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Abstract13

Mendelian randomization (MR) is an epidemiological approach that utilizes genetic14

variants as instrumental variables to estimate the causal effect of a modifiable but15

likely confounded exposure on a health outcome. This paper investigates an MR16

scenario in which different subsets of genetic variants identify different causal ef-17

fects. These variants may aggregate into clusters, and such variant clusters are18

likely to emerge if they affect the exposure and outcome via distinct biological19

pathways. In the framework of multi-outcome MR, where a common risk factor20

causally impacts several disease outcomes simultaneously, these variant clusters21

can reflect the heterogeneous effects this shared risk factor concurrently exerts22

on all the diseases under examination. This, in turn, can provide insights into23

the disease-causing mechanisms underpinning the co-occurrence of multiple long-24

term conditions, a phenomenon known as multimorbidity. To identify such variant25

clusters, we adapt the general method of Agglomerative Hierarchical Clustering26

(AHC) to the summary data MR setting, enabling cluster detection based on the27

variant-specific causal estimates, using only genome-wide summary statistics. In28

particular, we tailor the method for multi-outcome MR to aid the elucidation of29

the potentially multifaceted causal pathways underlying multimorbidity stemming30

from a shared risk factor. We show in various Monte Carlo simulations that our31

‘MR-AHC’ method detects variant clusters with high accuracy, outperforming the32

existing multi-dimensional clustering methods. In an application example, we use33

the method to analyze the causal effects of high body fat percentage on a pair34

of well-known multimorbid conditions, type 2 diabetes (T2D) and osteoarthritis35

(OA), discovering distinct variant clusters reflecting heterogeneous causal effects.36

Pathway analyses of these variant clusters indicate interconnected cellular processes37

underlying the co-occurrence of T2D and OA; while the protective effect of higher38

adiposity on T2D could possibly be linked to the enhanced activity of ion channels39

related to insulin secretion.40

Keywords: Mendelian randomization; clustering analysis; multimorbidity; robust41

MR; hierarchical clustering; heterogeneous causal effects.42
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Introduction43

Mendelian randomization (MR) is a widely used method in epidemiology that leverages44

genetic variants (usually in the form of single nucleotide polymorphisms, SNPs) as in-45

strumental variables (IV) for estimating the causal effect of a potentially confounded46

exposure on an outcome [1, 2]. If a genetic variant is sufficiently associated with the47

exposure, independent of possible confounders of the exposure-outcome relationship, and48

affects the outcome only through the exposure, then it is a valid instrument for assess-49

ing causality [3]. With further parametric assumptions, for example that relationships50

between all variables are additive and linear, and all variants included as instruments51

encode a single homogeneous causal effect from the exposure to the outcome, then the52

causal parameter of interest can be estimated using simple meta-analytic methods based53

on genome-wide summary statistics [4–6]. In this setting, all the variant-specific causal54

estimates are expected to target the same, true causal effect, and their ‘ratio’ estimates55

(derived as the ratio of the variant-outcome to variant-exposure association), from which56

the overall meta-analysis is performed, should vary by sampling error alone [7, 8]. Excess57

‘heterogeneity’ amongst the ratio estimates is therefore a sign that one or more of the58

assumptions has been violated [9].59

60

A major source of excess heterogeneity is undoubtedly horizontal pleiotropy, the phe-61

nomenon whereby a variant affects multiple traits and therefore is associated with the62

outcome through pathways other than via the exposure [9, 10]. This has been extensively63

studied with improved methods for pleiotropy detection [8, 11] and robust estimation [5,64

12, 13]. Violation of the causal effect homogeneity assumption, has, by contrast, been far65

less researched, despite this being a plausible feature of many analyses. For example, it is66

suspected that general adiposity, which is often proxied by a single trait like body mass67

index (BMI), exerts a heterogeneous causal effect on type 2 diabetes (T2D) depending68

on the location of the adipose tissue in the body (e.g. if it is peripheral or visceral) [14].69

In this case, variants associated with different physiological aspects of the exposure may70
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target distinct causal effects.71

72

In the presence of excess heterogeneity from both sources, the genetic variants can be73

grouped into distinct clusters, such that all variants in each cluster indicate the same74

effect. Several studies have explored variant clusters in the MR framework. It is well75

recognized that it is impossible to discern whether each cluster embodies genuine causal76

mechanisms between the exposure and outcome, or is formed due to pleiotropic pathways,77

without further domain knowledge or modelling assumptions. Therefore, overdispersion78

caused by both sources can be summarized under an umbrella term such as “clustered79

heterogeneity”, as proposed by Foley et al. [15], or “mechanistic heterogeneity” by Iong80

et al. [16].81

82

In this paper, we propose a method to identify variant clusters under mechanistic hetero-83

geneity, building upon the Agglomerative Hierarchical Clustering (AHC) method devel-84

oped by Apfel and Liang [17] in the field of econometrics for IV selection. We adapt the85

method to the summary-data MR setting, hence referring to it as “MR-AHC”, to group86

variants based on their ratio estimates using genome-wide summary statistics. More no-87

tably, we have tailored the method to the multi-outcome MR setting, in which a shared88

exposure causally impacts several disease outcomes simultaneously. This extension is89

specially crafted for investigating the causal mechanisms underpinning multimorbidity,90

which refers to the co-existence of two or more long-term conditions in one individual [18].91

92

A substantial and growing proportion of the adult population is affected by multimor-93

bidity, and it has been recognized as a global priority for health research [19, 20]. It is94

therefore important to comprehend the underlying disease-causing pathways. Numerous95

studies have identified common risk factors associated with a broad range of conditions.96

New methods have also been introduced for identifying these factors [21]. However,97

such shared risk factors are often complex traits and may exert heterogeneous influences98

on diseases through multifaceted mechanisms. For example, obesity, one of the most99

2
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well-established risk factors contributing to various forms of multimorbidity [22, 23], is100

recognized to impact diseases through a variety of distinct pathways [14, 24].101

102

Given the multitude of potential causal pathways stemming from a common risk fac-103

tor, particularly in the case of complex traits like obesity, to enable effective clinical104

prevention and intervention, it is necessary to elucidate the mechanisms through which105

this common risk factor induces the co-occurrence of the conditions. A starting point can106

be identifying the variant clusters associated with diverse causal effects within a multi-107

outcome MR framework. To illustrate this, consider the hypothetical example depicted108

in Figure 1. Here, variants linked to the exposure X are divided into three groups (G1 to109

G3), as they influence the two disease outcomes Y1 and Y2 through three different aspects110

of the exposure X (denoted by X1 to X3) that might not be easy to measure directly.111

Among the three groups, G1 is associated with an increasing effect on Y1 but a protective112

effect against Y2, and G3 indicates an increasing effect on Y2 but no effect on Y1. Only113

the group G2 corresponds to pathways through which the shared risk factor increases the114

risk of both diseases. Therefore, identifying variant clusters can unveil the potentially115

heterogeneous causal effects, and subsequently shed light on the mechanisms linking the116

common risk factor to the co-occurrence of the conditions.

G X

Y1
G1

G2

G3

X1
X

X2

X3
2Y

Y1

2Y

-
+

+

+

+

Figure 1: Left: Multi-outcome MR involving two disease outcomes and a common risk factor;
right: clusters formed by the variants associated with the common exposure, which reflect
heterogeneous causal pathways.

117
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Several clustering approaches have been proposed within the MR framework to group ge-118

netic variants based on their causal estimates, such as MR-Clust [15] and MR-PATH [16].119

However, these methods are primarily tailored to settings involving a single exposure and120

a single outcome, making them less suitable for handling the complexities of multimor-121

bidity, as they lack multi-dimensional clustering options. On the other hand, methods122

such as NAvMix [25] do allow for multi-dimensional clustering of genetic variants, but123

are not inherently rooted in the MR framework, since they group variants based on their124

direct variant-trait associations, rather than causal estimates. This may limit their utility125

for causal inference. The mclust method [26] does permit multi-dimensional clustering126

using causal estimates, but we show that the method’s accuracy can be sub-optimal. In127

contrast, our MR-AHC method allows for multi-dimensional causal clustering based on128

MR estimates, whilst achieving a high clustering accuracy, which we have demonstrated129

in extensive Monte Carlo simulations.130

131

We apply MR-AHC to investigate the causal effects of body fat percentage (BFP), as132

a shared risk factor, on a pair of multimorbid conditions, T2D and osteoarthritis (OA).133

Our analysis identifies four variant clusters indicating heterogeneous effects on both con-134

ditions. To provide insights into the underlying causal pathways, we conducted com-135

prehensive gene-set analyses on the clusters, combining evidence from both canonical136

pathway analyses and gene-set Phenome-wide association analyses (PheWAS). While the137

clustering results cannot directly label a cluster as signifying genuine mechanisms or138

pleiotropic pathways, we show how post-clustering analyses may enable this distinction.139

Our findings on the cluster associated with increasing risks of both conditions indicate140

shared pathways underpinning the co-occurrence of T2D and OA through interconnected141

cellular processes related to gene expression transcription and cellular responses to stim-142

uli. We provide further evidence using cluster-specific MR for the unifying pathway from143

obesity to the T2D-OA multimorbidity through elevated oxidative stress. Another cluster144

exhibits a protective effect against T2D, with integrated canonical pathway and PheWAS145

evidence supporting a possible mechanism involving enhanced activity of the ion chan-146

4
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nels related to insulin secretion. This might be linked to elevated levels of high-density147

lipoprotein cholesterol (HDL-C) associated with smaller waist-to-hip ratios.148

Results149

The MR-AHC method for clustering genetic variants in summary-150

data Mendelian randomization151

We assume the following summary statistics for J genetic variants involved in an MR152

investigation: the variant-exposure association estimate γ̂j, and the variant-outcome as-153

sociation estimate Γ̂j , where j = 1, ..., J . In an MR setting with a common exposure and154

multiple P outcomes, Γ̂j is the vector of the P variant-outcome associations. We main-155

tain the assumption that the variant-exposure associations are measured from a sample156

independent from all the variant-outcome association samples, but overlap between the157

outcome samples is allowed. We also assume that all the genetic variants are themselves158

mutually uncorrelated (i.e. not in linkage disequilibrium). The causal estimates of the159

exposure on the P outcomes using only variant j as instrument (i.e. the ratio estimates)160

can then be obtained as the P -dimensional vector β̂j = Γ̂j/γ̂j. Let Σ̂j be an estimate of161

the covariance matrix of β̂j .162

163

We propose MR-AHC, a two-step procedure with
{
β̂j , Σ̂j

}J

j=1
as inputs, to group genetic164

variants indicating the same causal effects, or in other words, having similar observed ratio165

estimates β̂j , into the same cluster. We illustrated the method with a simple hypothetical166

example, shown in Figure 2. For ease of illustration, we consider the case with a single167

outcome, but the same procedure applies generally with multiple outcomes. The first168

step of the method, the merging step, is illustrated in the left panel of Figure 2. It shows169

a situation with six variants that form three clusters (one of them comprised of a single170

variant). The dotted lines at β1 and β2 are the true heterogeneous causal effects from the171

exposure to the outcome, and the circles above the real line denote the variant-specific ra-172

tio estimates. The differences in the size of the circles reflect the fact that summary data173

5
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estimates exhibit varying degrees of uncertainty. In the explanation below, we refer to174

these estimates and their corresponding variants by the numbers 1 to 6, from left to right.175

176

In the initialization step of the merging process (Step 0 in the illustration), each variant-177

specific estimate has its own cluster. Next, we merge the two estimates which are closest178

in terms of their weighted squared Euclidean distance, i.e. those estimated with Variant179

3 and 4 (the two red circles). These two estimates are merged into one cluster and we180

now have five clusters left. We re-calculate the pairwise distances with the five clusters181

and merge the closest two into a new cluster. We continue with this procedure until step182

5 where all variants are in a single cluster.183

Q
 T

es
tW

ar
d’

s 
al

go
rit

hm

Q  <  T31 31 Q  <  T32 32

Merging Downward testing

Step 0
6 clusters

Step 1
5 clusters

Step 2
4 clusters

Step 3
3 clusters

Step 4
2 clusters

Step 5
1 clusters

β2β1

Figure 2: Illustration of the MR-AHC method for a hypothetical example adapted from Apfel
and Liang [17]. Left panel: Ward’s algorithm defines a clustering path. Right panel: A down-
ward testing procedure is applied until the step-specific heterogeneity statistics can not be
rejected at a specified threshold.

By the end of the merging step, we have generated a clustering path. Along each step of184

the path, the number of clusters, denoted by K, varies from K = 1 to K = J by incre-185

ments of 1. Next, in the second step of MR-AHC, we re-trace the clustering path to select186

the optimal value of K using a downward testing procedure, operates as follows: starting187

from the largest cluster containing all variants, apply Cochran’s Q test [27] to examine188

the degree of heterogeneity of all the ratio estimates by calculating the test statistic and189

comparing it with a pre-specified significance threshold. If the null hypothesis of “no ex-190

cess heterogeneity” gets rejected, then move to the next level of the clustering path and191

apply the Q test to all the sub-clusters on that level. We repeat this process until reach-192

6
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ing a level where no sub-cluster heterogeneity statistic rejects at the given significance193

threshold. In our illustrative example, we would expect the downward testing procedure194

to re-trace from step 5 to step 3 of the clustering path, thus determining three groups195

formed by Variants 1-2, Variants 3-5, and Variant 6 alone.196

197

In the original AHC algorithm proposed by Apfel and Liang [17], the inputs are essen-198

tially just the ratio estimates β̂j , hence the clustering objects are treated as non-random199

fixed data points. MR-AHC adjusts the algorithm to take into account the uncertainty200

of β̂j by incorporating the covariance matrix Σ̂j into the weighted squared Euclidean201

distance in the merging process. We show in Appendix A that this distance between two202

clusters is essentially the Wald statistic for testing the null hypothesis that “the two clus-203

ters indicate the same causal effect”. Therefore, merging two clusters with the smallest204

distance can be interpreted as merging two clusters with the highest similarity in their205

cluster-specific causal effects.206

207

In terms of the covariance matrix estimate Σ̂j , we show in Appendix A that if all the208

outcome samples are non-overlapping and/or the phenotypic correlations between the209

outcome traits are zero, then all the ratio estimates of a given variant are uncorrelated.210

In this case, all the covariance terms are zero and Σ̂j is just a diagonal matrix with the211

non-zero entries being the variances of the ratio estimates, which can be easily estimated212

from the GWAS summary statistics. If the covariances are non-zero, we show that Σ̂j213

can be estimated via linkage disequilibrium (LD) score regression [28] and seamlessly214

incorporated into the analysis.215

216

In the downward testing procedure, following the recommendation in Belloni et al. [29],217

we define the threshold p-value for the Q test as ζ = 0.1/ log(n) where n is the sample218

size. We prove in Appendix B that this threshold p-value results in a consistent cluster-219

ing procedure. That is, as n increases, the probability of correctly identifying all true220

members of each cluster tends to 1. If the exposure and outcome samples are of different221

7
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sizes, we recommend using the sample size of the smallest outcome sample. For binary222

outcomes, an effective sample size can be approximated with the number of cases and223

controls, see Han and Eskin [30].224

225

MR-AHC does not require pre-specification of the number of clusters. It can also easily226

identify a “null cluster” and a “junk cluster”, following the terminology of Foley et al.227

[15], which refer to, respectively, the cluster identifying a zero causal effect, and the clus-228

ter containing variants not assigned to any detected clusters. Specifically, we conduct a229

post-clustering Wald test on each cluster-specific causal estimate for the null hypothesis230

of a zero causal effect using ζ = 0.1/ log(n) as the threshold significance p-value. For the231

junk cluster, we simply classify all variants that do not fit into any other clusters as junk232

variants. To further improve the clustering accuracy of MR-AHC, we also extend the233

basic algorithm illustrated above to an outlier-robust version, to correct for the outliers234

in the ratio estimates, see the method section for details.235

Simulation results236

We conduct Monte Carlo simulations to evaluate the performance of the MR-AHC237

method in detecting variant clusters and estimating the causal effects in various settings238

that mimic the multimorbidity scenarios we are interested in, which involve a shared239

exposure causally affecting multiple outcome conditions. We consider 12 simulation de-240

signs, where the number of outcomes is either P = 2 or P = 3, the number of substantive241

variant clusters is either K = 1 or K = 4, and the sample correlation between the out-242

comes is either ρ = 0, ρ = 0.2 or ρ = 0.7 (see the method section for a detailed definition243

of ρ). In all designs, we have J = 100 SNPs with 10 designated as true ‘junk’ variants.244

245

The two classes of scenarios stratified by the number of variant clusters are illustrated in246

Figure 3. The directed acyclic graph (DAG) in Panel (a) illustrates the data generation247

process when there are four substantive clusters and one noise cluster. Multiple outcomes248

(two or three) are represented by the single notation Y . Variant clusters are formed due249

8
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to differential sub-components of the exposure, denoted by X1 to X5. Variant Cluster 1250

and X1 represent a correlated pleiotropy pathway, and Clusters 2 to 4 correspond to gen-251

uine heterogeneous causal mechanisms from the exposure to the outcomes. The scatter252

plot on the right of Panel (a) is based on a representative simulated dataset of the two-253

outcome case. We also examine the performance of the method when there is actually no254

mechanistic heterogeneity, i.e. there is only one real cluster and one noise cluster. The255

design is shown by a DAG and representative dataset in Figure 3 Panel (b). The arrow256

from X1 to Y is absent, meaning that the only substantive cluster is also a null cluster257

and there is no causal effect between the exposure and the outcomes. See the method258

section for a detailed design specification.259

260

We compare MR-AHC with two other multi-dimensional clustering approaches. The261

first is the mclust algorithm [26], a general clustering method that accommodates the262

utilization of ratio estimates as inputs. We select this method as it is one of the most263

widely used clustering method based on Gaussian mixture models [26]. We implement264

mclust in two ways: the basic setting without a noise component, and the setting incor-265

porating a Poisson noise component. An initial value of the proportion of noise variants266

is required, and we set this value favourably as 10% which is the ground truth. The267

second method, NAvMix, proposed by Grant et al. [25], groups genetic variants based268

on the variant-trait associations instead of the ratio estimates. We choose this method269

for comparison as it is also motivated by elucidating the biological mechanisms that can270

possibly be revealed by the patterns of the genetic variants associated with various traits.271

We employed two sets of input data for NAvMix: the variant-trait associations, as ini-272

tially proposed; and the ratio estimates as in MR-AHC. Similar to mclust, we set the273

initial proportion of noise variants for NAvMix at 10%. For these two methods, cluster274

membership is assigned based on the highest probability. As a general clustering method275

for mechanistic heterogeneity, MR-AHC also works in the one-outcome case. We com-276

pare MR-AHC with MR-Clust [15], a popular method for conducting one-dimensional277

clustering based on ratio estimates, see Table S4 in Appendix D.278

9
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(a) Simulation designs with 4 substantive variant clusters.
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(b) Simulation designs with 1 substantive variant cluster.

Figure 3: Directed acyclic graphs (DAG) of the data generation process and scatter plots of
representative simulated data (with two outcomes) of the simulation designs with different
numbers of variant clusters.

We report the following statistics from the simulations for each approach: the number of279

substantive clusters detected by the methods ("#clusters"); the Rand index which mea-280

sures the similarity between the true clustering structure and the detected clusters for the281

substantives clusters ("Rand index"); the number of variants classified into the junk clus-282

ter ("#junk variants"); the number of true noise variants classified by the methods as junk283

("correct junk"); the mean absolute error ("MAE") and the mean squared error ("MSE").284

For simulation designs with one substantive cluster indicating zero causal effects, we285

10
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additionally report the frequency of correctly identifying the null cluster ("Freq.null").286

Definitions of the statistics can be found in the method section.287

288

For scenarios involving non-zero outcome sample correlations, since the GWAS results289

typically lack a direct estimate for the correlation, we initially apply all methods treating290

the correlation ρ as zero. The two-outcome simulation results are presented in Figure 4291

and Table 1. Across all settings, MR-AHC consistently demonstrates high accuracy in292

identifying the number of clusters, aligning closely with the ground truth in both mean293

and median assessments. In the boxplot of MR-AHC (Panel (a) of Figure 4), all the294

quantiles are concentrated around the median, showing that the method consistently di-295

vides variants into the correct number of clusters with little fluctuation. By comparison,296

both settings of mclust tend to underestimate the number of clusters when there are four297

true clusters and overestimate it when only one substantive cluster exists. The NAvMix298

method, employing two different sets of input, also exhibits a tendency to underestimate299

the number of clusters when K = 4. While it successfully identifies one cluster when300

K = 1 with low outcome correlations, it overestimates the cluster number when the out-301

come correlation is high (ρ = 0.7). In line with the cluster number results, MR-AHC302

performs very well in terms of grouping the variants correctly, as measured by the Rand303

index. It consistently achieves Rand indices close to 1, significantly outperforming all304

other approaches in all settings. One potential drawback of MR-AHC is its tendency305

to assign slightly more noise variants to the “junk” cluster than the true count, but the306

number of true noise variants selected as junk of MR-AHC is only marginally lower than307

that of mclust with the noise component, outperforming all other approaches. Regarding308

estimation bias, both MR-AHC and NAvMix with ratio estimates input exhibit compara-309

ble MAE and MSE in general, both of which are smaller than those of other methods in310

most of the settings. For scenarios where K = 1, MR-AHC accurately identifies the null311

cluster with frequencies close to 1. The two variations of NAvMix also exhibit high accu-312

racy in this aspect, although this accuracy diminishes for NAvMix with ratio estimates313

when the outcome correlation is high.314
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Panel (a) – The number of detected substantive clusters.

Correlation = 0 Correlation = 0.2 Correlation = 0.7
k =

 4
k =

 1

M
R−A

HC

M
clu

st

M
clu

st_
no

ise

Nav
M

ix

Nav
M

ix_
ra

tio

M
R−A

HC

M
clu

st

M
clu

st_
no

ise

Nav
M

ix

Nav
M

ix_
ra

tio

M
R−A

HC

M
clu

st

M
clu

st_
no

ise

Nav
M

ix

Nav
M

ix_
ra

tio

2.5

5.0

7.5

2.5

5.0

7.5

N
um

be
r 

of
 s

ub
st

an
tiv

e 
cl

us
te

rs

Panel (b) – Rand index for variants in the substantive clusters.
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Figure 4: Two outcomes – boxplots for the number of detected substantive clusters and Rand
index with different cluster numbers (K = 4 or K = 1) and outcome correlations (ρ = 0, ρ = 0.2
and ρ = 0.7). All methods are conducted treating the outcome correlations as 0. The dotted
horizontal lines represent the true values. "mclust noise" stands for the mclust algorithm with
a noise component, and "NAvMix ratio" for the NAvMix method with ratio estimates as input.
Results are based on 1000 replications.
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Table 1: Simulation results for designs with two outcomes. All methods are conducted treating
the outcome correlations as 0. "mclust noise" stands for the mclust algorithm with a noise
component, and "NAvMix ratio" for the NAvMix method with ratio estimates as input. Statistics
are calculated as the mean over 1000 replications.

MR-AHC mclust mclust noise NAvMix NAvMix ratio

Two outcomes, K = 4, correlation = 0
# clusters 4.196 3.716 2.964 3.018 2.307
Rand index 0.917 0.757 0.737 0.615 0.710
# junk variants 10.966 0.000 7.726 6.517 4.080
# correct junk 6.975 0.000 7.134 1.446 3.951
MAE 0.088 0.120 0.123 0.162 0.106
MSE 0.030 0.041 0.041 0.052 0.035

Two outcomes, K = 4, correlation = 0.2
# clusters 4.207 3.665 2.933 3.130 2.254
Rand index 0.915 0.744 0.725 0.630 0.694
# junk variants 10.916 0.000 7.835 6.930 3.999
# correct junk 7.031 0.000 7.234 1.493 3.906
MAE 0.088 0.118 0.122 0.153 0.101
MSE 0.030 0.039 0.040 0.048 0.032

Two outcomes, K = 4, correlation = 0.7
# clusters 4.229 3.652 3.754 3.649 2.202
Rand index 0.918 0.784 0.835 0.684 0.677
# junk variants 10.993 0.000 8.044 5.347 3.925
# correct junk 7.144 0.000 7.433 1.302 3.844
MAE 0.089 0.091 0.088 0.119 0.087
MSE 0.029 0.027 0.027 0.035 0.024

Two outcomes, K = 1, correlation = 0
# clusters 1.026 2.211 1.312 1.000 1.001
Rand index 0.947 0.887 0.895 0.818 0.818
# junk variants 10.194 0.000 8.211 0.000 0.000
# correct junk 7.703 0.000 7.073 0.000 0.000
MAE 0.012 0.020 0.015 0.017 0.017
MSE 0.000 0.004 0.001 0.000 0.000
Freq.null 0.955 0.726 0.767 0.998 0.997

Two outcomes, K = 1, correlation = 0.2
# clusters 1.019 2.226 1.297 1.009 1.007
Rand index 0.949 0.881 0.893 0.816 0.816
# junk variants 10.275 0.000 8.438 0.058 0.060
# correct junk 7.833 0.000 7.199 0.009 0.008
MAE 0.012 0.021 0.015 0.017 0.018
MSE 0.000 0.004 0.001 0.000 0.001
Freq.null 0.965 0.724 0.791 0.996 0.990

Two outcomes, K = 1, correlation = 0.7
# clusters 1.025 2.221 1.296 1.883 1.881
Rand index 0.948 0.910 0.924 0.546 0.545
# junk variants 9.685 0.000 9.458 29.057 27.936
# correct junk 7.995 0.000 8.323 5.099 5.020
MAE 0.013 0.019 0.014 0.026 0.113
MSE 0.000 0.003 0.001 0.001 0.015
Freq.null 0.954 0.760 0.785 0.928 0.102
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When K = 4 with non-zero outcome correlations, MR-AHC tends to identify more clus-315

ters than the ground truth. This feature can be rectified by incorporating accurate316

outcome correlation information, see the results generated by applying the method with317

the true correlation parameter (Table S2 in Appendix D). We show in Appendix A that318

the outcome correlation depends on both the extent of sample overlap between the out-319

come samples, and the phenotypic correlation between the outcome traits. Hence, high320

outcome correlations are uncommon in practice. To achieve, for instance, a correlation321

of ρ = 0.7, one would need perfect sample overlap and a phenotypic correlation of 0.7322

between the two outcome traits. Even in this extreme scenario, implementing MR-AHC323

while assuming a zero correlation performs reasonably well. The simulation results for324

scenarios with three outcomes are presented in Appendix D, Table S1 and S3. Once again,325

MR-AHC exhibits good performance, producing clustering results that closely align with326

the ground truth and generally surpassing the performance of all other approaches.327

Estimating the causal effects of higher adiposity on type 2 dia-328

betes and osteoarthritis329

We apply the MR-AHC method to investigate the causal relationship between body fat330

percentage (BFP), as a measure of adiposity, and a pair of multimorbid conditions, T2D331

and OA. We use a three-sample summary-data MR design with 487 SNPs associated332

with BFP as instruments, accounting for the causal effects of the common risk factor333

BFP on both of the conditions simultaneously. For comparison, we also perform variant334

clustering using the mclust algorithm and the NAvMix method.335

336

The clustering results of MR-AHC are presented in Figure 5, Panel (a). It detects 4337

substantive clusters indicating heterogeneous causal effects. The cluster-specific estima-338

tion results, obtained with the inverse-variance weighted (IVW) approach [5], are depicted339

in Figure 5, Panel (b). Among the 4 clusters, Cluster 1 with 124 SNPs is the only cluster340

associated with increasing risk for both conditions; Cluster 2 with 258 SNPs indicates an341

increasing risk for T2D but a null effect for OA; both Cluster 3 (32 SNPs) and Cluster 4342
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(22 SNPs) are associated with a protective effect against T2D, and for OA, a causative343

effect and a null effect, respectively. See Appendix E for detailed estimation results.344

Panel (a) – (left) The scatter plot of the 487 SNPs associated with BFP; On the x-axis are the
ratio estimates for T2D, and y-axis for OA. Each point represents a specific SNP. (right) the
clustering results of MR-AHC.
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Panel (b) – The cluster-specific IVW estimates and 95% confidence intervals in odds ratio for
each cluster detected by MR-AHC.
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Figure 5: MR-AHC clustering and estimation results of the 487 SNPs associated with BFP
based on their ratio estimates on T2D and OA.
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These results align with the conclusions drawn from previous research. For example, Mar-345

tin et al. [24] examined the causal effects of higher adiposity on a variety of conditions346

including T2D and OA. Their findings suggest that adiposity exerts heterogeneous effects347

on the risk of T2D: in general, higher adiposity increases the risk of T2D, but there is a348

metabolically “favourable” component of adiposity that reduces the risk of the condition.349

For OA, all adiposity measures, including the metabolically favourable adiposity, consis-350

tently identify an increasing risk. This suggests a non-metabolic weight-bearing effect as351

a likely cause. Given this, it is reasonable to partition the variants into distinct clusters352

along both outcome dimensions: on the T2D-estimate dimension, clustering occurs due353

to the indication of opposing effects by different variants; on the OA-estimate dimension,354

clustering is also likely to occur, as we may expect an adverse effect if the variants are355

associated with fat located around the articulations in a load-bearing way, but no effect356

elsewhere.357

358

The clustering results generated with mclust and NAvMix are presented in Figure 6.359

Both methods fail to segregate the variants along the OA-estimate dimension, as all clus-360

ters indicate increasing effects, hence might have underestimated the number of clusters,361

which also appears as an over-arching feature of the methods in the simulations. Even362

for the T2D-estimate clustering, their results may be dubious: mclust assigns SNPs in363

nonadjacent regions with largely opposing estimates into the same cluster (Cluster 2 in364

blue); NAvMix either labels a large number of SNPs as ‘junk’ if setting a non-zero initial365

noise proportion, or does not identify any noise at all with a zero initial proportion. More366

importantly, for clusters generated by these two methods, variants tend to display sub-367

stantial within-cluster heterogeneity in their ratio estimates, which can be a significant368

concern for causal inference.369
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−10 −5 0 5 10 −10 −5 0 5 10 −10 −5 0 5 10

−2

0

2

4

BFP−T2D ratio estimate

B
F

P
−

O
A

 r
at

io
 e

st
im

at
e

Cluster 1 2 Noise

Figure 6: From left to right: the clustering results of the mclust algorithm with an initial noise
proportion 5%; the clustering results of the NAvMix method with an initial noise proportion 0;
the clustering results of the NAvMix method with an initial noise proportion 5%.

Biological insights into the variant clusters370

To gain insights into the biological mechanisms linking obesity to the T2D-OA multi-371

morbidity from the variant clusters detected by MR-AHC, we use an approach similar372

to the one taken by previous works such as Grant et al. [25] and Wang et al. [31]. For373

each of the clusters identified by MR-AHC, we first map the SNPs in the cluster to genes,374

then perform gene set enrichment analysis with the mapped genes. Both steps are con-375

ducted using the Functional Mapping and Annotation Platform (FUMA) [32]. SNPs are376

mapped to genes using a three-way mapping strategy (positional, eQTL and chromatin377

interactions mapping). The gene set enrichment analysis is to test if the mapped genes378

are over-represented in a given pre-defined gene set which corresponds to a canonical379

biological pathway or is associated with a phenotype reported from the GWAS catalog.380

We refer to the latter as the gene-set Phenome-wide association analysis (PheWAS), or381

just “PheWAS” for short. We integrate both lines of evidence from the pathway and Phe-382

WAS analyses that can complement or validate each other, to infer the possible biological383

mechanisms underlying each cluster. See Supplementary material S2 for a summary of384
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the enrichment analyses results.385

386

First, it is likely that Cluster 2 (containing 258 SNPs, associated with increasing risk387

of T2D) is highly pleiotropic. Based on the PheWAS analysis, this cluster is enriched388

with a large number of phenotypes, double that for Cluster 1 which has the second most389

(112 versus 56). These phenotypes fall into a wide range of categories, displaying no clear390

pattern. The majority of the canonical pathways enriched for this cluster are related to391

intermediate filament, which might not have a strong direct link with the causal relation-392

ship under examination.393

394

Cluster 1 (containing 124 SNPs, indicating increasing risks of both conditions) holds395

particular significance as it aligns with our primary objective of exploring the multimor-396

bidity of T2D and OA through obesity. The majority of the canonical pathways uniquely397

enriched for Cluster 1 can be classified into two categories of cellular processes that are398

closely interconnected: gene expression transcription and cellular responses to stimuli. A399

significant example in the first category is DNA methylation, while in the second cate-400

gory, one of the most significantly enriched pathways is associated with oxidative stress.401

For some of the pathways, we can delve deeper into the investigation using readily avail-402

able GWAS data. As an example, we further inspect the possible unifying pathway from403

obesity to the T2D-OA multimorbidity via oxidative stress.404

405

Oxidative stress (OS) is the imbalance between the production of reactive oxygen species406

and the counteracting antioxidant defenses in the direction that favors the former, which407

may lead to tissue injury [33]. Clinical research has established that obesity can induce408

systemic OS through various metabolic pathways [34, 35]. Moreover, OS is evidenced409

to exert direct effects on the development of T2D via mechanisms such as decreasing410

insulin secretion from pancreatic β cells [36, 37]. It also plays a role in the progression411

of OA by promoting cartilage degradation [38]. Herein, we examine the role of OS by412

performing cluster-specific MR: we first analyze how BFP predicted by SNPs in cluster413
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1 is associated with a variety of OS biomarkers. Then for comparison, we conduct the414

same analysis on Cluster 4, serving as a counterpart to Cluster 1 due to its relatively415

benign nature for both conditions, manifesting a protective effect against T2D and a null416

effect on OA.417

418

We select 11 OS biomarkers from diverse categories. First, as endogenous antioxidants419

are highly responsive to OS [39], we use 4 enzyme antioxidants (GST, CAT, SOD, GPX)420

as OS injury biomarkers, which have been utilized in previous MR studies [40, 41]. One of421

the mechanisms through which obesity induces systemic OS is chronic inflammation [34,422

35]. We thus incorporate three traits known to mediate the pathway from inflammation423

to OS (CRP, IL-6, TNF-α) [35] as another set of OS biomarkers. Biochemical research424

has shown that the production of some cytokines, including IL-1β, IL-12 and IL-8, are425

enhanced under elevated OS levels [42, 43]. Therefore, we also include these three cy-426

tokines in the analysis. Finally, we incorporate GDF-15, which is a biomarker for both427

inflammation and OS [44]. See the method section for the full form of the abbreviations428

of the biomarkers.429

430

We estimate the effect of BFP on each of the biomarkers by two-sample MR using SNPs431

in Cluster 1 and Cluster 4 as instruments separately. The estimates and standard errors432

are calculated by the IVW approach. Sensitivity checks by MR-PRESSO [45] and the ro-433

bust adjusted profile score (MR-RAPS) method [13] can be found in Appendix E. Results434

in Z-scores are presented in Figure 7. For 8 out of 11 of these OS markers, Cluster 1 is435

associated with increasing effects, while Cluster 4 is associated with declining effects. For436

CAT and CRP, Cluster 1 and Cluster 4 have effects in the same direction, but Cluster 1437

is either associated with a larger increasing effect (CRP), or a smaller decreasing effect438

(CAT). The only exception is SOD, on which the increasing effect of Cluster 1 is smaller439

than that of Cluster 4.440

441

Overall, we can see a clear heterogeneity pattern between Cluster 1 and Cluster 4 in442
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their cluster-specific effects on the OS biomarkers, which supports that Cluster 1 is asso-443

ciated with an elevated level of oxidative stress, while it may be the opposite for Cluster444

4. These results align with the existing findings regarding adiposity and oxidative stress:445

higher adiposity is in general associated with elevated oxidative stress, but fat patterns446

featured with a smaller waist-to-hip ratio (WHR) may be related to less oxidative damage447

[35, 46]. This correlation between WHR and OS is observed in Cluster 4, as we will show448

later that this cluster is associated with a decreasing WHR.449

450

Figure 7: Results of the two-sample MR estimating the effects of BFP on the 11 oxidative
stress biomarkers and 2 psychological disorders using variants in Cluster 1 and Cluster 4 as
instruments respectively. Estimates are given by the IVW approach, presented in the form of
Z-scores (the ratio of the estimate and the standard error). "*" represents significance at the
p-value 0.05; "**" for the first 11 traits represents significance at 0.05/11, for the last two traits
at 0.05/2.

Complementary evidence that may be related to the shared pathway via oxidative stress451

can be found in the PheWAS results for Cluster 1. A notable PheWAS pattern associated452

with this cluster is that it is enriched with quite a few psychological disorders. Clinical453

research has shown that OS is implicated in the development of such disorders, including454

bipolar disorder and depression [47], which are both significantly enriched for Cluster 1.455

We estimate the effects of BFP predicted by variants in respectively Cluster 1 and Cluster456

4 on bipolar and major depressive disorder (MDD) using two-sample MR. Results are457

presented in the last two columns in Figure 7. Cluster 1 is associated with increasing458

risks of both conditions with a significant effect on bipolar. The effects of Cluster 4, on459

the other hand, are both insignificant and smaller than those of Cluster 1. These results460

may suggest a possible direction for exploring the multimorbidity between obesity-related461

metabolic conditions and psychological disorders.462

20

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.03.18.23287164doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.18.23287164
http://creativecommons.org/licenses/by-nd/4.0/


463

It is important to note that there is very likely to be intricate interactions between the464

pathways involved in the underlying mechanism from obesity to the T2D-OA multimor-465

bidity. For example, another canonical pathway uniquely enriched for Cluster 1 is related466

to programmed cell death, or apoptosis. It has been well-documented that excess OS467

plays a role in the activation of apoptosis [48], and pancreatic β-cell and chondrocyte loss468

due to apoptosis are implicated in the development of T2D and OA respectively [49, 50].469

Furthermore, quite a few gene expression transcription pathways enriched for Cluster 1470

are related to epigenetic processes. Emerging evidence supports the involvement of OS471

in epigenetic regulation of gene expression such as inducing DNA methylation changes472

[51, 52]. Thus, additional research is warranted to further unravel the exact causal roles473

of these pathways.474

475

Both Cluster 3 and Cluster 4 exhibit a protective effect against T2D. The most notewor-476

thy PheWAS pattern for these two clusters is that they are both enriched with phenotypes477

related to fat distribution. This is particularly pronounced for Cluster 4, with 17 out of478

42 enriched phenotypes associated with fat patterns including the WHR-related traits.479

Also, Cluster 4 has a clear pattern regarding its enriched biological pathways: 13 out480

of 16 of the pathways are related to ion channel activities. Ion channels are membrane481

proteins acting as gated pathways for the passage of ions across the cell membranes [53].482

483

To integrate the evidence from the WHR-enriched PheWAS pattern and the ion-channel-484

enriched pathway pattern into a potential explanation of the protective mechanism against485

T2D, one possible link may be that Cluster 4 is also enriched with several HDL-C related486

phenotypes. Existing studies have found a negative relationship between WHR and HDL-487

C [54, 55], i.e. smaller WHR may be associated with higher levels of HDL-C. Moreover,488

the connection between HDL-C levels, ion channel activities, and T2D development might489

be explained by the primary role of HDL-C in cholesterol clearance [56]. On one hand,490

ion channels, such as the β-cell voltage-gated calcium channels, are crucial for insulin491
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secretion [57]. On the other hand, the activity of such channels can be suppressed by492

excess membrane cholesterol [29]. Thus, the depletion of cholesterol facilitated by HDL-C493

might positively impact the activity of the ion channels related to insulin secretion. This494

link is evidenced by previous experimental research on mice, which shows that reduced495

HDL-C levels are correlated with impaired glucose-induced insulin secretion [58]. This496

is because the increased rigidity of the β-cell membrane due to cholesterol-enrichment497

reduces the stimulation of ion channels essential for secreting insulin [59, 60].498

499

To examine the possible protective mechanism against T2D stated above, we conduct500

two-sample MR to examine the effects indicated by Cluster 4 on WHR (adjusted for501

BMI), HDL-C and total cholesterol levels. The results, shown in Figure 8, are in line502

with the hypothesized mechanism: this cluster is associated smaller WHRs, higher levels503

of HDL-C, lower levels of total cholesterol, and consequently decreasing risk of coronary504

artery disease (CAD).505

WHRadj

HDL−C

Total Cholesterol

CAD

−1 0 1

IVW estimate and 95% confidence interval

Figure 8: Two-sample MR results estimating the effects of cluster 4-predicted BFP on the waist-
to-hip ratio adjusted for BMI, HDL-C, total cholesterol and coronary artery disease. Estimates
are given by the IVW approach, presented in the form of the 95% confidence intervals.

Discussion506

In this paper we adapt the general method of agglomerative hierarchical clustering to the507

summary-data Mendelian randomization setup. MR-AHC is a useful tool for interrogat-508

ing a set of genetic variants to see if they collectively identify a single causal effect, or509

if it is more plausible that a number of subgroups identify distinct effects driven by dif-510

ferent biological mechanisms. The method is of particular interest when the potentially511
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heterogeneous physiological components of the exposure are not known beforehand, or512

are difficult/expensive to measure. Of special interest is its utility as a multi-dimensional513

clustering method in the multi-outcome MR setting, where we can elucidate the shared514

causal pathways that underlie the co-occurrence of a range of conditions through a com-515

mon risk factor.516

517

In an effort to investigate the intricate mechanisms underpinning disease causation, a518

number of approaches has been utilized to categorize genetic variants associated with519

a specific phenotype, based on their GWAS associations with a range of traits linked520

to that target phenotype, such as the Bayesian nonnegative matrix factorization clus-521

tering method [61] and the NAvMix method [25]. MR-AHC is motivated similarly by522

the purpose of exploring the diverse disease-causing pathways reflected by distinct vari-523

ant clusters. However, it is distinctly tailored to a different scenario and employs a524

different clustering strategy. Its primary application is rooted in the domain of causal525

inference, specifically within the framework of MR. It groups genetic variants based on526

their causal estimates, which integrates both their associations with the target pheno-527

type (in this context, a common exposure) and their associations with the related traits528

(herein, downstream outcomes). By the comparison with NAvMix through Monte Carlo529

simulations and the real-world application, we have shown that MR-AHC has certain530

advantages over the association-based approaches in MR settings, namely an enhanced531

capacity to identify the patterns of the genetic variants that may mirror distinct causal532

mechanisms between specific traits. Furthermore, while the variant clusters discovered533

through association-based methods may have broad biological implications encompassing534

a wide range of traits, those detected by MR-AHC are precisely focused on elucidating a535

specific causal relationship. Consequently, pathway information derived from each cluster536

identified by MR-AHC offers a higher degree of relevance and specificity for the causal537

relationship under examination.538

539

MR-AHC possesses the features that it does not require pre-specifying the number of540
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clusters, and that alongside detecting meaningful clusters it can also identify and label541

null and junk clusters without an initial specification on the proportion of ‘noise’. While542

for hierarchical clustering algorithms, it can be difficult to choose the ‘optimal’ dissimilar-543

ity metric, linkage and number of clusters on the dendrogram to yield reliable clustering544

results, studies in the field of model selection [17, 62] provide the theoretical basis for545

MR-AHC to ensure highly accurate results. We have adapted the original AHC method546

in Apfel and Liang [17] to accommodate the varying degrees of uncertainty exhibited in547

summary-data estimates due to allele frequency differences across SNPs. Moreover, our548

method is capable of handling outliers in the variant-specific estimates with our outlier549

removal procedure. It should be noted that all the aforementioned methods assign vari-550

ants to clusters in a probabilistic (i.e. ‘soft’) way, while MR-AHC do the clustering in551

a deterministic (i.e. ‘hard’) manner. Although we view this as a strength, some may552

view its lack of stochasticity as a disadvantage. For this reason we plan to develop a553

framework to quantify the sensitivity of MR-AHC clustering results to small changes in554

the data and thresholding rule used.555

556

We showed in simulations that, in situations of sample overlap in the outcome data,557

incorporating the correct correlation information can improve the performance of the558

method. Nevertheless, it is in general not a significant concern if the correlation esti-559

mates are set to zero. Our method is currently focused on the problem of estimating a560

causal relationship between the shared exposure and the downstream outcomes without561

accounting for the direct causality between the outcomes. In our application example,562

various existing evidence supports the absence of direct causality between T2D and OA563

[63, 64]. However, we show in Appendix C that even if direct causality exists, our method564

is still applicable, as the clustering of the variants associated with the common exposure565

are generally robust to the outcome causality. The challenge then shifts to estimating566

the direct causal effect of the exposure on a particular outcome while considering other567

outcome traits as an additional risk factor, or accepting that the original estimates repre-568

sent total causal effects via the outcome in question. Given this, another potential future569
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extension of our work is to extend the method to the multi-exposure framework, with the570

additional flexibility to consider genetic sub-structure within each exposure.571

Materials and Methods572

Model setup573

We start from the individual-level model underlying the variant-exposure and variant-574

outcome summary associations. We assume a general linear IV model for the MR frame-575

work allowing for multiple outcomes with a shared exposure, which accounts for pleiotropy576

and heterogeneous causal mechanisms. We also assume that the causal effects from the577

exposure to the outcomes via different pathways are additive. Therefore, without loss578

of generality, we model the causality heterogeneity using additive sub-components of the579

exposure. Let the common exposure X be denoted by X = X1 + ... + Xk where Xk580

is the k-th sub-component in X and k = 1, ..., K. Let the p-th observed outcome be581

denoted by the scalar Yp where p = 1, ..., P and P ≥ 2 in a multi-outcome MR. The582

vector G = (G1, ...., GJ)′ is used to denote the J genetic variants used as instruments.583

We then have the following linear structural model:584

U =
J∑

j=1
ηjGj + ϵU , (1)

Xk =
J∑

j=1
δkjGj + qxkU + ϵXk, (2)

X =
K∑

k=1
Xk, (3)

Yp =
K∑

k=1
θkpXk +

J∑
j=1

ψjpGj + qypU + ϵY p, (4)

where585

• U represents the uncontrolled confounding between Yp and any sub-component of586

X, with the strength of confounding determined by parameters qxk and qyp;587
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• ϵU , ϵXk and ϵY p are error terms affecting U , Xk and Y respectively, and we assume588

E(ϵUGj) = E(ϵXkGj) = 0 for all j = 1, ...J ;589

• θ1p, ..., θKp represent the heterogeneous causal effects of X on Yp.590

We maintain the assumption that all the variants are independent with each other, and591

therefore inspect the relationship between each individual variant Gj and X as well as592

between Gj and Yp. First, from (1) and (2), we obtain the reduced-form relationship593

between Xk and Gj as594

Xk = γkjGj + ξXkj,

where the total effect of Gj on Xk is γkj = δkj + qxkηj. The error term ξXkj is defined595

implicitly, but from the the previous assumptions E(ϵUGj) = E(ϵXkGj) = 0 and that Gj596

is independent with all other variants, we have E(ξXkjGj) = 0 as well. It follows from597

(3) that the overall relationship between Gj and the exposure X is598

X = γjGj + ξXj (5)

where599

γj =
K∑

k=1
γkj =

K∑
k=1

δkj + ηj

K∑
k=1

qxk, (6)

and the error term ξXj = ∑K
k=1 ξXkj with E(ξXjGj) = 0. We assume that the relevance600

condition for the instruments is satisfied at the scale of the overall exposure X so that601

γj ̸= 0 for j = 1, ..., J .602

603

Now we inspect the reduced-relationship between Gj and Yp. It follows from (4) that604

the pleiotropic effect of Gj on Yp can be derived as αjp = ψjp + qypηj. Additionally by605

plugging (1) and (2) into (4), the overall reduced-form between Yp and Gj is606

Yp = ΓjpGj + ξY pj, (7)
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where607

Γjp =
K∑

k=1
θkpγkj + αjp =

K∑
k=1

θkpδkj + ηj(
K∑

k=1
θkpqxk + qyp) + ψjp. (8)

The correlation between the implicitly-defined error term ξY pj and Gj depends on the608

correlation between ϵY p from Equation 4 and Gj. If E(ϵY pGj) = 0, then ξY pj and Gj609

are also uncorrelated. In this case, for the Gj-Yp association estimate (denoted by Γ̂jp)610

generated from a GWAS by regressing Yp on Gj in a given sample, we have611

Γ̂jp
p→ Γjp

as the sample size n → ∞. Similarly, for the Gj-X association estimated in a GWAS612

(denoted by γ̂j) in a sample independent from the Gj-Yp sample, we have613

γ̂j
p→ γj

as n → ∞. Then for the variant-specific causal estimate of Gj, defined as β̂jp = Γ̂jp/γ̂j,614

we have615

β̂jp
p→ βjp and βjp = Γjp

γj

=
∑K

k=1 θkpγkj + αjp∑K
k=1 γkj

.

In words, as the sample size n goes to infinity, each β̂jp converges to their variant-specific616

causal estimand βjp, which is the causal effect from X to Yp identified using Gj as in-617

strument. In the simple case where Gj only instruments one sub-component Xk, the618

variant-specific causal estimand then becomes:619

βjp = θkpγkj + αjp

γkj

= θkp + αjp

γkj

. (9)

Equation 9 reflects the possible sources of mechanistic heterogeneity among the variant-620

specific estimates: heterogeneous causal effect from the exposure to the outcome, and621

pleiotropic effects. We aim to group the genetic variants into distinct clusters such that622

within each cluster, all variants identify the same causal effect. More generally, for the623
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multi-outcome MR with P ≥ 2 outcomes, with a given variant Gj, we combine all β̂jp624

and βjp for p = 1, ..., P into the vectors β̂j =
(
β̂j1, ...., β̂jP

)′
and βj = (βj1, ...., βjP )′

625

respectively. We propose the MR-AHC method, elaborated in the subsequent section,626

to divide the genetic variants into distinct clusters based on the similarity of their ratio627

estimates β̂j , so that variants with the same estimand βj are in the same cluster.628

629

Thus far, we have inspected the case where there is no residual correlation between630

Gj and ϵY p in Equation 4, i.e. E(ϵY pGj) = 0. In a multi-outcome MR model, this rela-631

tionship can be violated if there is direct causality between the outcome variables. For632

example, consider two outcomes Yp and Yq, if Yq causally affects Yp directly, then it will633

enter Equation 4 as part of ϵY p, hence the error term may be correlated with Gj. We634

show in Appendix C that the clustering results of the variants are in general not affected635

by the additional direct causality between the outcomes, but the causal effects identified636

by each cluster are the total effects including the outcomes causality, instead of the direct637

effects from the exposure to the outcomes. In this paper, we mainly focus on the case638

without the direct outcome causality.639

The MR-AHC algorithm640

We make the following normality assumption on the summary statistics described in641

the previous section:
√
n


 Γ̂jp

γ̂j

−

 Γjp

γj


 d→ N


 0

0

 ,
 σ2

Y jp 0

0 σ2
Xj


 , for642

j = 1, ..., J and p = 1, ..., P . It follows that
√
n
(
β̂jp − βjp

)
d→ N

(
0, σ2

jp

)
. The estimates643

of the standard errors of γ̂j and Γ̂jp, denoted by se (γ̂j) and se
(
Γ̂jp

)
, are generally given644

by the corresponding GWAS, hence taken as known. The standard error of β̂jp = Γ̂jp/γ̂j645

can then be obtained using the Delta method as v̂jp =
√

se(Γ̂jp)2
+β̂2

jpse(γ̂j)2

γ̂2
j

. But it is646

typically approximated by v̂jp = se
(
Γ̂jp

)
/|γ̂j| since se (γ̂j) is deemed negligible when647

we only use variants that pass a genome-wide significance threshold as instruments [11].648

When there are multiple outcomes, let Σ̂j be the estimate of the covariance matrix of649

β̂j . The diagonal entries of Σ̂j are just the variances of
(
β̂j1, ...., β̂jP

)′
, i.e.

(
v̂2

j1, ...., v̂
2
jP

)′
.650
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The off-diagonal entries of Σ̂j are the pairwise covariances of
(
β̂j1, ...., β̂jP

)′
. We show651

in Appendix A that the covariances are zero if the outcome samples are non-overlapping652

and/or the phenotypic correlations between the outcome traits are zero, otherwise, they653

can be estimated using LD score regression [28].654

655

With the summary statistics
{
β̂j , Σ̂j

}J

j=1
as inputs, we apply MR-AHC to discover the656

variant clusters using a two-step procedure: Step 1 (agglomerative hierarchical cluster-657

ing) generates a decision path from K = J to K = 1 clusters; Step 2 (downward testing)658

re-traces the path from K = 1 to K = J until the optimal cluster choice Kopt is chosen.659

The first step is summarized as follows:660

Step 1. Ward’s algorithm [65]661

1. Initialization: Each variant-specific estimate is viewed as a cluster on its own.662

Hence, initially, the total number of clusters is K = J .663

2. Merging: The two clusters that are closest as measured by their weighted squared664

Euclidean distance are merged into a new cluster. Without loss of generality, as-665

sume this is satisfied by cluster Sk and Sl. β̂IV W
Sk

is defined as the inverse-variance666

weighted mean of all the variant-specific estimates in Sk, as follows:667

β̂IV W
Sk

=
(
β̂IV W

Sk,1 , ..., β̂
IV W
Sk,P

)′

where668

β̂IV W
Sk,p =

∑
j∈Sk

β̂jpwjp∑
j∈Sk

wjp

(10)

with wjp = 1/v2
jp for p = 1, ..., P . β̂IV W

Sl
for Cluster Sl can be defined similarly.669

Then the weighted squared Euclidean distance between Sk and Sl is defined as670

Dk,l =
(
β̂IV W

Sk
− β̂IV W

Sl

)′
Ω̂−1

k,l

(
β̂IV W

Sk
− β̂IV W

Sl

)
. (11)

The P × P matrix Ω̂k,l is defined as follows: let Wkp = ∑
j∈Sk

wjp, and Wlp =671 ∑
j∈Sl

wjp for p = 1, ..., P . Consider the entry at the i-th column and the r-th row672
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of Ω̂k,l with i, r ∈ {1, ..., P}, denoted by covir. We have673

covir = ρir

WkiWkr

∑
j∈Sk

γ̂2
j

se
(
Γ̂ji

)
se
(
Γ̂jr

) + ρir

WliWlr

∑
j∈Sl

γ̂2
j

se
(
Γ̂ji

)
se
(
Γ̂jr

) ,
where ρir is the correlation between Γ̂ji and Γ̂jr, which is assumed to be constant674

across j = 1, ..., J . See Appendix A for details.675

3. Iteration: The merging step is repeated until all the variant-specific estimates are676

in one cluster of size J .677

After generating the clustering path using Step 1, we are left with a K = 1 super-cluster678

containing all variants. We then re-trace the pathway to select the optimal value of K679

using a downward testing procedure originally proposed by Andrews [62], operating as680

follows:681

Step 2. Downward testing procedure.682

683

Firstly, define Qfg to be the Cochran’s Q statistic [27] associated with the g-th cluster at684

level f of the clustering path, denoted by Sfg. Also define Tfg to be the (1−ζ) significance685

threshold of a χ2 distribution on P × (|Sfg| − 1) degrees of freedom with ζ = 0.1/log(n),686

n is the sample size, and |Sfg| is the number of variants in Sfg. Qfg is defined as follows:687

for the p-th outcome, let β̂p be the vector of length |Sfg| with the j-th entry being β̂jp688

where j ∈ Sfg. Combine all β̂p into a vector of length P × |Sfg| for all p = 1, ..., P ,689

denoted by Bfg. Let β̂p
IV W be the IVW mean of all the estimates in β̂p as defined in (10),690

and ι be a vector of 1 of length |Sfg|. Then combine all the |Sfg|-length vector ιβ̂p
IV W691

into a vector of length P × |Sfg| for all p = 1, ..., P , denoted by BIV W
fg . Then Qfg is692

Qfg =
(
Bfg − BIV W

fg

)′
Φ̂−1

fg

(
Bfg − BIV W

fg

)
, (12)

where Φ̂fg is a matrix that can be partitioned into P × P blocks. The block on the i-th693

column and r-th row, denoted by ϕ̂ir, is a |Sfg| × |Sfg| dimension diagonal matrix. The694

j-the diagonal entry equals to ρirse(Γ̂ji)se(Γ̂jr)
γ2

j
for j ∈ Sfg.695
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1. Starting from the cluster that contains all the variants, calculate the global Q statis-696

tic, Q11, on all the ratio estimates;697

2. If Q11 < T11, then stop and assume that all the variants form a single cluster. If698

Q11 ≥ T11, then revert to the variant clusters on the next level of the path, where699

the number of clusters is K=2;700

3. Calculate Q statistics for the two sub-clusters separately, Q21 and Q22;701

4. If both Q21 < T21 and Q22 < T22, then stop. Otherwise, continue to the next level702

where K=3;703

5. Repeat steps 3-4 until a K ∈ (1, .., J) is arrived at for which no sub-cluster hetero-704

geneity statistic rejects at its given threshold.705

In implementing the MR-AHC method, in addition to the baseline procedure summarized706

in Step 1 and 2, we propose an extension of the method to handle outliers in the ratio707

estimates: after we run Step 1 and 2 and obtain the clustering results, within each708

detected cluster, calculate each individual variant’s contribution to the overall Q statistic.709

The individual Q statistic, calculated using (12) with only estimates of that variant,710

approximately follows a χ2
P distribution [11], and variants with large individual Q (here711

defined as the p-value of the individual Q below 5%) are viewed as outliers. We remove712

the outliers from each detected cluster, and re-run Step 1 and 2 with all the remaining713

variants. All the outliers are then assigned to the junk cluster.714

Monte Carlo simulations715

For all the simulation designs, we simulate two/three-sample summary data based on716

the data generating process defined in Model (1)-(4) with all sample sizes equal to N =717

60, 000. Here we fix ψj = 0. We assume thatGj, X and Yp are normalized with V ar(Gj) =718

V ar(X) = V ar(Yp) = 1 and E[Gj] = E[X] = E[Yp] = 0. We also assume that the719

covariances between the variants are 0, Cov(Gj, Gi) = 0 for i ̸= j. According to Equation720
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(6) and (8), the variant-exposure and variant-outcome summary statistics are generated721

in the following way:722

β̂Xj =
K∑

k=1
δkj + ηj

K∑
k=1

qxk +N(0, 1/N),

β̂Y jp =
K∑

k=1
θkpδkj + ηj(

K∑
k=1

θkpqxk + qyp) + eY pj,

for j = 1, ...., J with J = 100 and p = 1, 2 or p = 1, 2, 3. The normally distributed random723

variables N(0, 1/N) add the random component to β̂Xj that mimics the asymptotically724

normal distribution of the statistics obtained from GWAS with standardized data. The725

random error of β̂Y jp, denoted by eY pj, is generated from a multivariate normal distri-726

bution for the multiple outcomes. All the variance terms of this multivariate normal727

distribution are set to 1/N . When there are P = 2 outcomes, the covariance equals728

ρ/N with ρ = 0, 0.2, and 0.7 for the zero, low, and high outcome correlation settings729

respectively. When there are P = 3 outcomes, the pair-wise outcome correlation equals730

to ρij = ρ|i−j| where i, j ∈ {1, 2, 3} and i ̸= j with ρ = 0, 0.2 and 0.7 for three different731

settings. Then the standard errors of β̂Xj and β̂Y jp are given by732

se(β̂Xj) = se(β̂Y jp) =
√

1/N.

To simulate the summary statistics, we need to set the values of the following parameters:733

θkp (the causal effect of the sub-component Xk on Yp), δkj (the effect of variant Gj on Xk),734

ηj (the effect of variant Gj on the uncontrolled confounder U), and qxk, qyp (the effect735

of U on Xk and Yp respectively). Let the variation in U explained by all the variants736

be h2
U , and the variation in Xk directly explained by all the variants (not through U) be737

h2
k. Then given the values of h2

U and h2
k, parameters θkp, qxk and qyp are set as constants738

under the following restrictions to make V ar(X) = V ar(Yp) = 1 feasible:739
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K∑
k=1

h2
k + h2

U

K∑
k=1

q2
xk < 1,

K∑
k=1

θ2
kph

2
k + h2

U

K∑
k=1

q2
xkθ

2
kp + q2

yh
2
U < 1.

When there are K = 4 substantive clusters (with 15, 15, 30, 30 variants respectively) and740

one noise cluster (with 10 variants), let h2
U = 0.05 and h2

k = (0, 0.05, 0.1, 0.1, 0.005) for741

k = 1, ..., 5 with the last entry for the junk cluster. Set qxk = 1 for the first cluster, which742

corresponds to the correlated pleiotropy pathway, and qxk = 0 for all the other clusters.743

When there are two outcomes, let qy1 = 0.4 and qy2 = 0.1. The causal effect parame-744

ters are set as θk1 = (0.1, 0.3, 0.5, 0.4) for the first outcome, and θk2 = (0.2,−0.3, 0.6, 0)745

for the second outcome, with k = 1, ..., 4. Causal effects of the 10 noise variants are746

generated from N(0, 1). When there are three outcomes, additionally set qy3 = 0.2 and747

θk3 = (−0.2, 0.3, 0, 0.3).748

749

When there is K = 1 substantive cluster (with 90 variants) and one noise cluster (with750

10 variants), set h2
U = qxk = qyp = 0 and h2

k = (0.1, 0.005). The causal effects of X on all751

the outcomes are set to zero. In all simulation designs, δkj and ηj are generated from the752

uniform distribution U [0.1, 0.3], and are randomly assigned to be positive or negative,753

then re-scaled as δkj

√
h2

k/
√∑J

j=1 δ
2
kj and ηj

√
h2

U/
√∑J

j=1 η
2
j to make sure that variations754

in U and Xk explained by the variants equal to h2
u and h2

k respectively.755

756

The Rand index [66] is a quantity which measures the similarity between two clustering757

outcomes with values between 0 and 1. It is given by R = (a + b)/
(

p
2

)
. Here, a denotes758

the number of pairs of objects that are classified as belonging to the same cluster in both759

clustering outcomes and b is the number of pairs of objects that are classified in different760

clusters by both clustering outcomes. R values close to 1 indicate good agreement and761

values close to 0 indicate poor agreement between two clustering outcomes. Here the762

Rand index is calculated with variants assigned to the substantive clusters by the meth-763

ods. The mean absolute error (MAE) and mean squared error (MSE) are calculated as764

follows:765
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MAEp = 1
J ′

J ′∑
j=1

|βjk − β̂jk|, MSEp = 1
J ′

J ′∑
j=1

(βjk − β̂jk)2,

where J ′ is the number of variants that are not assigned to the junk cluster by the meth-766

ods, and do not belong to the junk cluster by the ground truth. βjk is the true causal767

effect associated with the cluster which Gj truly belongs to, and β̂jk is the causal esti-768

mate associated with the cluster which Gj is assigned to by the methods. The subscript769

p denotes the p-th outcome, and the overall MAE and MSE are calculated as means over770

all the outcomes.771

772

MR-AHC is performed with the outlier-robust variation as described previously. To avoid773

spurious clusters, we only report the detected clusters containing more than 4 variants.774

Small clusters with less than 4 variants are subsumed into the junk cluster. The inputs775

for NAvMix are standardized before being supplied to the algorithm, as recommended776

in Grant et al. [25]. The cluster-specific causal estimates are obtained using the IVW777

approach. One exception is that if there is overdispersion within a detected cluster, as778

indicated by a non-zero I2, then the cluster-specific estimate and its standard error are779

calculated using MR-RAPS [13] to account for the within-cluster overdispersion.780

Clustering analysis on the BFP associated genetic variants based781

on the causal estimates of T2D and OA782

We use SNP-BFP summary data from a GWAS study based on UK Biobank individuals783

from Martin et al. [24], including 696 SNPs at genome-wide significance (p < 5 × 10−8).784

The T2D GWAS statistics are from Mahajan et al. [67], which combine 31 published785

GWAS studies but exclude the UK Biobank individuals. The SNP-OA summary statis-786

tics are from a FinnGen GWAS (code: M13_ARTHROSIS_INCLAVO) [68]. Only SNPs787

present in all three datasets are used for analyses (487 in total). SNPs are orientated788

across all three datasets in the direction of increasing the exposure. The T2D and OA789
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samples are non-overlapping, therefore for each SNP, the covariance between the SNP-790

T2D estimate and SNP-OA estimate is treated as zero.791

792

In implementing the MR-AHC method, we use the effective sample size [30] of the T2D793

GWAS sample (n = 193, 440) to calculate the threshold p-value 0.1/ log(n) in the binary794

outcome setting for Cochran’s Q test and the post-selection Wald test in detecting the795

null clusters. Clustering results of MR-AHC are obtained using an iterated outlier re-796

moval procedure: this performs the outlier removal and re-fitting indefinitely until the797

individual p-values of the Q statistics for all SNPs are above 5%. The cluster-specific798

causal estimates and standard errors are calculated with the IVW approach. For clusters799

with overdispersion indicated by a non-zero I2, the estimates are obtained using MR-800

RAPS to account for the within-cluster overdispersion. We set the initial proportion of801

noise SNPs as 5% for both mclust and NAvMix.802

Post-clustering analysis803

We map SNPs in each cluster to genes using the SNP2GENE function in FUMA based804

on positional mapping (with deleterious coding SNPs) [69], eQTL mapping, and chro-805

matin interaction mapping. This three-way mapping strategy is used in the applied806

examples in the original paper introducing FUMA [32]. The uploaded SNPs are also807

set to be the pre-defined lead SNPs. All default settings are applied, with the excep-808

tion that we set the reference panel population as "UKB release2b 10k European". For809

eQTL mapping, following the practice in Grant et al. [25], we select tissue types from the810

following data sources: eQTL catalogue, PsychENCODE, van der Wijst et al. scRNA811

eQTLs, DICE, eQTLGen, Blood eQTLs, MuTHER, xQTLServer, ComminMind Consor-812

tium, BRAINEAC and GTEx v8 [70–79]. For chromatin interaction mapping, we select813

all available Hi-C datasets. The gene-set enrichment analysis is conducted using the814

GENE2FUNC function in FUMA. For the mapped genes corresponding to each cluster,815

we perform the hypergeometric test to check if the mapped genes are over-represented816

in a pre-defined gene set. Multi-testing correction with the Benjamini-Hochberg proce-817
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dure is applied, with the adjusted p-value ≤ 0.05 as threshold [32]. The pre-defined gene818

sets for canonical pathways and gene ontology processes are obtained from MsigDB and819

WikiPathways [80, 81]. Gene sets for phenotypes are from GWAS catalog [82].820

821

To test how the variant clusters are associated with oxidative stress, we create a list822

of 11 OS biomarkers from various categories, including: glutathione transferase (GST),823

catalase(CAT), superoxide dismutase(SOD), glutathione peroxidase (GPX), C-reactive824

protein (CRP), Interleukin 6 (IL-6), Tumor necrosis factor alpha (TNF-α), Interleukin825

1 beta (IL-1β), Interleukin 12 (IL-12), Interleukin 8 (IL-8) and Growth/differentiation826

factor-15 (GDF-15). The GWAS summary statistics for the four antioxidants (GST, CAT,827

SOD, GPX) and CRP are obtained from the GWAS of Sun et al. [83]; for GDF-15, the828

GWAS of Gudjonsson et al. [84]; for the rest five cytokines, the GWAS of Ahola-Olli et al.829

[85] and Kalaoja et al. [86]. Summary statistics for bipolar disorder and major depres-830

sion disorder are taken from two GWAS studies conducted by the Psychiatric Genomics831

Consortium [87, 88]. For MR analyses associated with Cluster 4, the WHR (adjust for832

BMI) statistics are obtained from a GWAS conducted by the GIANT Consortium [89];833

for the HDL-C and total cholesterol data, the GWAS from the Global Lipids Genetics834

Consortium [90]; for CAD, the GWAS from the CARDIoGRAMplusC4D Consortium835

[91].836
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