introns as intronic regions ≥50 bases from the nearest 

annotated splice sites (Fig. 1a). Reinspection of all the originally reported papers revealed 

that some lacked experimental validation of their occurrence of aberrant splicing by either 

splicing minigene/midigene assays or patient-derived RNA sample analysis. To construct 

a high-quality training dataset, we used only pathogenic SAVs with such experimental 

evidence. Furthermore, we focused on the Mendelian diseases genes and excluded 

polygenic diseases and those whose mode of inheritance was obscure. The lists of 4,429 

genes (hereinafter called Mendelian disease genes) were constructed from the OMIM and 

the CGD. This filtering also clarifies the causality of the variants and the patient 

phenotypes. We then extracted variants with <1% allele frequency in the gnomAD 

population. These procedures yielded 290 variants curated as pathogenic SAVs from 

HGMD (Fig. 1b).  

The SAVs curated by Keegan et al (n=359) were already checked with experimental 

validation. We also extracted those on Mendelian disease genes with <1% allele 

frequency in the gnomAD population. The obtained variants were added exclusively to 
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the variant list obtained from HGMD. Our combined approach yielded a final list of 374 

pathogenic deep-intronic SAVs located in 180 genes. Among them, 335 SAVs (89.6%) 

were reported to cause pseudoexons and 34 SAVs (9.1%) caused extending exons, while 

the remaining 5 SAVs (1.3%) were reported to cause both pseudoexons and extending 

exons (compound type) (Fig. 1c). The majority of the variants caused aberrant splicing 

by creating novel splice donors (59.4%) or splice acceptors (19.5%) (Fig. 1d, e). The other 

variants were outside the splicing motif regions and might influence splicing enhancers 

or silencer elements, leading to aberrant splicing.  

Benign deep-intronic variants were also collected from WGS data of the 1000 

Genomes Project comprised of 2,504 control individuals. We extracted 17,622,722 

variants from chromosomes 1, 3, and 5 to reduce the data size (Fig. 1b). After extracting 

variants on Mendelian diseases genes, variants with ≧5% allele frequency in the 1000 

Genomes Project and gnomAD population were collected to assure the benign nature of 

assorted variants, and the resulting list consisted of 153,794 benign deep-intronic variants. 

The entire dataset consisting of these pathogenic and benign variants will be called “the 

curated dataset” hereafter. 

 

Seeking effective features through characterization of the curated dataset 

We first reviewed the characteristics of the curated dataset using SpliceAI, a state-of-

the-art splicing predictor constructed on a deep neural network. We scored the variants in 

the curated dataset with SpliceAI and evaluated the results with a 0.2 threshold, a high-

sensitivity threshold provided by the developers (Fig. 1f) [19]. As a result, 338 pathogenic 

deep-intronic SAVs (90% of 374 SAVs) were above the threshold. This indicates that 

there was still a need for improvement in sensitivity for clinical use by decreasing the 

number of false negatives. On the other hand, 190 benign variants exceeded the threshold, 

resulting in a precision of 64% (338/528). Increasing precision by reducing the number 

of false positives is essential for the effective prioritization of candidate causative variants. 

We looked for additional features to support these mispredictions by SpliceAI. For false 

negatives, we assumed that the result could be effectively complemented by dividing the 

causes by splice type (SAVs either in splicing motif regions or on the outside (Fig. 1d)). 

Fourteen SAVs (4.7%) were false negatives in the splicing motif regions (n= 295, in total) 
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(Fig. 1g). The false negatives were thought to be supported by MaxEntScan because it 

specializes in evaluating the splicing motif regions on the maximum entropy principle, 

and its superiority to other splice site motif predictors was previously demonstrated [27]. 

As expected, MaxEntScan predicted these pathogenic SAVs with higher scores than 

SpliceAI (0.76 vs 0.07 median values). On the other hand, of the 45 SAVs outside the 

splicing motif region, 18 SAVs (40%) were false positives. The tendency toward lower 

sensitivity for SAVs outside of splice sites than in the splicing motif region is consistent 

with a previous report (Fig. S2a) [34]. Although the previous report recommended the use 

of ESRseq scores [35] to support the evaluation of splicing enhancers and silencers, the 

combination of ESRseq scores and SpliceAI resulted in lower predictive specificity while 

the sensitivity was improved. In this study, we used the SpliceAI raw score as an 

alternative. The SpliceAI raw score is the splice site score for the alternative sequence 

containing the SAV before the score in the reference sequence is subtracted. The score is 

called the delta score when the reference sequence is subtracted, which is the default 

output of SpliceAI. We observed that splice site scores on reference sequences were 

predicted with higher scores for SAVs outside the splicing motif regions than for those 

within, which might be due to the presence of pre-existing splicing motifs in these regions 

(Fig S2c). Consistently, for the SAVs within splicing motif regions with ≤0.2 SpliceAI 

delta scores, the SpliceAI raw scores were higher than the delta scores (0.18 vs 0.06 

median values). This tendency was not as strong for the SAVs in the splicing motif regions 

(0.08 vs 0.07 median values) (Fig. 1g). This implied that the SpliceAI raw score would 

improve the predictive sensitivity for SAVs outside the splice sites.  

Subsequently, we considered the false-positive results using SpliceAI. We 

hypothesized that certain predicted variants could cause aberrant splicing, although they 

had non-deleterious effects on physiological function. However, SpliceAI does not 

evaluate the deleterious effect of the splicing event because SpliceAI is not trained in 

pathogenic splicing events. Therefore, a more specific prediction was achieved by 

combining a deleterious prediction with a human splicing constraint metric from 

ConSplice, which models mutational constraints on splice-altering variants within the 

human population. The effectiveness of this approach in predicting deleterious splicing 

was demonstrated in the ConSpliceML predictor [20]. Likewise, we employed ConSplice 
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for more specialized usage for deep-intronic SAVs. Of the 190 benign variants with ≥0.2 

SpliceAI delta score, ConSplice evaluated 153 (81%) variants as being less constrained 

and having less deleterious effects (<0.2 ConSplice) (Fig. 2h). These observations suggest 

that the combinatorial use of SpliceAI delta score, SpliceAI raw score, MaxEntScan, and 

ConSplice would be a better pathogenicity predictor than the sole use of the SpliceAI 

delta score.  

 

PDIVAS performs best in predicting pathogenic deep-intronic SAVs 

To verify the advantages of using SpliceAI delta gain score (mean and max), SpliceAI 

raw gain score mean, MaxEntScan, and ConSplice together, we combined these features 

into one pathogenicity predictor called PDIVAS. PDIVAS is modeled on a random forest 

classifier where multiple decision trees are built in parallel and each decision tree defines 

an input deep-intronic variant as pathogenic or benign in a binary manner (one or zero, 

respectively), referring to these features (Fig. 2a). The PDIVAS calculated the final 

prediction score as the fraction of trees that classified the variants as pathogenic. 

Therefore, a higher PDIVAS score indicates a more likely pathogenic splice alteration 

predicted in the deep-intronic variant, and the score range is between one and zero. To 

train the random forest model, we randomly split the curated dataset into a training dataset 

and test datasets. The training dataset represented 70% (261 pathogenic and 107,655 

benign variants) of the entire dataset and was used to tune the parameters of the random 

forest model. The independent test dataset contained the remaining 30% with 113 

pathogenic and 46,139 benign variants and was used as a hold-out test dataset to evaluate 

the final random forest model. The predictive accuracy of the final trained model 

(PDIVAS) was compared with that of SpliceAI, Pangolin, ConSpliceML, MaxEntScan, 

and CADD-Splice. Pangolin is a model based on SpliceAI architecture, which was 

recently proposed. However, its training dataset was augmented by incorporating splice 

site data detected from four mammalian species into the human dataset. ConSpliceML is 

a random forest model in which the state-of-the-art splicing predictors of SpliceAI, 

SQUIRLS, and ConSplice were used as features to classify pathogenic SAV and benign 

variants. CADD-Splice is an L2-regularized logistic regression model that incorporates 

various features of conservation scores, transcription factor binding, DNase I 
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hypersensitivity regions, and splicing features driven by the neural network-based 

splicing predictor of SpliceAI and MMSplice [36].  

To compare the predictive accuracy, pathogenic and benign variants were scored with 

those predictors (Fig. 2b). Subsequently, the precision, recall, and MCC of these 

predictors at various thresholds were calculated and described as curves (Fig. 2c). A 

performance comparison of the predictors was performed on the average precision and 

maximum MCC (Fig. 2d). PDIVAS achieved the highest performance scores (average 

precision of 0.92 and maximum MCC of 0.88) of the six predictors. We further verified 

the stable competitiveness of PDIVAS on different training datasets, using five-fold cross-

validation on the training dataset. Regardless of the composition of the dataset, PDIVAS 

was consistently superior to SpliceAI and Pangolin in terms of average precision (0.90 

vs. 0.84, 0.77 median values) and maximum MCC (0.85 vs. 0.81, 0.76 median values) 

(Fig. S3). These results indicate that PDIVAS outperforms the other state-of-the-art 

predictors, in predicting pathogenic deep-intronic SAVs.  

 

Threshold settings for clinical use 

Finally, PDIVAS thresholds were set based on the sensitivity of pathogenic SAVs in 

the PDIVAS test dataset. With the optional threshold, users would be able to change the 

usage of the PDIVAS, depending on their research objectives and situations (Table 1). For 

the later performance comparison between predictors, the optional thresholds were also 

set on SpliceAI and Pangolin on all pathogenic SAVs in the curated dataset.  

 

Features in PDIVAS synergistically work to improve predictive accuracy 

In this section, we investigate how the five features in PDIVAS were used to improve 

the predictive accuracy when compared to the sole use of SpliceAI. Firstly, we evaluated 

the contribution of these features to the extent of which they increased the purity of 

pathogenic and benign variants in each node of the decision trees (Fig. 3a). This 

evaluation showed that the most important contributed features of the five were 

SpliceAI_delta_gain_mean, the mean of the splice acceptor and donor scores. This result 

is reasonable because the most frequent splice type caused by deep-intronic SAV is a 

pseudoexon, where both the splice acceptor and donor are newly recognized by 

spliceosome machinery and both gain scores should be considered (Fig. 1c) (Fig. S4). 
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Meanwhile, extending exons are caused by the creation of only one of the splice sites, 

and consistently, one of the SpliceAI gain scores is nearly zero (Fig. S4). Therefore, the 

SpliceAI_delta_gain_mean might underestimate extending exons. Extending exons were 

thought to be more appropriately evaluated by the second-most contributed feature, 

SpliceAI_delta_gain_max only referring to the higher score. The other features 

SpliceAI_raw_gain_mean, ConSplice, and MaxEntScan also contributed to classifying 

variants in each node of the decision trees at 13%, 8%, and 4%, respectively.  

We further demonstrated the contributions of these features using the feature-

cumulative training method (Fig. 3b). This involved training a random forest model with 

progressively increasing numbers of features, beginning with SpliceAI_delta_gain_mean 

alone, and evaluating the predictive accuracy of each trained model on the same 

training/test dataset pair. This analysis showed that each feature of 

SpliceAI_raw_gain_mean, ConSplice, and MaxEntScan improves either the accuracy 

metrics of average precision or maximum MCC and has a synergetic effect on PDIVAS.  

Finally, the feature contributions were studied within the prediction results of benign 

deep-intronic variants within the test data. When SpliceAI predicted them with 95% 

sensitivity thresholds, it wrongly evaluated 129 variants as positives. Using PDIVAS with 

a 95% sensitivity threshold, 73 variants (57%) of the SpliceAI-predicted 129 were 

correctly evaluated as negatives (Fig. 3c). Overviewing the feature distributions of the 73 

variants suggested that PDIVAS removed 67 of them because their genomic regions were 

in low constraint (<0.2 ConSplice) and the predicted SAVs could be tolerated. The 

remaining six variants had higher ConSplice scores, but the scores of MaxEntScan were 

zero and the splice alterations of themselves were not expected to occur. These results 

demonstrate that PDIVAS succeeded in improving the predictive specificity for benign 

deep-intronic variants while retaining its high sensitivity for pathogenic deep-intronic 

SAVs by utilizing these five combined features.  
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PDIVAS minimizes candidate variants in WGS samples at clinically relevant 

thresholds 

In the clinical use case of pathogenicity predictors in WGS analysis, the disease-

causative variants must be prioritized from the vast number of deep-intronic variants 

detected in WGS samples. In this study, we analyzed WGS samples of control individuals 

as a substitute for undiagnosed patients because patients with Mendelian diseases 

theoretically differ from other individuals by only one to two pathogenic variants. Our 

analysis focused on the 2,504 control individuals from the 1000 Genomes Project [14]. 

First, by extracting variants within deep introns in protein-coding genes from each WGS 

sample, 1,570,571 deep-intronic variants per individual were obtained on a mean value 

(Fig. 4a, S5a). Assuming the actual genetic diagnosis process, we further extracted 

variants of 4,429 genes for Mendelian diseases and those with <1% allele frequency in 

both 1000 Genomes Project and gnomAD populations [18]. This process retained 14,872 

variants per individual with possible pathogenicity at a mean value (Fig. S5b, c). Finally, 

the effects of their variants were predicted using SpliceAI, Pangolin, and PDIVAS. In this 

part, we chose only the two predictors to compare with because of their higher 

performance in the analysis of PR and MCC curves and their wider availability for the 

prediction of genomic insertions and deletions, as well as SNVs. As a result, PDIVAS 

predicted approximately 3.0-26.8 variant candidates (mean values) per individual with 

thresholds of 70-95% sensitivity while SpliceAI predicted approximately 6.3-67.9 variant 

candidates, and Pangolin approximately 11.9-136.6 variant candidates (Fig. 4b, Fig. S5d). 

Even with the most sensitive threshold of 95%, PDIVAS predicted approximately 26.8 

candidates, which is approximately 0.4 times and 0.2 times lower than SpliceAI and 

Pangolin, respectively. 

 

PDIVAS performs best in prioritizing causative variants in WGS samples 

Lastly, we demonstrated the clinical utility of PDIVAS through the simulation 

analysis of genetically undiagnosed patients through traditional variant interpretation 

focusing only on the protein-coding region and exon-intron boundaries. We created 

virtual patient WGS samples by adding one pathogenic deep-intronic SAV (n=113) in the 

test dataset to one of the control WGS samples (n=2,504) in the 1000 Genomes Project 

(Fig. 5a). Using this approach, 282,952 simulated patient WGS samples were obtained. 
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This method was originally developed by Danis et al [26]. As shown in Fig. 4a, rare deep-

intronic variants were extracted and their pathogenicity was predicted using PDIVAS, 

SpliceAI, and Pangolin for comparison. The predicted variants were ranked based on their 

scores, with the assumption that a higher-performance pathogenicity predictor could 

evaluate pathogenic SAVs with higher scores. Conversely, benign variants with non-

deleterious splicing or without splicing outcomes were predicted to have lower scores. As 

a result, PDIVAS predicted causative SAVs to be significantly closer to the first rank than 

SpliceAI and Pangolin (Fig. S6). Furthermore, when clinicians manually evaluated up to 

the 5-40th ranks from the prediction results, more numbers of causative SAVs would be 

detected through PDIVAS, and the undiagnosed rates of the patients were retained to be 

0.3%-6.5% lower than SpliceAI and 4.9%-16.3% lower than Pangolin (Fig. 5b). Even 

when only the top five were evaluated, 81.7% of the cases would be diagnosed. These 

results demonstrate that by introducing the diagnostic approach with PDIVAS, clinicians 

will be able to rapidly find the causative variants because PDIVAS allows them to 

evaluate a smaller number of candidates and identify the causative variants with minimal 

effort. 
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<Discussion> 

In this work, we have presented PDIVAS, an efficient algorithm to prioritize deep-

intronic variants causing aberrant splicing in WGS data. PDIVAS reaches an average 

precision at 0.92 and a maximum MCC at 0.88, which are the highest among the 6 existing 

predictors. Even in the WGS analysis, PDIVAS narrows down pathogenic candidate 

variants into small numbers with 95% sensitivity. Moreover, it ranks most of the causative 

variants within the top 5 in the simulated patient genome. These results indicate that 

incorporating PDIVAS into routine analysis pipelines would improve the efficiency of 

variant interpretation and increase the detection rate of causative variants. 

There are three major technical characteristics of PDIVAS. First, the PDIVAS training 

dataset includes only truly pathogenic SAVs that were checked by us and the curators of 

HGMD. With only the HGMD curation, the dataset also included variants that are 

expected to cause splicing, but the events were not experimentally validated although they 

were given the labels of “Splice” variants. Some actually might not cause aberrant 

splicing and are not the cause of the diseases. Therefore, we again checked all original 

reports of pathogenic deep-intronic SAV candidates and extracted experimentally 

validated ones. Further, we augmented the dataset with that curated by Keegan et al 

independently of HGMD, where the experimental validation of splice alterations was also 

strictly checked.  

Second, PDIVAS is trained not to classify SAVs and non-SAVs, but to distinguish 

pathogenic SAVs and benign variants. As some common variants and homozygous 

variants in general populations are also observed to induce exonization within deep 

introns, some SAVs do not cause deleterious effects on physiological functions [37]. This 

indicates that the task of classifying SAVs and non-SAVs is not enough for pathogenicity 

prediction. Therefore, we incorporated the deleterious effect prediction by ConSplice, as 

well as splicing features. As shown in Fig. 3c, during PDIVAS prediction, ConSplice 

helps remove benign SAVs from the SplieAI-predicted SAVs. This prediction of 

deleterious effect is a technical advantage over SpliceAI and Pangolin, which are not 

trained on pathogenic splicing events. 

Third, PDIVAS is modeled for the specific use of pathogenicity prediction on deep-

intronic variants. We divided deep-intronic SAVs into those within the splicing motif 

regions and those outside of them and observed their SpliceAI-score distributions. 
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Through detailed observation, we reached the conceptualization of SpliceAI raw scores 

and MaxEntScan for better sensitivity. To implement their combination, we modeled the 

random forest optimized to evaluate the pathogenicity of deep-intronic variants. These 

features were not incorporated into the previous predictor of ConSpliceML. 

Determining causative variants is beneficial for patients because it could change their 

clinical management [38, 39]. The pathogenic pseudoexons created by deep-intronic 

SAVs can be pharmacologically targeted, as we previously demonstrated in two 

pathological models: the IVS4+866C>T causative variant of NEMO of anhidrotic 

ectodermal dysplasia with immunodeficiency, and the c.3849+10kbC>T of CFTR of 

cystic fibrosis [40, 41]. Pathogenic pseudoexons often harbor suboptimal splicing sites 

and are prone to be regulated through alternative splicing factors, and serine/threonine-

rich splicing factors (SRSFs) are identified as exon recognition facilitators in the above 

cases. Thus, the small-molecule inhibitor of CDC-like kinase (CLK) that activates SRSFs 

through phosphorylation of the RS domain [42], leads to the inhibition of pathogenic 

pseudoexon recognition and recovery from disease-associated phenotypes in cellular 

models [40, 41]. The pathogenicity interpretation of the deep-intronic variants with 

PDIVAS will shed light on previously overlooked pathogenic deep-intronic SAVs in 

Mendelian diseases, hopefully improving diagnostic rates and the possibility of clinical 

management.  
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<Conclusions> 

Here, we developed a Pathogenicity predictor for Deep-Intronic Variants causing 

Aberrant Splicing (PDIVAS). The PDIVAS was trained to differentiate between 

pathogenic and benign deep-intronic variants. The predictive accuracy of PDIVAS was 

optimized not only by predicting splicing alterations with multiple splicing predictors but 

also by evaluating the deleterious effect of the predicted splice event with human splicing 

constraint metrics. By implementing PDIVAS into variant interpretation pipelines, a small 

number of pathogenic variant candidates were extracted. Efficient variant interpretation 

by PDIVAS would resolve many genetically undiagnosed cases whose deep-intronic 

causative variants were previously overlooked. The source code to run PDIVAS and the 

precomputed PDIVAS scores for all rare deep-intronic SNVs, short insertion, and deletion 

within Mendelian disease genes are now available at https://github.com/shiro-

kur/PDIVAS. 

 

<Abbreviations> 

PDIVAS: Pathogenicity predictor for Deep-Intronic Variants causing Aberrant Splicing; 

SAV: Splice-altering variant; HGMD: Human Gene Mutation Database; SNV: single 

nucleotide variant; OMIM: Online Mendelian Inheritance in Man; CGD: Clinical 

Genomic Database; VEP: Variant Effect Predictor; WGS: whole-genome sequencing; PR: 

Precision and Recall; MCC: Matthews correlation coefficient 

 

<Supplementary Information> 

Additional file 1: Supplementary figures (S1-S6). 

 

<Acknowledgements> 

We would like to thank members of the M.H. laboratory at Kyoto University for their 

helpful comments and technical advice, Prof. Zhi-Ming Zheng for reviews on the 

manuscript, and Editage (www.editage.com) for English language editing. The super-

computing resource was provided by Human Genome Center (the Univ. of Tokyo). 

 

<Authors’ contributions> 

R.K. and K.I. conceived the idea for PDIVAS. R.K. developed the model and performed 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


20 

 

all analyses. K.I., M.A., T.A., M.Y., K.K., and M.H. provided feedback and suggestions 

for the PDIVAS modeling. R.K., M.A., and M.H. wrote the manuscript. K.I., M.A., T.A., 

and M.H. reviewed the manuscript and provided feedback. All authors read and approved 

the final manuscript. 

 

<Authors’ information> 

Not applicable 

 

<Funding> 

This study was supported by JSPS KAKENHI Grant Numbers 22J23899 (to R.K.) and 

19K07367 (to M.A.). This study was also supported by AMED under Grant Number 

JP22gm4010013. 

 

<Availability of data and materials> 

The PDIVAS source code, command-line interface, and predictions for all rare deep-

intronic SNVs, short insertion, and deletion within genes of Mendelian disease are 

available at https://github.com/shiro-kur/PDIVAS. ConSplice scores and precomputed 

scores of ConSpliceML [20] are available at 

https://home.chpc.utah.edu/~u1138933/ConSplice/. Precomputed scores of CADD-

Splice [25] are available at 

https://krishna.gs.washington.edu/download/CADD/v1.6/GRCh37/. The pathogenic 

splice-altering variants from HGMD [32] were downloaded from the HGMD website 

http://www.hgmd.cf.ac.uk/ under the HGMD commercial license. Due to HGMD 

commercial licensing, we are not allowed to share these variants publicly. 1000 Genomes 

Project variants [14] are publically available at 

http://hgdownload.cse.ucsc.edu/gbdb/hg19/1000Genomes/phase3/. gnomAD [18] 

variants are publically available at 

https://ftp.ensembl.org/pub/data_files/homo_sapiens/GRCh37/variation_genotype/gnom

ad.genomes.r2.0.1.sites.noVEP.vcf.gz. Gene list from OMIM [30] is available to users 

from academic institutions and non-profit organizations at 

https://www.omim.org/downloads. Gene lists from CGD [31] are publically available at 

https://research.nhgri.nih.gov/CGD/download/.  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


21 

 

<Declarations> 

・Ethics approval and consent to participate 

Not applicable. 

・Consent for publication 

Not applicable. 

 

・Competing interests 

The authors declare that they have no competing interests. 

 

<Reference> 

1. Ankala A, da Silva C, Gualandi F, Ferlini A, Bean LJ, Collins C, Tanner AK, Hegde MR: 

A comprehensive genomic approach for neuromuscular diseases gives a high diagnostic 

yield. Ann Neurol 2015, 77:206-214. 

2. Taylor JC, Martin HC, Lise S, Broxholme J, Cazier JB, Rimmer A, Kanapin A, Lunter G, 

Fiddy S, Allan C, et al: Factors influencing success of clinical genome sequencing across a 

broad spectrum of disorders. Nat Genet 2015, 47:717-726. 

3. Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD, Harrell TM, 

McMillin MJ, Wiszniewski W, Gambin T, et al: The Genetic Basis of Mendelian 

Phenotypes: Discoveries, Challenges, and Opportunities. Am J Hum Genet 2015, 97:199-

215. 

4. Yang Y, Muzny DM, Xia F, Niu Z, Person R, Ding Y, Ward P, Braxton A, Wang M, Buhay 

C, et al: Molecular findings among patients referred for clinical whole-exome sequencing. 

Jama 2014, 312:1870-1879. 

5. Vaz-Drago R, Custódio N, Carmo-Fonseca M: Deep intronic mutations and human 

disease. Hum Genet 2017, 136:1093-1111. 

6. Petersen USS, Doktor TK, Andresen BS: Pseudoexon activation in disease by non-splice 

site deep intronic sequence variation - wild type pseudoexons constitute high-risk sites in 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


22 

 

the human genome. Hum Mutat 2022, 43:103-127. 

7. Keegan NP, Wilton SD, Fletcher S: Analysis of Pathogenic Pseudoexons Reveals Novel 

Mechanisms Driving Cryptic Splicing. Front Genet 2021, 12:806946. 

8. Okubo M, Noguchi S, Awaya T, Hosokawa M, Tsukui N, Ogawa M, Hayashi S, Komaki 

H, Mori-Yoshimura M, Oya Y, et al: RNA-seq analysis, targeted long-read sequencing and 

in silico prediction to unravel pathogenic intronic events and complicated splicing 

abnormalities in dystrophinopathy. Hum Genet 2022. 

9. Pros E, Gomez C, Martin T, Fabregas P, Serra E, Lazaro C: Nature and mRNA effect of 

282 different NF1 point mutations: focus on splicing alterations. Hum Mutat 2008, 

29:E173-193. 

10. Sangermano R, Garanto A, Khan M, Runhart EH, Bauwens M, Bax NM, van den Born LI, 

Khan MI, Cornelis SS, Verheij J, et al: Deep-intronic ABCA4 variants explain missing 

heritability in Stargardt disease and allow correction of splice defects by antisense 

oligonucleotides. Genet Med 2019, 21:1751-1760. 

11. Kremer LS, Bader DM, Mertes C, Kopajtich R, Pichler G, Iuso A, Haack TB, Graf E, 

Schwarzmayr T, Terrile C, et al: Genetic diagnosis of Mendelian disorders via RNA 

sequencing. Nat Commun 2017, 8:15824. 

12. Cummings BB, Marshall JL, Tukiainen T, Lek M, Donkervoort S, Foley AR, Bolduc V, 

Waddell LB, Sandaradura SA, O'Grady GL, et al: Improving genetic diagnosis in 

Mendelian disease with transcriptome sequencing. Sci Transl Med 2017, 9. 

13. Murdock DR, Dai H, Burrage LC, Rosenfeld JA, Ketkar S, Muller MF, Yepez VA, Gagneur 

J, Liu P, Chen S, et al: Transcriptome-directed analysis for Mendelian disease diagnosis 

overcomes limitations of conventional genomic testing. J Clin Invest 2021, 131. 

14. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel 

JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR: A global reference for human 

genetic variation. Nature 2015, 526:68-74. 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


23 

 

15. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham 

F: The Ensembl Variant Effect Predictor. Genome Biol 2016, 17:122. 

16. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu 

C, Wright J, Armstrong J, et al: GENCODE reference annotation for the human and 

mouse genomes. Nucleic Acids Res 2019, 47:D766-D773. 

17. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, 

Roux AF, Smith T, Antonarakis SE, Taschner PE: HGVS Recommendations for the 

Description of Sequence Variants: 2016 Update. Hum Mutat 2016, 37:564-569. 

18. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alfoldi J, Wang Q, Collins RL, 

Laricchia KM, Ganna A, Birnbaum DP, et al: The mutational constraint spectrum 

quantified from variation in 141,456 humans. Nature 2020, 581:434-443. 

19. Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki 

JA, Arbelaez J, Cui W, Schwartz GB: Predicting splicing from primary sequence with deep 

learning. Cell 2019, 176:535-548. e524. 

20. Cormier MJ, Pedersen BS, Bayrak-Toydemir P, Quinlan AR: Combining genetic 

constraint with predictions of alternative splicing to prioritize deleterious splicing in rare 

disease studies. BMC Bioinformatics 2022, 23:482. 

21. Yeo G, Burge CB: Maximum entropy modeling of short sequence motifs with applications 

to RNA splicing signals. J Comput Biol 2004, 11:377-394. 

22. Vallee MP, Di Sera TL, Nix DA, Paquette AM, Parsons MT, Bell R, Hoffman A, 

Hogervorst FB, Goldgar DE, Spurdle AB, Tavtigian SV: Adding In Silico Assessment of 

Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified 

Variants. Hum Mutat 2016, 37:627-639. 

23. Shamsani J, Kazakoff SH, Armean IM, McLaren W, Parsons MT, Thompson BA, O’Mara 

TA, Hunt SE, Waddell N, Spurdle AB: A plugin for the Ensembl Variant Effect Predictor 

that uses MaxEntScan to predict variant spliceogenicity. Bioinformatics 2019, 35:2315-

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


24 

 

2317. 

24. Zeng T, Li YI: Predicting RNA splicing from DNA sequence using Pangolin. Genome 

Biol 2022, 23:103. 

25. Rentzsch P, Schubach M, Shendure J, Kircher M: CADD-Splice-improving genome-wide 

variant effect prediction using deep learning-derived splice scores. Genome Med 2021, 

13:31. 

26. Danis D, Jacobsen JOB, Carmody LC, Gargano MA, McMurry JA, Hegde A, Haendel MA, 

Valentini G, Smedley D, Robinson PN: Interpretable prioritization of splice variants in 

diagnostic next-generation sequencing. Am J Hum Genet 2021, 108:1564-1577. 

27. Leman R, Parfait B, Vidaud D, Girodon E, Pacot L, Le Gac G, Ka C, Ferec C, Fichou Y, 

Quesnelle C, et al: SPiP: Splicing Prediction Pipeline, a machine learning tool for massive 

detection of exonic and intronic variant effects on mRNA splicing. Hum Mutat 2022. 

28. Pedersen BS, Quinlan AR: cyvcf2: fast, flexible variant analysis with Python. 

Bioinformatics 2017, 33:1867-1869. 

29. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane 

T, McCarthy SA, Davies RM, Li H: Twelve years of SAMtools and BCFtools. Gigascience 

2021, 10. 

30. Amberger JS, Hamosh A: Searching Online Mendelian Inheritance in Man (OMIM): A 

Knowledgebase of Human Genes and Genetic Phenotypes. Curr Protoc Bioinformatics 

2017, 58:1 2 1-1 2 12. 

31. Solomon BD, Nguyen AD, Bear KA, Wolfsberg TG: Clinical genomic database. Proc Natl 

Acad Sci U S A 2013, 110:9851-9855. 

32. Stenson PD, Ball EV, Mort M, Phillips AD, Shaw K, Cooper DN: The Human Gene 

Mutation Database (HGMD) and its exploitation in the fields of personalized genomics 

and molecular evolution. Curr Protoc Bioinformatics 2012, Chapter 1:Unit1 13. 

33. Zhou QM, Zhe L, Brooke RJ, Hudson MM, Yuan Y: A relationship between the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


25 

 

incremental values of area under the ROC curve and of area under the precision-recall 

curve. Diagn Progn Res 2021, 5:13. 

34. Moles-Fernández A, Domènech-Vivó J, Tenés A, Balmaña J, Diez O, Gutiérrez-Enríquez 

S: Role of Splicing Regulatory Elements and In Silico Tools Usage in the Identification of 

Deep Intronic Splicing Variants in Hereditary Breast/Ovarian Cancer Genes. Cancers 

2021, 13:3341. 

35. Ke S, Shang S, Kalachikov SM, Morozova I, Yu L, Russo JJ, Ju J, Chasin LA: Quantitative 

evaluation of all hexamers as exonic splicing elements. Genome Res 2011, 21:1360-1374. 

36. Cheng J, Nguyen TYD, Cygan KJ, Celik MH, Fairbrother WG, Avsec Z, Gagneur J: 

MMSplice: modular modeling improves the predictions of genetic variant effects on 

splicing. Genome Biol 2019, 20:48. 

37. Sakaguchi N, Suyama M: In silico identification of pseudo-exon activation events in 

personal genome and transcriptome data. RNA Biol 2021, 18:382-390. 

38. Group NIS, Krantz ID, Medne L, Weatherly JM, Wild KT, Biswas S, Devkota B, Hartman 

T, Brunelli L, Fishler KP, et al: Effect of Whole-Genome Sequencing on the Clinical 

Management of Acutely Ill Infants With Suspected Genetic Disease: A Randomized 

Clinical Trial. JAMA Pediatr 2021, 175:1218-1226. 

39. Stark Z, Tan TY, Chong B, Brett GR, Yap P, Walsh M, Yeung A, Peters H, Mordaunt D, 

Cowie S, et al: A prospective evaluation of whole-exome sequencing as a first-tier 

molecular test in infants with suspected monogenic disorders. Genet Med 2016, 18:1090-

1096. 

40. Boisson B, Honda Y, Ajiro M, Bustamante J, Bendavid M, Gennery AR, Kawasaki Y, 

Ichishima J, Osawa M, Nihira H, et al: Rescue of recurrent deep intronic mutation 

underlying cell type-dependent quantitative NEMO deficiency. J Clin Invest 2019, 

129:583-597. 

41. Shibata S, Ajiro M, Hagiwara M: Mechanism-Based Personalized Medicine for Cystic 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


26 

 

Fibrosis by Suppressing Pseudo Exon Inclusion. Cell Chem Biol 2020, 27:1472-1482 

e1476. 

42. Zhou Z, Fu XD: Regulation of splicing by SR proteins and SR protein-specific kinases. 

Chromosoma 2013, 122:191-207. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 27, 2023. ; https://doi.org/10.1101/2023.03.20.23287464doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287464
http://creativecommons.org/licenses/by/4.0/


27 

 

<Figures> 

 

Fig. 1 Prospective features to classify pathogenic and benign variants in a curated dataset. 

a Schematic representation of aberrant splicing induced by deep-intronic splice-altering 

variants (SAVs).  

b The curated dataset comprised pathogenic deep-intronic SAVs from the Human Gene 

Mutation Database (HGMD) and pseudo exon dataset by Keegan et al. [7] and benign 

deep-intronic variants from the 1000 Genomes Project (1000GP). 

c Splice-type classification of pathogenic SAVs in the curated dataset. Compound type 

refers to the SAVs that cause both a pseudoexon and an extending exon in the intron 
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region. 

d Definition of region names based on the relative position of the splice sites of 

pseudoexon (PE) or extending exon (Ext). 

e Classification of pathogenic SAVs on their relative positions to the nearest splice sites 

of the pseudoexon or extending exons.  

f Violin plot, box plot, and strip plot depicting maximums of SpliceAI donor/acceptor 

delta gain scores for variants in the curated dataset. 

g Violin plot, box plot, and strip plot depicting prediction scores by mean values of 

SpliceAI donor/acceptor delta gain scores, mean values of SpliceAI donor/acceptor raw 

gain scores, and MaxEntScan scores for pathogenic SAVs with ≤ 0.2 maximums of 

SpliceAI donor/acceptor delta gain scores (n=44). 

h Violin plot and strip plot depicting ConSplice scores (human splicing constraint 

metrics) for each variant in the curated dataset with > 0.2 maximums of SpliceAI 

donor/acceptor delta gain scores (n=190). 

 

AF, Allele frequency 
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Fig. 2 PDIVAS outperforms the existing predictors in classifying pathogenic and benign 

variants. 

a A graphic of random forest model used in PDIVAS. The model comprised 500 decision 

trees to classify pathogenic and benign variants (red and blue plots, respectively), 

combining multiple features from splicing predictors (output-customized SpliceAI and 

MaxEntScan) and human splicing constraint metrics of ConSplice. 

b Violin plot, box plot, and strip plot indicating the scores of PDIVAS and five previous 

predictors for the test dataset (pathogenic, n=113; benign, n=46,139). SpliceAI score is 

represented as the maximum SpliceAI donor/acceptor delta gain scores. Pangolin score 

is represented as the Pangolin splice gain score.  

c PR and MCC curve analysis for the PDIVAS and five published predictors. Precision, 

recall, and MCC are calculated at every threshold of their predictors and are depicted as 

these curves. The MCC values of Pangolin, MaxEntScan, and CADD-Splice are 

computed on prediction scores scaled from zero to one for the entire curated dataset (min-

max normalization). 

d Comparative evaluation of predictive accuracy on average precision and maximum 

MCC. 

 

PR curve, precision-recall curve; MCC, Matthews correlation coefficients 
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Table 1 Clinically relevant threshold settings on the predictive sensitivity. 

PDIVAS threshold is set on the test dataset while others’ thresholds are set on the entire 

dataset. SpliceAI score is represented as the maximum SpliceAI donor/acceptor delta gain 

scores. Pangolin score is represented as the Pangolin splice gain score.  
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Fig. 3 Revealing feature contributions on PDIVAS. 

a The feature contribution rates in the PDIVAS model aree computed as the mean of the 

accumulation of the impurity decrease within each decision tree. 

SpliceAI_del_gain_mean indicates the mean values of SpliceAI donor/acceptor delta gain 

scores. SpliceAI_del_gain_max indicates the maximum of them. 

SpliceAI_raw_gain_max indicates the maximum of SpliceAI donor/acceptor raw gain 

scores. 

b The predictive accuracy is evaluated when the random forest model is trained on 

increased features one by one, starting with only one feature of SpliceAI_del_gain_mean. 

For each feature subgroup, the same datasets are used to train and evaluate each model. 

This shows the combinational effect of respective features in improving the average 

precision (Ave-Prec) or a maximum MCC (maxMCC).  

c Comparison of feature scores of benign variants that are wrongly predicted as 

pathogenic by SpliceAI (maximums of SpliceAI donor/acceptor delta gain scores), but 

correctly predicted as benign by PDIVAS. Thresholds are set to 95%-sensitivity mode 

(Table 1). 
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Fig. 4 PDIVAS minimizes candidates of causative deep-intronic variants from WGS 

samples. 

a Workflow of variant filtering for candidates of pathogenic deep-intronic SAVs in 2,504 

WGS samples in the 1000 Genomes Project. Each number is shown as the mean value of 

2,504 samples. 

b The median numbers of deep-intronic rare variants with PDIVAS, SpliceAI, and 

Pangolin scores which are higher than the thresholds corresponding to each sensitivity 

for pathogenic deep-intronic SAVs in the test dataset. To compare the number of predicted 

variants between PDIVAS, SpliceAI, and Pangolin, fold changes are calculated. For 

SpliceAI prediction, the maximums of SpliceAI donor/acceptor delta gain scores are used. 

For Pangolin prediction, gain scores are used.  

 

 

Fig. 5 PDIVAS prioritizes causative variants within simulated patient genome sequences. 

a Diagram indicating the method for simulating patient genome sequences and ranking 

their predicted variants. 

b Undiagnosed rates were calculated as the percentage of simulated patients whose 

causative variants were not prioritized within the designated ranks, compared to the total 

number of simulated patients. 
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