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Abstract

The global devastation of the COVID-19 pandemic has led to calls for a revolution in heating, ventilation,
and air conditioning (HVAC) systems to improve indoor air quality (IAQ) [1, 2, 3], due to the dominant role
of airborne transmission in disease spread [4, 5, 6]. While simple guidelines have recently been suggested to
improve IAQ mainly by increasing ventilation and filtration [7, 8], this goal must be achieved in an energy-
efficient and economical manner and include all air cleaning mechanisms. Here, we develop a simple protocol
to directly, quantitatively, and optimally control transmission risk while minimizing energy cost. We col-
lect a large dataset of HVAC and IAQ measurements in buildings and show how models of infectious aerosol
dynamics and HVAC operation can be combined with sensor data to predict transmission risk and energy
consumption. Using this data, we also verify that a simple safety guideline is able to limit transmission risk in
full data-driven simulations and thus may be used to guide public health policy. Our results provide a compre-
hensive framework for quantitative control of transmission risk using all available air cleaning mechanisms
in an indoor space while minimizing energy costs to aid in the design and automated operation of healthy,
energy-efficient buildings.

Introduction

The COVID-19 pandemic disrupted the global economy and caused the worldwide shut-down of many public and
private buildings essential for daily life, including schools, gyms, religious centers, and offices [9]. At first, public
health guidance focused on limiting transmission from fomites and exhaled large droplets, via surface disinfection
and social distancing (such as the 6 foot rule), respectively [10]. As the pandemic continued, however, it was
recognized that a dominant mode of transmission of COVID-19 is through virus-laden exhaled aerosol droplets,
which are small enough to remain suspended in the air for minutes to hours and become well-mixed across
indoor rooms [4, 5, 6, 11, 12, 13], so the recommended mitigation strategies shifted from social distancing to
masking and improved ventilation and filtration of indoor air [14, 15, 16]. Notably, a collection of leading experts
in respiratory disease transmission and building science called for a “paradigm shift” in the design and operation
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of indoor air control systems, analogous to historical efforts to reduce pathogen transmission through food and
water sources [2], as healthy indoor air is becoming recognized as a fundamental human need [1].

In this work, we propose a physics-based, data-driven strategy to achieve this paradigm shift in healthy
buildings, which integrates mathematical models of airborne disease transmission with available building data
streams, and apply it to data collected from multiple buildings and indoor space types. By combining airflow
measurements from building management systems (BMS) with CO2 concentration data and other measures of
indoor air quality (IAQ) obtained from portable sensors, the underlying physics-based models are calibrated
and used to simulate the transmission risk and energy consumption for each indoor space, as operated. Using
our workflow, public health officials can quantitatively assess mitigation strategies for indoor airborne disease
transmission and recommend novel building control protocols to limit transmission while minimizing energy
costs. Such quantitative analysis and automated building controls is necessary for preventing the next pandemic
and minimizing widespread shutdowns during future pandemics.

Experiment

We collected data from diverse indoor spaces on the Massachusetts Institute of Technology (MIT) campus for
several weeks in April 2022. The monitored spaces are all served by heating, ventilation, and air-conditioning
(HVAC) systems, which include sensors to measure and record total supply air flow, outdoor air flow (ventila-
tion), and supply air temperature. Temporary in-room Kaiterra sensors were also deployed to collect additional
measurements relevant to IAQ, including temperature, relative humidity, CO2 concentration, total volatile or-
ganic compounds (TVOC), and size-resolved particle concentrations. Only the first three measurements are used
in this study, but the entire dataset is publicly available (SI 8). In addition, we collected information about each
room, including floor area, ceiling height, use case, design occupancy, and HVAC configuration (SI 2).
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Figure 1: Diagram of overall workflow. Portable indoor air quality (IAQ) sensors are placed in each monitored
room, and a more durable sensor is placed on the roof to record outdoor conditions. These sensor measurements
are then combined with time-series data from the heating, ventilation, and air conditioning (HVAC) system and
basic properties of each room (area, ceiling height, design occupancy, etc.) for analysis.

The overall workflow for this study is illustrated in Fig. 1. The key idea is that all data streams are integrated
with physics-based models to predict and control transmission risk and energy consumption. This data fusion

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.19.23287460doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.19.23287460
http://creativecommons.org/licenses/by-nc-nd/4.0/


ensures that all space-specific variables in the model are known or accurately estimated, thus allowing different
spaces to be compared with confidence.

Example time series data for four of the monitored rooms are shown in Fig. 2 and exhibit variations on the
scales of days, hours, and minutes. The CO2 and humidity measurements come from the in-zone IAQ sensors,
while outdoor-air flow measurements come from the BMS or are estimated from CO2 measurements. Of these
measurements, CO2 concentration is the most strongly varying, as it is driven primarily by room occupancy. The
peak values for Classroom 3 are significantly higher than for the other rooms, as it is does not have a forced
supply of outdoor air provided by the HVAC system and is thus only naturally ventilated.

1000

1500

2000

2500

400

600

800

20

40

60

Hu
m

id
ity

(%
)

0 3 6 9 12 15 18 21
Time (days)

0

5

10

Ou
td

oo
r A

ir
Fl

ow
 (A

CH
)

0 6 12 18 24
Time (hours)

0 30 60 90 120
Time (minutes)

CO
 C

on
ce

nt
ra

tio
n 

(p
pm

)

Classroom 1 Classroom 2 Classroom 3 Lecture Hall Office

Figure 2: Plot of sample time series data from the study period at multiple time scales (days, hours, and minutes).
The shaded region in the first (or second) column shows the time range covered in the second (or third) column.
Missing data points have been filled in via interpolation.

Theory

Simple mass-balance models [17, 18] have been used for decades to study airborne transmission via aerosols and
have been successfully applied to explain transmission in prior diseases [19, 20] and COVID-19 [21, 22, 23, 14, 24].
Each room is assumed to be well-mixed, such that the particle concentration can be treated as uniform throughout
the room [17, 25]. This assumption is shown to produce high-quality occupancy estimates, indicating sufficient
accuracy for our purposes (SI 1). The time-evolution of infectious pathogen concentration per droplet size can
thus be expressed as a partial differential equation, which can be solved numerically (SI 3).

Following [14], the model can also be approximated analytically to derive a “safety guideline” that bounds the
indoor reproductive number, R𝑖𝑛 , defined as the expected number of transmissions if an infector were present
for a time 𝜏 in a given room:

R𝑖𝑛 = 𝑄2
𝑏
𝑝2
𝑚𝐶𝑞

𝑁𝑠𝜏

𝜆EOA(𝑟 )𝑉
< 𝜖. (1)
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where 𝐶𝑞 represents the infectious quanta concentration in exhaled air (SI 5); 𝑄𝑏 is the occupants’ breathing
rate; 𝑝𝑚 is a mask penetration factor of aerosols; 𝑉 is the volume of the room; 𝑁𝑠 is the number of susceptible
occupants; and 𝜖 is the desired risk tolerance. 𝜆EOA, the “equivalent outdoor air” supply rate, lumps together all
infectious particle removal mechanisms including ventilation, filtration, sedimentation, and disinfection [26].
EOA quantifies each removal mechanism in terms of volumetric flow of outdoor-air ventilation that would lead
to an equivalent removal rate of infectious particles, thus facilitating comparisons among disparate processes.
Droplet size dependencies are integrated out by defining an effective droplet size 𝑟 (SI 4). Typical ranges for these
parameters and the values used in this study are provided in Supporting Information (SI 9).

Simply put, R𝑖𝑛 is proportional to the product of susceptible occupants and the time spent, divided by the EOA
provided to the room. Thus, any holistic risk assessment and transmission mitigation strategy must consider all
three dimensions. For example, simply mandating a maximum occupancy in an indoor space may not adequately
reduce transmissions if the occupants spend a large amount of time in the space. Alternatively, occupancy limits
may be unnecessary, if an appropriate amount of EOA is delivered to the space.

CO2 is often used as an indicator of transmission risk [27, 28, 29, 8], but we stress that it is only a partial
proxy that requires care to interpret, especially when comparing across spaces with significantly different HVAC
systems. To derive a CO2-based guideline, a pseudo-steady analysis of the dynamical model for CO2 concentration
can be combined with Equation (1) [28], which incorporates the differences between infectious particle dynamics
and CO2 dynamics stemming from sources of EOA beyond ventilation (SI 5).

Short-range respiratory flows also contribute to the risk of disease transmission in indoor spaces [30, 31, 32]
and should be compared with the risk of long-range airborne transmission in any safety guideline [14]. Here, we
conservatively estimate that for most of the spaces monitored, short-range effects account for less than 5% of the
expected transmissions caused by long-range mixing (Fig. S25), using an experimentally validated model [33] of
respiratory turbulent plumes of warm exhaled air rising by natural convection [34]. The only exception is for
rooms where close-range face-to-face contact between occupants is common, where short-range risk may reach
up to 30% of the long-range risk. However, the flows responsible for short-range transmission can be eliminated
by requiring occupants to wear masks [34].

Results

Infection risk. – The workflow can be assessed by calculating the transmission risk in the different indoor spaces
using the collected data along with the full dynamical model and the pseudo-steady approximation. A key factor
affecting the transmission rate is the time-varying occupancy in each space, which is then used to estimate the
numbers of susceptible, 𝑁𝑠 , and infectious, 𝑁𝑖 , occupants. There are various occupant-counting technologies
available, which utilize images, sound, or IAQ data, such as CO2 concentration, temperature, and humidity [35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. We estimate occupancy by modifying previous methods that
solve the full inverse problem of the CO2 concentration dynamical model and data, with a novel extension to
simultaneously estimate ventilation rates (SI 1) if not measured. This method protects occupant privacy and
requires no training data, so it can be easily implemented in new spaces.

The transmission rate values predicted by the full model and pseudo-steady approximation are in excellent
agreement, and where they differ, the pseudo-steady model produces more conservative estimates (Fig. 3). We
assess these models in two ways. In Fig. 3, we extract random segments of data from Classroom 2 (during
nominally occupied hours) and plot points for each segment on a plane with axes for average occupancy and
time. The color of each point corresponds to the event reproductive number calculated from the full dynamical
model. Since EOA delivery is essentially constant for this space, the pseudo-steady model predicts that R𝑖𝑛 ∝
Occupancy × Time, which is the same trend exhibited by the color of the points in Fig. 3. This validates the use
of the safety guideline, Eq. (1), to limit occupancy and time such that R𝑖𝑛 is below a given tolerance, as indicated
by the dashed curve, which can be shifted by altering the amount of EOA provided in the room.

To assess other spaces, Fig. 3 shows distributions of transmission rates across all the monitored spaces. These
points are based on a 5-minute sample rate for both models, and the distributions are weighted by the number of
occupants within each point. The black dots indicate the corresponding steady-state transmission rate for a space
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Figure 3: Transmission predictions for selected rooms in the study. Left: Scatter plot of the reproductive number
for randomly chosen time periods from the full dynamical simulations, found to be in good agreement with
the safety guideline [14] from the pseudo-steady formula, Eq. (1). Right: Distributions of transmission rates
throughout the study period computed using full model simulation and pseudo-steady approximation, again
showing good agreement. The distributions are weighted by occupancy and thus predict the expected number
of transmissions if one occupant were to be infectious for one hour. Green curves are the distributions from the
full dynamic model, with green lines showing the minimum, median, and maximum values. Gray curves are the
distributions from the pseudo-steady model, with grey lines showing the same three statistics. Black dots show
expected values assuming minimum ventilation rates and occupant density per ASHRAE standard 62.1 [49].

of that type with baseline ventilation rates and occupant density, per ASHRAE standards. We see that, in almost
all spaces, the worst-case transmission rate is below the baseline value as expected, since MIT buildings were
deliberately operated with extra ventilation during the monitoring period to limit COVID-19 transmission. Again,
the distribution of transmission rates calculated from the pseudo-steady model (gray curves) closely matches the
distribution of transmission rates calculated from the full dynamic model (green curves). The median values of
these distributions are generally within 1% agreement, and the maximum values differ by less that 10%.

The primary outlier from this trend is Classroom 3*, which has no mechanical ventilation, resulting in signifi-
cantly smaller EOA delivery than in the other spaces. As a result, when a large number of people enter this room,
the infectious particle concentration takes longer to approach the pseudo-steady values. As such, the pseudo-
steady model predicts a more conservative, higher transmission rate. When a large number of people leave those
spaces, the opposite transient effect occurs, but since the occupancy is generally lower as people are leaving the
space, those events are weighted less in the final distribution. The net result is that the pseudo-steady model
predictions are slightly conservative.

The results shown for Classrooms 3 and 3* are for the same space, occupancy profile, and ventilation rate,
but different levels of filtration. We assume an active filter delivering 4.5 ACH of HEPA filtration in Classroom
3 and inactive filter in Classrom 3*. When the filter is inactive, there is roughly a threefold increase in median
transmission rate. We highlight this distinction because measured CO2 concentrations would be exactly the same
for the two scenarios, since filtration is a form of EOA that does not impact CO2, which thus cannot be used by
itself to assess transmission risk. Instead, safety guidelines [14, 28], which incorporate the differences between
total EOA and ventilation (SI 5), based on a fixed R𝑖𝑛 tolerance, are more appropriate to account for differences
in indoor spaces.

Energy and control analysis.– While addressing public health concerns, there are still many opportunities to
reduce energy consumption in buildings, which account for 18% of total energy use in the United States [50]. Long
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term building operation must balance airborne transmission risk and IAQ with energy consumption. Specifically,
given a desired level of total transmission risk, buildings should operate to achieve that risk as efficiently as
possible, taking advantage of all available mechanisms of infectious particle mitigation.

Formulating all removal processes in terms of EOA provides a common basis to compare various technologies
in terms of cost per ACH of EOA. Under this lens, filtration, which can either be provided by in-room air cleaners
or recirculated supply air, is often a much more energy-efficient source of EOA than ventilation. As an alternative,
ultraviolet (UV) light can provide significant EOA by eradicating any infectious material within particles [51, 52,
53, 54] and can be installed in an upper-room configuration with shielding or as “far-UV” that is not harmful to
occupants [55]. If properly installed, such systems can deliver EOA even more efficiently than filtration-based
sources [56]. Thus, to optimize energy efficiency, it is necessary to consider all of these options.

Unfortunately, the primary source of EOA for many rooms is in fact ventilation. Considering the large vari-
ance in transmission risk for spaces with strongly time-varying occupancy, however, it is possible to significantly
reduce energy costs by limiting extra ventilation to periods of high occupancy. Here, we analyze and compare
demand-controlled ventilation (DCV) and transmission-controlled ventilation (TCV) operation modes. DCV is a
feedback control mechanism implemented in most modern HVAC systems, which adjusts ventilation rates in real
time to maintain a setpoint of CO2 concentration. This method thus does not consider any other EOA sources,
and thus the mapping from CO2 setpoint to transmission risk can vary strongly from space to space. By contrast,
we propose TCV as a novel operating mode to maintain a transmission-rate setpoint by interfacing with HVAC
and accounting for other sources of EOA, all of which impact airborne disease transmission.

To quantitatively assess the inherent tradeoff between energy consumption and transmission risk, we esti-
mate the daily energy cost for each room as operated and under various hypothetical scenarios using standard
thermodynamic and equipment modeling procedures from our previous work [57, 58]. For the monitored rooms,
the primary cost driver is the energy required to heat the outdoor air up to its supply temperature.

We refer to the actual operation during the monitoring period as the “Baseline” scenario. The hypothetical
scenarios considered for each room are as follows:

• Curtailed: ventilation is supplied at the same rate as observed in the data only during nominal occupied
hours, assumed to be 8 am through 10 pm.

• In-Zone Filtration: in addition to the schedule change in the “Curtailed” scenario, 2 ACH of in-room filtra-
tion is provided via standalone air cleaners active during occupied hours.

• In-Zone Far UV: in addition to the schedule change in the “Curtailed” scenario, upper-room far UVC lamps
are activated during occupied hours so as to provide 5 ACH of EOA.

• ASHRAE Minimum: ventilation follows the “Curtailed” schedule and is further adjusted to provide the
minimum amount of ventilation required in each space per ASHRAE standard 62.1 [49].

• Demand Controlled (DCV): ventilation is provided by a standard demand control algorithm for a given
CO2 concentration setpoint.

• Transmission Controlled (TCV): ventilation is provided by a modified algorithm that provides enough ven-
tilation to operate below a given transmission risk as calculated by the pseudo-steady model.

After estimating the time-varying ventilation that would be provided by each hypothetical strategy, trans-
mission risk and energy cost can be calculated using the modeling approach discussed previously. These results
are shown for three representative spaces in Fig. 4. Similar plots for other spaces are provided in the Supporting
Information.

In all spaces in Fig. 4, we see there are significant opportunities to reduce energy consumption without
large changes in the average and spread of the transmission rate. Simply curtailing ventilation during nighttime
unoccupied hours cuts energy consumption roughly in half, with only a slight increase in transmission rate due
to a small number of after-hours gatherings in that room. Adding in-room filtration can reduce transmission
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Figure 4: Summary of energy versus transmission rate tradeoffs for hypothetical ventilation scenarios. Points
and shaded regions show means and joint standard deviations for daily values within the study period.

below baseline values while still providing significant reduction in energy cost. Based on current experimental
data [55], far UV disinfection is even cheaper than in-room filtration. The ASHRAE minimum protocol further
reduces energy consumption but increases the mean and spread of the transmission rate. However, by applying
some of the more advanced control algorithms, transmission rate can be maintained near or below a desired
threshold while maximizing energy savings. In particular, DCV at 800 ppm achieves minimum energy cost with
transmission risk, while the novel TCV strategy at 0.05 per infector·h forgoes some of the energy savings to
achieve further reduction in observed transmission rate. Note that the specific setpoints of these two strategies
could be adjusted up or down to further tune the tradeoff. Finally, combining TCV with in-room far UV can
achieve the same average and lower spread of transmission rate as the conservative baseline schedule with up to
a tenfold decrease in energy cost.

Overall, these results illustrate that advanced control strategies and alternative sources of EOA can be em-
ployed to provide similar or better expected transmission rate while significantly reducing energy costs compared
to constantly operating at high ventilation rates. We see that the TCV strategies deliver Pareto-optimal perfor-
mance, which demonstrates that the pseudo-steady transmission model is sufficiently accurate to achieve its
control objectives while remaining mathematically simple enough to integrate into existing HVAC control logic.
Such TCV systems could interface with other sources of EOA, such as filtration and UV disinfection, to simulta-
neously control transmission rates and minimize energy consumption by prioritizing lower energy sources.

Conclusion

Our framework successfully combines data-streams from sensors with accurate physical models of infectious
aerosols to predict airborne disease transmission rates in diverse indoor spaces. We have demonstrated the
possibility of transmission-controlled ventilation by implementing our models in HVAC control logic. We have
also provided a design framework for future buildings, which quantifies the tradeoff between different modes of
clean air delivery.

Our results can also inform public health guidance, using data from real buildings. We have validated the
use of the simple safety guideline, Eq. (1), to limit infection risk in different classes of indoor spaces, rather
than strict occupancy limits [14]. We have shown that the underlying pseudo-steady approximation is consistent
with full, dynamical simulations, and whenever small discrepancies arise, the guideline always provides a more
conservative estimate of the risk. For normal occupancy in the monitored spaces, we also predict that short-range
transmission via respiratory flows can be neglected (compared to the long-range airborne transmission) without
imposing physical distance limits.

Controlling disease transmission must also be considered within the context of broader societal needs, such
as minimizing energy usage, pollution, and carbon emissions. Our framework is able to quantify and optimize
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these tradeoffs, as the various sources of EOA are all incorporated, including their different energy requirements.
Enabling real-time control of infection risk, prioritized against energy consumption, is a critical first step in the
paradigm shift toward more healthy, energy efficient buildings [2].
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Methods

Occupancy Estimation
A key input to the transmission-rate model is the (time-varying) occupancy in each space, which is then used to estimate
the number of susceptible, 𝑁𝑠 , and infectious, 𝑁𝑖 , occupants. Our proposed approach to estimate occupancy and ventilation
rates proceeds via parameter estimation applied to the following ODE model:

𝑑𝐶CO2

𝑑𝑡
=
𝑄𝑏

𝑉
𝐶CO2,𝑏𝑁𝑡 (𝑡) − 𝑘𝑎 (𝑡) (𝐶CO2 −𝐶CO2 ,OA) (2)

The state variable is the CO2 concentration 𝐶CO2 , while 𝑉 is the space volume, 𝑄𝑏 ≈ 0.6 m3/h is the occupant breathing
rate, 𝐶CO2,𝑏 ≈ 38,000 ppm is the exhaled-breath excess CO2 concentration, 𝐶CO2 ,OA ≈ 400 ppm is the outdoor-air CO2
concentration, and 𝑘𝑎 (𝑡) B 𝑄𝑎 (𝑡)/𝑉 is the (possibly time-varying) ventilation rate. The values to be inferred are the time-
varying occupancy 𝑁𝑡 (𝑡) and also the ventilation rate 𝑘𝑎 if it is not measured. A key benefit of the proposed approach is
that it requires no prior training or actual occupancy counts, and the room volume is the only parameter that has to be
specified. Exact details on how we solve the inverse problem to infer 𝑁𝑡 (𝑡) and 𝑘𝑎 are provided in SI 1.

Full Dynamical Model
The mass balance for infectious particles in a room results in the following partial differential equation model for the time-
evolution of infectious pathogen concentration, 𝐶 (𝑟, 𝑡), per droplet size in a room of volume 𝑉 and area 𝐴 [14]:

𝑉
𝜕𝐶 (𝑟, 𝑡)

𝜕𝑡
= 𝑁𝑖 (𝑡)𝑃 (𝑟 ) −

(
𝑄𝑎 + 𝑝 𝑓 (𝑟 )𝑄𝑟 + 𝑣𝑠 (𝑟 )𝐴 + 𝜆𝑣 (𝑟 )𝑉 +

∑︁
𝑑

𝑝𝑑 (𝑟 )𝑄𝑑

)
𝐶 (𝑟, 𝑡). (3)

where 𝑁𝑖 are the number of infectors present in the room exhaling infectious droplets with rate 𝑃 . Infectious droplets
are removed through ventilation (𝑄𝑎), filtration in the recirculated airflow (𝑝 𝑓 (𝑟 )𝑄𝑟 ), sedimentation (𝑣𝑠 (𝑟 )𝐴), deactivation
(𝜆𝑣 (𝑟 )𝑉 ), and the action of disinfection devices (

∑
𝑑 𝑝𝑑 (𝑟 )𝑄𝑑 ). All removal mechanisms can be expressed as rates, 𝜆𝑎 = 𝑄𝑎/𝑉 ,

𝜆𝑓 (𝑟 ) = 𝑝 𝑓 (𝑟 )𝑄𝑟/𝑉 , 𝜆𝑠 (𝑟 ) = 𝑣𝑠 (𝑟 )𝐴/𝑉 , and 𝜆𝑑 (𝑟 ) =
∑

𝑑 𝑝𝑑 (𝑟 )𝑄𝑑/𝑉 , and lumped into a single parameter the describes the
supply of “equivalent outdoor air” (EOA) delivered to the space, 𝜆EOA = 𝜆𝑎 + 𝜆𝑓 + 𝜆𝑠 + 𝜆𝑣 + 𝜆𝑑 [26].

The production rate, 𝑃 , an be further expressed as 𝑃 (𝑟 ) = 𝑄𝑏𝑛𝑑 (𝑟 )𝑉𝑑 (𝑟 )𝑝𝑚 (𝑟 )𝑐𝑣 (𝑟 ), where 𝑄𝑏 is the breathing flow rate
of the individuals; 𝑛𝑑 (𝑟 ) is the number density of pathogens per volume of breath, which is known to vary with factors that
include respiratory activity, time since infection, etc.; 𝑉𝑑 (𝑟 ) is the volume of the aerosol droplets; 𝑝𝑚 is a mask penetration
factor which accounts for the proportion of pathogen that may be filtered out by the mask (where a value of 1 means all
pathogen escapes the mask and 0 means all pathogen is filtered by the mask) [59]; and 𝑐𝑣 (𝑟 ) is the pathogen concentration
in the droplets.

According to this model, the steady-state value of pathogen concentration if one infector is present is𝐶𝑠 (𝑟 ) = 𝑃 (𝑟 )
𝜆EOA (𝑟 )𝑉 .
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CO2-based Safety Guideline
The CO2-based safety guideline can be derived by considering the steady-state CO2 concentration to the dynamical model
given in Equation (2). The steady-state solution is

𝐶𝐶𝑂2,𝑠 −𝐶𝐶𝑂2,𝑂𝐴 =
𝑁𝑡𝑄𝑏𝐶𝐶𝑂2,𝑏

𝜆𝑎𝑉
. (4)

We can rearrange Equation (4) and combine with Equation (1) to arrive at the CO2-based safety guideline

(𝐶𝐶𝑂2,𝑠 −𝐶𝐶𝑂2,𝑂𝐴)𝜏 < 𝜖
𝐶𝐶𝑂2,𝑏

𝑄𝑏𝑝
2
𝑚𝐶𝑞

𝜆𝐸𝑂𝐴 (𝑟 )
𝜆𝑎

, (5)

where we have assumed that 𝑁𝑡/𝑁𝑠𝑁𝑖 ≈ 1.

Short-Range Transmission Risk
Estimates of short-range transmission rates can be derived from the theory of turbulent jets [14]. This analysis predicts that
the concentration of infectious particles in the jets of infectors’ exhaled breath decays as 1/𝑥 where 𝑥 is horizontal distance.
A key deficiency of this model is that it does not account for the buoyancy of exhaled breath, which causes it to quickly
rise out of the breathing zone of a potential susceptible. Thus, rather than use the turbulent jet models directly, we instead
employ an empirical model derived from the experimental results of [33]. In that paper, the authors calculate a “susceptibility
index“ defined as 𝜖 B 𝐶 (𝑥)/𝐶∞ where𝐶 (𝑥) is the infectious particle concentration at horizontal distance 𝑥 from the mouth
of the infector, and 𝐶∞ is the background room concentration. For our purposes, we assume the concentration within the
jet follows the model

𝜃 B
𝐶 (𝑥) −𝐶∞
𝐶𝑏 −𝐶∞

≈ 𝑘

𝑥

where 𝑘 is an unknown constant to be determined. Assuming 𝐶∞ = 𝐶𝑏𝑄𝑏/𝑉𝜆EOA follows the pseudo-steady well-mixed
model, we can derive the relationship

𝜃 =
(𝜖 − 1)𝑄𝑏

𝑉𝜆EOA −𝑄𝑏

To quantify the short-range transmission rate, we use the model
¤𝑅short = 𝑄𝑏𝐶 (𝑥)𝑝short

in which the new parameter 𝑝short represents the probability that a susceptible is directly within the short-range plume
exhaled by each infector. More information about how we determine this parameter is provided in SI 6.

Transmission-Controlled Ventilation
Given that our primary goal is to control the transmission risk in each room, we propose using the reproductive number
directly as a controlled variable, rather than using CO2 as in DCV.

To implement this control strategy, we of course first need to evaluate the current transmission rate ¤R. The pseudo-
steady model gives ¤R B 𝑄2

𝑏
𝐶𝑞𝑁𝑠/𝜆EOA𝑉 , in which we have removed some extra factors for brevity. The value of 𝜆EOA𝑉

can be calculated using flow measurements and filtration parameters for the BMS-provided clean air and the humidity
measurements and physics-based models for the deposition and deactivation components of EOA. To estimate 𝑁𝑠 , the CO2
generation rate 𝑔CO2 B 𝑄𝑏𝐶CO2,𝑏𝑁𝑡/𝑉 can be calculated from successive measurements of 𝐶CO2 and 𝑄𝑎 = 𝜆𝑎𝑉 . We could
then calculate 𝑁𝑖 B max(𝑁𝑡 − 1, 0), although we propose using 𝑁𝑖 ≈ 𝑁𝑡 to add a slight degree of robustness for small
rooms. We thus arrive at the formula

¤R =
𝑄𝑏𝐶𝑞

𝜆EOA

𝑔CO2

𝐶CO2,𝑏

which can be evaluated by the BMS.
To define the action of the controller, we thus take a transmission-rate setpoint ¤Rsp and invert the previous formula to

find the corresponding EOA setpoint

𝜆
sp
EOA B

𝑄𝑏𝐶𝑞𝑔CO2

¤Rsp𝐶CO2,𝑏

From this value, the BMS can adjust its various setpoints to deliver the required amount of EOA. In cases where the BMS
can control multiple sources of EOA (e.g., ventilation, filtration via recirculation, and possibly in-zone disinfection devices),
some form of prioritization would be needed, for example selecting in order of increasing energy consumption. More
information on the corresponding control logic is provided in SI 7.
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