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Abstract 
 
Minimally invasive technologies for early diagnosis of epithelial ovarian cancer (EOC) remain an 
unmet clinical need. CA-125, a tumor marker secreted into the circulation, is utilized to monitor 
treatment response and disease relapse in EOC, but has limited utility in accurately triaging 
patients with pelvic masses of unknown histology. To address this unmet need, we applied a novel 
blood-based glycoproteomic platform that relies on mass spectrometry coupled to machine 
learning tools, and identified glycopeptide biomarkers that differentiate between patients with 
benign pelvic masses and malignant EOC. We then used a subset of these markers to generate a 
classifier that discriminated between benign pelvic tumors and EOC with sensitivity and specificity 
of 83.5% and 90.1% in the training set and 86.7 and 86.7% in the testing set, respectively. On 
subgroup analyses, we noticed that patients with malignant EOC had higher levels of fucosylated 
markers, primarily of hepatic origin. Furthermore, patients with late-stage EOC (FIGO stage III and 
IV) had markedly higher levels of tri- and tetra-antennary glycopeptide markers containing fucose. 
We used these markers to build an independent algorithm that can differentiate between early- 
and late-stage EOC. Lastly, we detected a similar upregulation of fucosylated glycans and gene 
expression signatures suggestive of multi-antennary glycans in late-stage EOC tissues. We posit 
that common mechanisms - possibly driven by cytokines - affect both the tumor glycocalyx and 
liver-derived glycoproteins. In summary, we generated blood glycoproteomic profiles resemblant of 
distinct tumor states and identified biomarkers that differentiate between benign and malignant 
pelvic masses, and/or between early- and late-stage EOC. We also provide mechanistic insights 
suggesting a direct link between the tumor site and the circulating glycoproteome. These data may 
inform the development of robust clinical tests to diagnose and stage patients with EOC. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.20.23287422doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.20.23287422
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 
 
Epithelial ovarian cancer (EOC) is the second-most common gynecologic malignancy, the leading 
cause of death among gynecological cancers, and the fourth-leading cause of cancer-related 
death in women in the United States. Like most cancers identified at an early stage, EOC can be 
treated effectively with surgery and adjuvant therapies (1). However, diagnosis of early-stage 
disease is challenging due to the nature of the initial clinical signs and symptoms that are subtle 
and nonspecific, including pelvic pain, urinary urgency and frequency, abdominal bloating, early 
satiety, loss of appetite, and weight loss. More evident symptoms associated with the 
development of a space- occupying process generally occur with advanced stage disease (1). 
Therefore, only 15-20% of EOC cases are diagnosed at an early stage, when the 5-year survival 
is greater than 90% (2), and the majority are diagnosed at late-stage (FIGO stage III or IV), with 5-
year survival rates ranging between 17% and 39% (3). 

 
In addition to severely compromised treatment of serious disease as a consequence of late 
diagnosis, there is significant over-treatment of benign disease due to lack of sensitive tests to 
determine the nature of pelvic masses prior to surgical resection: while over 90% of women 
presenting with a pelvic mass ultimately undergo surgery, only about 20% are found to have 
malignant disease(4). Moreover, up to 30% of apparent early-stage EOC is upstaged after 
surgical resection and pathology (5,6). Hence, guidelines issued by the National Comprehensive 
Cancer Network and the American College of Obstetricians and Gynecologists recommend 
consideration of diagnostic modalities, including imaging and biochemical tests, to attempt to 
determine if surgical intervention is indicated. 

 
Circulating biomarkers are used to diagnose ovarian cancer in combination with other tests (7), 
many of which utilize glycoproteins (8). Elevated levels of CA-125, a glycosylated protein found in 
blood and on the surface of some ovarian cancer cells (9), can indicate ovarian cancer (10). Its 
utility is limited by its poor sensitivity and specificity (11). In fact, serum CA-125 is not increased in 
21% of ovarian carcinomas; on the other hand, elevated CA-125 levels have been observed in a 
variety of other malignant and non-malignant conditions such as endometriosis, uterine fibroids, 
or even during menstruation or pregnancy (12). Therefore, CA-125 is more effective as a tool for 
monitoring cancer progression and treatment response (13). Tests that monitor CA-125 in 
combination with other parameters, such as ROCA (14), OvaCheck (15), OVASure (16), ROMA 
(17), RMI (18), and HE4 (19) have been developed. While these tests generally perform better 
than CA-125 alone, none of them has found broad acceptance due to their complexity or 
inadequate performance (16,20–23). The OVA-1 test (24,25), while representing a potential 
improvement, has not seen significant acceptance by the medical community. Hence, there is still 
a clear, unfulfilled need for noninvasive diagnostics in EOC with high sensitivity and specificity. 
Other blood markers such as CA19-9 and CEA have been suggested as potential indicators of 
distinct types of ovarian cancer (7) but have limited utility.
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To address this unmet clinical need, we utilized novel workflows to probe the glycoproteome in 
serum of ovarian cancer patients. Specifically, we used a platform that combines liquid 
chromatography-mass spectrometry (LC-MS) glycoproteomic analysis and artificial intelligence 
algorithms. We identified critical glycopeptide markers that were differentially expressed and built 
classifiers that differentiated between benign and malignant pelvic masses, as well as early- and 
late-stage stage EOC. We then detected comparable variations in glycosylation profiles at the 
tumor site and investigated if common upstream mechanisms led to the observed changes both 
at the disease site and in circulation. We propose that diagnostic tests based on glycopeptide 
biomarkers derived from liquid biopsies may be an effective platform for triaging pelvic masses 
and staging of EOC. 
 
 
Methods 
 
Human subject samples  
Serum samples from women with benign tumors (n=151) or with malignant EOC (n=145), and 
from healthy controls (n=55) were acquired from Indivumed (Hamburg, Germany). Samples were 
collected prior to therapeutic intervention and in accordance with applicable guidelines and 
regulations for human subjects' protection. Information on the FIGO stage of the EOC was 
available for 98 of the 145 patients (Table 1). Assessment of benign and malignant tumors was 
based on histopathological analysis of tissue specimens. All samples were stored at -80°C until 
tested.  
 
Table 1: Clinical characteristics of patients included in this study 
 
 

N Median age 
(in years) 

Healthy controls 55 52 

Benign ovarian tumors 151 60 

EOC 145 66 

 Early-
stage 

FIGO Stage I  12  

FIGO Stage II 6 

Late-stage FIGO Stage III 68 

FIGO Stage IV 12 

Undocumented 47 

For both models an 80/20 train/test split was used.  

 
Chemicals and reagents  
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Human serum, dithiothreitol (DTT), and iodoacetamide (IAA) were purchased from MilliporeSigma 
(St. Louis, MO, USA). Sequencing-grade trypsin was from Promega (Madison, WI, USA), LC-MS-
grade water and acetonitrile were from Honeywell (Muskegon, MI, USA), and LC-MS grade formic 
acid was from Thermo Scientific (Waltham, MA, USA). Stable isotope-labeled peptide internal 
standards were purchased from Vivitide (Gardner, MA).  
 
Preanalytical sample preparation  
Serum samples were treated with DTT and IAA to reduce and alkylate disulfide bonds, followed by 
digestion with trypsin at 37°C for 18 hours. The digestion was quenched by adding formic acid to a 
final concentration of 1% (v/v), followed by addition of a cocktail of stable isotope-labeled peptide 
internal standards at known concentrations.  
 
 
LC-MS analysis  
Digested serum samples were separated over an Agilent ZORBAX Eclipse Plus C18 column (2.1 
mm x 150 mm i.d., 1.8 μm particle size) using an Agilent 1290 Infinity UHPLC system. The mobile 
phase A consisted of 3% acetonitrile, 0.1% formic acid in water (v/v), and the mobile phase B of 
90% acetonitrile 0.1% formic acid in water (v/v), with the flow rate set at 0.5 mL/minute. After 
electrospray ionization, operated in positive ion mode, samples were injected into an Agilent 
6495B triple quadrupole MS operated in dynamic multiple reaction monitoring (dMRM) mode.  
Samples were injected in a randomized order with respect to the clinical features and interspersed 
with reference samples. 
 
Glycopeptide and peptides quantification 
PeakBoundaryNet21, an in-house-developed spectrogram feature recognition and integration 
software based on recurrent neural networks was used to integrate chromatogram peaks and to 
obtain molecular abundance quantification for each peptide and glycopeptide (26). R Libraries 
‘stats’ and ‘caret’ and python library Scikit-learn (https://scikit-learn.org/stable/) was used for all 
statistical analyses and for building machine learning models.  
A total of 653 peptides and glycopeptides derived from 71 high-abundance (concentrations of ≥10 
μg/ml) serum glycoproteins were quantified. Intensity of glycopeptides and peptides were 
corrected for within-run drift using reference samples. Raw abundance of peptides was normalized 
by using heavy isotope-labeled internal standards with known peptide concentrations to determine 
peptide concentration. Raw abundance of glycopeptides was normalized by comparing it with the 
abundance of 71 non-modified glycopeptides, representing each of 71 proteins from which the 
glycopeptides monitored were derived. Relative abundance of a glycopeptide was calculated as 
the ratio of the raw abundance of the glycopeptide to the raw abundance of a peptide from the 
same glycoprotein. Site occupancy was calculated as the ratio of the raw abundance of any given 
glycopeptide to the sum of raw abundances of all glycopeptides with the same amino acid 
sequence. Approximate glycopeptide concentration was calculated by multiplying relative 
abundance or site occupancy of a glycopeptide by the concentration of a peptide from the same 
protein. Log-transformed concentration-normalized data for 501 glycopeptides, 452 of which were 
based on site occupancy and 49 on relative abundance, and for 70 peptide biomarkers were 
ultimately used for the analysis, totaling 571 unique biomarkers.  
Fold changes for individual peptides and glycopeptides were calculated on normalized 
abundances of control vs. EOC samples, and benign tumor vs. EOC samples. False discovery 
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rate (FDR) was calculated using the Benjamini-Hochberg method (27). Principal component 
analysis (PCA) was performed on log-concentration-normalized abundances of glycopeptides to 
investigate differences among the three phenotypes studied. Prior to performing PCA, normalized 
abundances were scaled such that the distributions of all biomarkers were Gaussian with zero 
mean and unit variance.  
To compare any two phenotypes, age-adjusted linear regression was used on a feature-by-feature 
basis with phenotype serving as the sole binary independent variable. After correcting for multiple 
comparisons, differences of any biomarker among phenotype groups compared were considered 
statistically significant if an FDR of less than 0.05 was reached.  
For supervised multivariate modeling, 571 concentration, 49 relative abundance, and 464 site 
occupancy features were log-transformed and split into a training set consisting of 80% of all 
samples from women with benign tumors and EOC, and a testing set consisting of the remaining 
20% and all healthy controls. To perform binary classification and predict probability of EOC, 
repeated ten-fold cross-validated least absolute shrinkage and selection operator-regularized 
logistic regression was used with hyperparameters tuned to prevent overfitting and promote 
balanced sensitivity and specificity metrics. A subset of 976 of the 1084 total features with low 
coefficients of variation (<20%) in pooled serum replicates were considered in training binary 
classification models.  
For training a model to distinguish between early- and late-stage EOC, data was split into train and 
test set at a ratio of 80:20. Prior to training a model, features were scaled so that the distribution 
had a mean value of 0 and a standard deviation of 1. Logistic regression model with lasso 
regularization was built using 50 glycopeptide abundance features from a subset of 98/49 
markers/pairs that only differed by a single fucose. The probability estimates of a sample in the 
test set predicted to belong to a particular phenotype was obtained from the trained model. 
 
Analysis of global glycosylation patterns and site-specific glycoproteomic alterations 
Fold change (FC) was determined for each glycopeptide marker by comparing its relative 
abundance in the studied cohort versus the healthy samples. Markers with statistically significant 
FC (FDR <0.05) were sorted into markers that were either non-fucosylated or had one fucose 
residue. Additionally, pairs of markers were identified that differed by a single fucose residue, i.e., 
two glycopeptides differing only by fucose. The differential abundances of these markers were 
calculated and plotted using GraphPad Prism (Boston, USA) and python library matplotlib. 95% 
confidence intervals (CIs) around the median fold changes were calculated and plotted. Statistical 
significance was inferred by assessing overlapping CIs and confirming by the numeric p-values. 
The Kolmogorov-Smirnov test function of GraphPad Prism was used to generate a p-value.  
 
Lectin staining and microscopy analysis of tumor microarrays  
Human tumor microarray slides (Ovarian cancer tissue microarray OV602a slide #28 and #29; 
BC110118 slide #220 and #221; OV808a slide #52 and #53) were obtained from US Biomax 
(Derwood, AR, USA). Tumor microarray slides were deparaffinized in xylene and rehydrated in 
graded anhydrous denatured ethanol sequentially from 100%, 95% to 70%. After tris-buffered 
saline with 0.1% Tween 20 detergent (TBST) wash (3 times, 5 minutes each), samples were 
incubated in a carbo-free blocking solution (Vector Laboratories, Burlingame, CA, USA) for 30 
minutes to block non-specific binding sites. Slides were then incubated with fluorescein-conjugated 
lectins. Aleuria Aurantia lectin (Vector Laboratories) was used at a concentration of 5 μg/ml in 
blocking solution with or without 100 mM L-Fucose (Thermo Fisher Scientific Waltham, MA, USA); 
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Lens Culinaris Agglutinin (Vector Laboratories) was used at a concentration of 20 μg/ml in 
blocking solution with or without 100 mM α-methyl-mannoside (Vector Laboratories) for 45 
minutes. Slides were washed twice with TBST followed by one wash with deionized water. 
Mounting media containing DAPI (Abcam) was applied and incubated at room temperature for 5 
minutes before placing coverslips. The dried slides were observed with an EVOS M500 imaging 
system (Thermo Scientific) with the appropriate fluorescent filter. The fluorescence intensity was 
measured and analyzed using imageJ software, then the mean fluorescent intensity was graphed 
using GraphPad Prism (GraphPad, San Diego, CA, USA). 
 
Functional pathway analysis 
The QIAGEN� Ingenuity Pathway Analysis (IPA) tools were used on peptide and glycopeptide 
data for functional interrogation of relevant pathways. Glycopeptide features were ranked by their 
estimated FDR of differential abundance and mapped to the respective proteins. For the 
quantitative fold difference for each of these proteins between experiment contrasts, the log fold 
difference of the most significant glycopeptide mapped to a protein was selected. The IPA Core 
Expression analysis method was used to identify enriched canonical pathways, potential upstream 
regulators, and associated protein networks. IPA uses the right-tailed Fisher’s exact test to 
determine the statistical significance of each reported canonical pathway. Protein log-fold-change 
was used to calculate the directionality in the IPA analysis. Only genes included in the IPA 
Knowledge base were used as a reference set in calculating p-values of significance. IPA 
upstream analysis was used to identify upstream molecule’s regulatory effects that may account 
for differential expression changes seen in our data, including both transcription and other factors 
known to affect protein expression. For network inferences, both direct and indirect relationships 
were considered. Results were filtered by considering relationships described in Homo sapiens. 
 
Cytokine and chemokine quantification 
A subset of 65 serum samples (for which sufficient quantities were available) representative of the 
original set and including 10 benign, 8 stage I, 5 stage II, 34 stage III, and 8 stage IV tumors were 
randomly chosen for cytokine and chemokine analysis. Analysis was carried out by Rules-Based 
Medicine (Austin, TX). Samples were thawed at room temperature, vortexed, spun at 3700 x g for 
5 min for clarification and transferred to a master microtiter plate. Using automated pipetting, an 
aliquot of each sample was added to individual microsphere multiplexes of the selected Multi 
Analyte Profile (MAP) and blocker. This mixture was thoroughly mixed and incubated at room 
temperature for 1 hour. Multiplexed cocktails of biotinylated reporter antibodies were added 
robotically and after thorough mixing, incubated for an additional hour at room temperature. 
Multiplexes were labeled using an excess of streptavidin-phycoerythrin solution, thoroughly mixed 
and incubated for 1 hour at room temperature. The volume of each multiplexed reaction was 
reduced by vacuum filtration and washed 3 times. After the final wash, the volume was increased 
by addition of a buffer for analysis using a Luminex instrument and the resulting data interpreted 
using proprietary software developed by Rules-Based Medicine. For each multiplex set of 
analytes, both calibrators and controls were included on each microtiter plate. Eight-point 
calibrators to form a standard curve were run in the first and last column of each plate and controls 
at 3 concentration levels were run in duplicate. Standard curve, control, and sample QC were 
performed to ensure proper assay performance. Study sample values for each of the analytes 
were determined using 4 and 5 parameter logistics, weighted and non-weighted curve fitting 
algorithms included in the data analysis package. Results were analyzed on GraphPad Prism by 
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converting resulting levels into z scores and plotting these as a heatmap. All values below the 
lower limit of quantification (LLOQ) were assumed to be half of the LLOQ.  
 
Gene expression analysis and Cellular Network Knowledge Base analysis 
Gene expression data for MGAT3 and MGAT4A for “tumor”; representing malignant EOC, and 
“metastasis”; representing metastatic tumor deposits, were downloaded from tnmplot.com. Data 
was plotted and statistical tests was run using GraphPad Prism. Cellular Network Knowledge Base 
analysis was performed on TCGA Ovarian Cancer data utilizing the CTD2 database (https://ctd2-
dashboard.nci.nih.gov/dashboard/). Separate queries were run to look for putative interactions 
(based on mRNA expression data) between glycosyltransferase genes and cytokines/their 
receptors.  
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Results 
 
Unique glycoproteomic signatures distinguish EOC from benign tumors and fucosylated 
glycopeptides are associated with EOC 
A total of 428 glycopeptides and peptides displayed statistically significant differences in 
abundance (FDR<0.05) when comparing samples of patients with benign tumors and those with 
EOC. We performed principal component analysis to assess the segregation between the three 
phenotypes across first and second principal components. Modest separation between the 
phenotypes, especially those with EOC, suggested that differential glycoproteomic profiles could 
be exploited for multivariate model development (figure 1B).  
First, we built a multivariable model to identify EOC (including those with undocumented stage) 
and benign disease. Five-fold repeated cross-validation in the training set established the optimal 
LASSO hyperparameter (lambda = 0.045, cross-validated F1 = 0.849). Applying this amount of 
shrinkage to the panel of 976 features resulted in a logistic regression model that retained 27 
biomarkers with non-zero coefficients. The model achieved high accuracy in both the training 
(accuracy = 0.869, sensitivity = 0.835, specificity = 0.901) and test sets (accuracy = 0.867, 
sensitivity = 0.867, specificity = 0.867). ROC analysis demonstrated strong performance across a 
range of cutoffs and little overfitting (training AUC = 0.953; test AUC = 0.873) (Figure 1C). The 
predicted probability of malignancy increased with cancer stage, and probability distributions were 
similar across training and test sets (Figure 1D). Notably, when applied to healthy patients not 
utilized in training, the model resulted in few misclassifications and a spread nearly equivalent to 
that of the benign tumor cases. The distribution of predicted probabilities indicates a well-trained 
model, and application to blinded healthy patients and increasing severity with EOC disease 
progression indicate a link between the glycoproteome and the underlying biology of the disease.  
As fucosylation has been implicated in a multitude of processes in tumors (28), and fucosylated 
biomarkers have been reported to be upregulated in the circulation of women with EOC (29,30),  
we compared glycopeptide fold change (FC) of malignant EOC cases versus benign tumors (figure 
1A). Both mono- and di-fucosylated markers had median FCs above 1, suggesting a correlation of 
these markers with malignant EOC. 
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Figure 1: Identification of glycopeptide biomarkers that separate benign and malignan
pelvic masses.  
A) Circulating mono- and di-fucosylated glycopeptide markers are associated with malignant EOC
FC of glycopeptide markers were plotted based on the number of fucose molecules. Solid bar
represent the median FC and error bars represent the 95% CI. Non-fucosylated and fucosylate
groups have significantly different distributions, and median FCs for mono- and di-fucosylate
markers were greater than 1, suggesting an association between fucosylated glycopeptid
markers and malignant EOC. Statistical significance between groups was assessed by the Mann
Whitney test. **** indicates p<0.0001 and *** indicates p-value=0.0003.  
B) Top two principal components in PCA of all 351 subjects included in the analysis with health
subjects colored blue in the leftmost panel, benign colored purple in the middle panel, an
malignant cases colored red in the rightmost panel.  
C) ROC analysis of multivariate model distinguishing EOC from benign tumors.  
D) Multivariate model performance by predicted probability, stratified by phenotype and stage.  
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Tri- and tetra-antennary glycans containing fucose are associated with late-stage EOC 
Based on the finding that circulating fucosylated glycopeptides were associated with EOC, w
asked if there were specific sub-groups of markers or EOC that drove this association. Peptide
carrying tri- and tetra-antennary N-glycans with fucose correlated strongest with late-stage EOC
We then compared the relative abundance of distinct fucosylated glycopeptides in benign tumors
early-stage EOC and late-stage EOC and detected a consistent increase in association with th
progression of disease (figure 2C).  
 
To further this finding, we isolated pairs of tri- and tetra-antennary N-glycopeptides that onl
differed by a single fucose and calculated their relative abundances (represented as a heatmap i
figure 2A and defined in supplementary information). The fucosylated form of these markers wa
associated with late-stage EOC. To assess if these pairs of markers differentiated between early
and late-stage EOC, we developed a logistic regression model with LASSO regularization. Th
model achieved high accuracy in both the training (accuracy = 0.963, sensitivity = 1, specificity 
0.812) and test sets (accuracy = 0.8, sensitivity = 0.824, specificity = 0.667) and identified earl
and late-stage disease (figure 2B).  
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Figure 2: Circulating tri- and tetra-antennary N-glycopeptide markers containing fucose are 
associated with late-stage EOC.  
A) Relative abundance of pairs of fucosylated/non-fucosylated markers of all patients separated by 
pathology are represented as a heatmap. Columns represent patients and rows represent 
glycopeptide biomarkers. Patients with benign tumors are unmarked, early- and late-stage EOC 
patients are enclosed in marked black rectangles. Corresponding glycans are indicated with 
colored geometric SNFG symbols. 
B) Predicted probability of early- and late-stage classification by a LASSO model built on the pairs 
of glycopeptide markers represented in figure 2A.  
C) Bar graph representation of glycopeptide abundance. The three leftmost bar graphs represent 
glycopeptides with tetra-antennary glycans with varying sialylation. The last two bar graphs 
represent glycopeptides with tri-antennary glycans with two or three sialic acids. (* p-value<=0.05, 
** p-value<=0.01, *** p-value<=0.001, **** p-value<=0.0001)  
 
 
 
 
Metastasis from EOC displays higher levels of surface fucosylation and gene expression 
patters suggestive of tri- and tetra-antennary glycans 
Given the fucosylation differences observed in circulating glycoproteins, we assessed fucosylation 
levels by staining tumor tissue microarrays with AAL, a fucose-binding lectin. Metastatic EOC 
tissue derived from metastasis to the omentum and peritoneum had significantly higher levels of 
AAL staining (figure 3A-B). We confirmed these findings by using another fucose-binding lectin 
LCA (supplementary figure 1 and 2).  
Circulatory changes of increased branching leading to higher levels of tri- and tetra-antennary 
glycans we describe in the previous section have also been described to occur in the tumor 
glycocalyx of advanced tumors (31). Many of these changes are driven by changing levels of the 
glycosyltransferases MGAT3 and MGAT4A. We therefore analyzed gene expression levels of 
glycosyltransferases involved in the formation of tri- and tetra-antennary glycans in metastatic 
tissue and malignant tumors. Metastatic tissue exhibited higher expression of MGAT4A, a 
glycosyltransferase involved in forming tri-antennary branches by adding a β1-4 N-
acetylglucosamine (GlcNAc), and lower expression levels of MGAT3, an enzyme involved in 
adding a bisecting GlcNAc that may reduce terminal modifications of N-glycans (figure 3C-D)(32). 
Similar expression patterns occurred in the primary tumor as well in advanced stage EOC 
(supplementary figure 3). 
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Figure 3: Glycosylation profiles in malignant and metastatic EOC tissues.  
A) Quantification of staining with AAL. Individual points represent mean fluorescence intensity o
individual tissue on a tumor microarray. Solid bars represent the median of the histological group
and error bars represent the 95% CI. p-value was calculated by Kolmogorov-Smirnov test. ***
indicates p<0.0001.  
B) Representative images of AAL staining. The upper panels show staining with AAL. In the lowe
panels, tissues were incubated with the lectin AAL and L-fucose, as a control.  
C) Metastatic tissue shows higher levels of MGAT4A and lower levels of MGAT3 mRNA
expression. Mann-Whitney’s test used to assess statistical significance. ** represents a p-value o
0.0013 and **** represents a p-value <0.0001  
D) Pathway of N-glycan extension showing the association of MGAT4A upregulation and MGAT
downregulation with tumor progression (31). 
 
 
 
 
Circulating cytokines are associated with tri- and tetra-antennary N-glycans containing
fucose 
Given that similar glycosylation patterns were detected in blood and in tissues of late-stage EOC
we posited that common factors might induce overlapping glycosylation programs in hepatocytes
which are the main source of markers included in the glycoproteome panel, and in the tumor cells
We quantified a panel of cytokines and chemokines in early and late-stage EOC samples (figur
4A). Of these, IL-6, IL-8, IL-10 and MCP-1 exhibited a general upregulation in late-stage EOC
Notably, CA125, CA19-9 and CEA were slightly higher in late-stage EOC, but did not seem t
consistently indicate progression of disease.  
To understand if these factors were related to the gene expression profiles, we queried th
Cellular Network Knowledge Base for potential interaction between the cytokines, MGAT3 an
MGAT4A. These glycosyltransferases were chosen given the previous observation that they wer
significantly different in metastatic EOC tissue. Strikingly, both IL-6 and IL-10 were related t
MGAT4A expression via CD86 and CCL2 (figure 4B).  
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We then searched for upstream regulators using functional pathway analysis based on differentia
peptide expression, and identified IL-6 as a primary hit (figure 4C and supplementary table 1).  
 

 

 

 
Figure 4: Possible drivers of common glycosylation programs in hepatic-derived
glycoproteins and tumor glycoproteins  
A) Heatmap representation of z-scores cytokines and cytokines showing generally higher levels i
late-stage EOC.       
B) Cellular Network Knowledge Base analysis. Analysis performed on the TCGA Ovarian Cance
database shows a putative network leading from MCP-1 (CCL2) to MGAT4A. Final analysi
included here shows the composite of two analyses: one with IL6, IL10, and CCL2, and the othe
with these genes along with MGAT3 or MGAT4A. Of the last two genes mentioned, only MGAT4A
had interactions with the cytokine network. For convenience, the interactions of IL6, IL10, CCL2
and MGAT4A are graphically represented as a composite image. 
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C) Ingenuity Pathway Analysis on peptide-level data points to IL-6 as a potential upstream 
regulator of changes detected in this study. Y-axis represents level of statistical significance and 
X-axis represents activation z score. 
D) Hypothetical pathway leading to comparable alterations in protein glycosylation at the tumor 
site and in liver-derived glycoproteins. 
 
 
Discussion 
 
In this study, we analyzed peripheral blood samples using a novel technology platform consisting 
of LC-MS coupled with a high throughput data processing engine (33) that allows scalable 
characterization of the glycoproteome of clinical samples. We identified glycopeptide markers 
expressed at higher levels in blood of EOC patients compared to patients with benign tumors and 
healthy controls. We generated a classifier that allowed the identification of patients presenting 
with malignant masses with high specificity and sensitivity. We used a similar approach to build a 
model that differentiated between early- and late-stage EOC. As early triaging and noninvasive 
staging influence treatment protocols for women with pelvic masses, these data that demonstrate 
reliable differentiation of benign versus malignant tumors with ability to detect early stage disease 
are an important advancement in EOC diagnostics. 
 
The biomarkers described herein represent glycosylated variants of relatively abundant blood 
proteins and may be the product of a systemic response to the disease. Due to intrinsic 
amplification effects, possibly mediated by cytokines and chemokines, our analytical platform 
allows for early stage diagnosis. This differs categorically from tests such as CA-125, CA19-9, cell- 
free DNA and circulating tumor DNA (34), that detect molecules produced at the tumor site and 
rely on their accumulation in blood for detection of disease. 
 
Fucosylation appeared to be a key feature of biomarkers in malignant EOC. As an advancement of 
earlier glycomic (35,36) nd glycoproteomic studies of EOC (37–41), we detected high levels of 
fucosylation combined with tri- and tetra-antennary glycans in late-stage EOC. Similar findings 
have been described in earlier glycomic studies of serum glycoproteins (42) and in ascitic fluid as 
well (36). As protein fucosylation has been described to modulate important mechanisms including 
immune cells recognition and cell-cell interactions (43), we speculate that the changes observed in 
our glycoprotein panel may be implicated in disease progression. 
 
Moreover, our observation that overlapping glycosylation changes occur in liver-derived 
glycoproteins and in late-stage EOC tissues suggest that they may be driven by common 
mechanisms. We hypothesize that factors including MCP-1, IL-6, IL-8, and IL-10 are released in 
the tumor microenvironment during disease progression and promote cycles of infiltration of 
myeloid cells and increasing inflammation. This dynamic is accompanied by the modulation of 
expression of glycosyltransferases, including MGAT3 (44–47) and MGAT4A, at the tumor site and 
in the liver that may lead to increased decoration of both circulating glycoproteins as well as tumor-
surface proteins with tri- and tetra-antennary glycans containing fucose. 
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Limitations of our study include: 1) its retrospective design, thus requiring further prospective 
validation. We have initiated a study (NCT03837327: Clinical Validation of the InterVenn Ovarian 
CAncer Liquid Biopsy, VOCAL) to investigate the diagnostic utility of these circulatory 
glycoproteomic markers in the triage of newly diagnosed adnexal masses. 2) the limited number of 
early-stage EOC samples that affect modeling that differentiates between early- and late-stage 
EOC. This drawback also would be mitigated by a large prospective cohort. Additionally, it would 
be important to study matched tumor and blood samples using the same analytical platform to 
confirm the correlation in glycosylation profiles in tumors and in circulating glycoproteins. 
 
In conclusion, our study demonstrates the relevance and feasibility of mass spectrometric analysis 
of liquid biopsies not only as a research tool for the identification of novel biomarkers, but also for 
their application as clinically actionable diagnostic tests. Additionally, we provide initial evidence 
related to the mechanisms that induce the observed glycosylation signatures. Future studies may 
also shed light on the potential roles of the glycosylation signatures in disease progression. 
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Definition of tri- and tetra-antennary N-glycans 
In this study, we call any glycan with three antennas/branches (as shown in the figure below) as
a tri-antennary glycan. Similarly, if there are four antennas/branches, it is tetra-antennary.
Independent of the number of antennas, an additional fucose (red triangle) can be bound to
represent tri-antennary or tetra-antennary N-glycans containing a fucose. 
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Supplementary figure 1: Representative images of LCA staining on Ovarian cancer tumor
microarrays 
 

 
 
 
Supplementary figure 2: Quantification of LCA fluorescence on Ovarian cancer tumor
microarrays 
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Supplementary figure 3: mRNA gene expression of MGAT4A and MGAT3 by stage of EOC

 
       Analysis of Toothill et. al HGSOC study with stage on the X axis 
 
 

Supplementary Table 1: Table of Top 20 Predicted Upstream Regulators by QiAGEN

Ingenuity Pathway Analysis (IPA) Upstream regulator prediction tool. The table includes the

mean pValue of prediction, the endogenous molecule type and the target molecules observed in

our study data across comparisons. The mean pValue is the average of p-values of predictions

of the upstream regulator in the benign disease vs healthy, early disease vs healthy and the late

disease vs healthy study comparisons. 

Regulator pValue Type Targets 

HNF1A 8.60E-11 transcription regulator 

AHSG,APOH,APOM,C1S,C4B
PA,ITIH4,SERPINA1,SERPIN
G1,VTN 

IL6 8.80E-08 cytokine 
AGT,APOB,CLU,HP,ORM1,SE
RPINA1,SERPINA3 

HNF4A 1.28E-06 transcription regulator 
AGT,APOB,APOC3,APOM,SE
RPINA1 

SREBF1 8.29E-06 transcription regulator 

CFI,MT-
CO2,SERPINA1,SERPINA3,T
F 
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PPARA 0.000226 
ligand-dependent nuclear 
receptor APOC3,APOM,MT-CO2 

RXRA 0.000238 
ligand-dependent nuclear 
receptor APOC3,APOM,KNG1 

NR1H3 0.000273 
ligand-dependent nuclear 
receptor APOC3,APOM 

IL22 0.000559 cytokine HP,SERPINA3 

TCF 0.00057 group APOD,SERPINA1,SERPINA3 

SMARCA4 0.000824667 transcription regulator 
A2M,AGT,AZGP1,CP,FN1,IGH
G1 

CTNNB1 0.000924667 transcription regulator 
APOD,FN1,SERPINA1,SERPI
NA3 

GFI1 0.000941333 transcription regulator SERPINA1,SERPINA3 

CEBPB 0.00114 transcription regulator APOB,FN1,HP 

NR5A2 0.001756667 
ligand-dependent nuclear 
receptor APOM,HP 

COL5A1 0.002063333 other FN1 

GBP2 0.002063333 enzyme FN1 

ITGB5 0.002063333 other VTN 

NUP153 0.002063333 other THRB 

PLPP3 0.002063333 phosphatase FN1 

PPP2R5E 0.002063333 phosphatase FN1 
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