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Research in context 10 

 11 

Evidence before this study 12 

 13 

We searched for articles in Medline using the terms (“Seasons/” OR “Seasons”) AND (“Acute 14 

Kidney Injury/” OR “Acute Kidney Injury” OR “AKI” OR “ARF”). We also search Embase using 15 

the terms (“Seasonal variation/” OR “Seasonal variation” OR “Season/” OR “Season”) AND 16 

(“Acute kidney failure/” OR “Acute kidney failure” OR “AKI” OR “ARF”. Articles published until 17 

20/01/2023 in any language were included. Only two studies investigated seasonality of AKI in 18 

the UK and indicated winter increases in admissions. However, both studies aggregate AKI 19 

hospitalisations into quarterly counts and therefore were unable to show acute weekly changes 20 

in AKI admissions and timings of peaks. Studies outside of the UK varied in their conclusions of 21 

summer or winter increases in AKI admissions and the profile of patients driving this variation. 22 

 23 

Added value of this study 24 

 25 

This is the largest and most granular investigation of AKI seasonality in England, investigating 26 

198,754 admissions in a weekly time series detecting acute changes in incidence and 27 

differences in peaks year to year. We demonstrate consistent peaks in the winter as well as 28 

acute peaks in the summer. Most records indicated AKI was diagnosed on admission therefore 29 

suggestive of community triggers of AKI. We included more data on the profile of patients than 30 

previously published studies. Our novel approach to investigate the profile of seasonal 31 

admissions using unsupervised machine learning suggests some groups may be more affected 32 

by seasonal triggers than others. 33 

 34 

Implications of all the available evidence 35 

 36 

AKI is a common syndrome which leads to hospitalisation with a significant burden on the health 37 

system. We demonstrate a conclusive seasonal pattern to AKI admissions which has important 38 

implications on healthcare provision planning, public health, and clinical practice in England. 39 

Future research on AKI should take into account seasonality; uncertainty remains on the main 40 

drivers and aetiology of the seasonal patterns observed. 41 

  42 
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Abstract 43 

 44 

Background: Acute Kidney Injury (AKI) is a multifactorial condition which presents a substantial 45 

burden to healthcare systems. There is limited evidence on whether it is seasonal. We sought to 46 

investigate the seasonality of AKI hospitalisations in England and use unsupervised machine 47 

learning to explore clustering of underlying comorbidities, to gain insights for future intervention. 48 

 49 

Methods: We used Hospital Episodes Statistics linked to the Clinical Practice Research 50 

Datalink to describe the overall incidence of AKI admissions between 2015-2019 weekly by 51 

demographic and admission characteristics. We carried out dimension reduction on 850 52 

diagnosis codes using multiple correspondence analysis and applied k-means clustering to 53 

classify patients. We phenotype each group based on the dominant characteristics and describe 54 

the seasonality of AKI admissions by these different phenotypes. 55 

 56 

Findings: Between 2015-2019, weekly AKI admissions peaked in winter, with additional 57 

summer peaks related to periods of extreme heat. Winter seasonality was more evident in those 58 

diagnosed with AKI on admission. From the cluster classification we describe six phenotypes of 59 

people admitted to hospital with AKI. Among these, seasonality of AKI admissions was 60 

observed among people who we described as having a multimorbid phenotype, established risk 61 

factor phenotype, and general AKI phenotype. 62 

 63 

Interpretation: We demonstrate winter seasonality of AKI admissions in England, particularly 64 

among those with AKI diagnosed on admission, suggestive of community triggers. Differences 65 

in seasonality between phenotypes suggests some groups may be more likely to develop AKI 66 

as a result of these factors. This may be driven by underlying comorbidity profiles or reflect 67 

differences in uptake of seasonal interventions such as vaccines. 68 

 69 

Funding: This study was funded by the National Institute for Health and Care Research (NIHR) 70 

Health Protection Research Unit (HPRU) in Modelling and Health Economics, a partnership 71 

between UK Health Security Agency (UKHSA), Imperial College London, and London School of 72 

Hygiene and Tropical Medicine. The views expressed are those of the authors and not 73 

necessarily those of the National Health Service, NIHR, UK Department of Health or UKHSA. 74 
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Background 76 

Acute kidney injury (AKI) is a syndrome defined by rapid decline in kidney function from hours to 77 

days leading to disruption in metabolic, electrolyte, and fluid homeostasis (1). Between 20-25% 78 

of hospitalised adults have AKI, and it is associated with longer duration of stay and a 4-16 fold 79 

increase in odds of death following hospitalisation (1–3). The heterogeneity of the condition and 80 

its triggers and the wide range of risk factors makes it difficult to identify important mechanisms 81 

which can be modified to reduce the incidence of AKI (1). 82 

Previous studies have demonstrated a seasonal winter pattern to AKI hospital admissions (4–6). 83 

Data from a Welsh automated electronic AKI reporting system found an increase in AKI alerts 84 

during winter in primary and secondary care (4). Furthermore, a study in Japan indicated an 85 

increased odds of AKI in winter months with seasonality most pronounced for patients primarily 86 

diagnosed with cardiovascular and pulmonary admission codes, and when AKI was diagnosed 87 

on the day of admission (5). While winter increases in AKI suggest association with infections (7), 88 

other conditions associated with AKI such as heart failure and myocardial infarction also have 89 

seasonal patterns (8–11). 90 

Given the high incidence and complex, multifactorial aetiology of AKI the condition is well suited 91 

to analysis using machine learning (ML) (12–14). ML is increasingly used to analyse electronic 92 

health records (EHR) for risk prediction models, causal inference, text mining, and phenotypic 93 

discovery methods (12–14). Previous studies using unsupervised clustering classification of EHR 94 

data include studies such as identifying clinical phenotypes of heart failure, Alzheimer’s disease, 95 

and chronic obstructive pulmonary disease to describe the diversity of expression, progression, 96 

and aetiology of patients experiencing the same disease (14–16). The primary benefit of 97 

unsupervised clustering classification is the ability to analyse large datasets without pre-specifying 98 

hypotheses or interactions, and without limiting the number of features included to phenotype 99 

patients (17). ML methods could uncover new and important phenotypes of AKI not previously 100 

considered for detailed epidemiological investigation, and new targets for intervention. 101 

Therefore, in this study using routine primary and secondary care data from England, we sought 102 

to firstly determine whether there is seasonality in AKI admissions in England, and any 103 

associations with age and gender, and secondly to use unsupervised ML clustering approaches 104 

to investigate AKI phenotypes, and whether these also demonstrated seasonality.  105 

Methods 106 

 107 

Data source 108 

 109 

We used linked primary and secondary care data from England in CPRD GOLD, which is a 110 

large primary care database collecting longitudinal EHRs from participating GPs representing 21 111 

million patients with 3 million currently registered (18). Data is quality assured and includes 112 

demographic characteristics, diagnoses and symptoms, drug exposures, vaccination history, 113 

laboratory tests, and referrals to secondary care (18). Data are recorded using Read codes, a 114 

standardised hierarchical coding structure to describe a patient's consultation and condition. 115 
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CPRD has been shown to be representative of the UK population by age, sex, and ethnicity 116 

(17). 117 

 118 

In 2019, 52% of CPRD GOLD patients were linked to hospital episode statistics (HES) which 119 

records hospital admissions, attendances to Accident & Emergency, and outpatient 120 

appointments to all NHS hospitals. Data in HES are recorded using the International 121 

Classification of Diseases version 10 (ICD-10) codes, where each code represents a diagnosis, 122 

which are grouped under 22 headings in a hierarchical structure. 123 

 124 

Study population 125 

We defined the source population as all patients recorded between January 2015 – December 126 

2019, that met research acceptable quality control standards (18) . We defined the cohort as 127 

patients admitted to hospital with an AKI ICD-10 code (ICD-10 N-17 and N-19) in any diagnostic 128 

position during an admission (Supplementary table 1). 129 

Feature selection 130 

We extracted linked primary care records for the study population which were stored as Read 131 

codes. We mapped the Read codes to the relevant hierarchy from specific to general terms, and 132 

we prepared the features for clustering at level 3 (e.g. G30.. - Acute myocardial infarction).  133 

We included diagnosis codes as features for the cluster classification (Supplementary table 2), 134 

and age and sex were included as supplementary variables, used to describe the cluster but not 135 

included in the cluster classification algorithm. We excluded codes relating to symptoms, medical 136 

procedures, and lifestyle factors (Supplementary table 3), as well as Read code chapter Z 137 

(Unspecified conditions) to reduce the number of features included to improve processing 138 

capacity. We excluded features recorded less than 100 times in the observation period across all 139 

patients in order to reduce the computational burden, and made the assumption that these 140 

features will not have a material impact on clusters formed due to the low frequency. Diagnosis 141 

codes relating to infectious diseases (Chapter A - Infectious and parasitic diseases; Chapter H0 142 

- Acute respiratory infections; Chapter H1 - Other upper respiratory tract diseases; Chapter H2 - 143 

Pneumonia and influenza; Chapter K190 - Urinary tract infection, site not specified) were removed 144 

if they were more than  30 days before or anytime after the AKI hospitalisation. This was done in 145 

order to reflect the acute nature of these diagnoses, and time bounding these codes selected the 146 

diagnoses possibly associated with subsequent development of AKI. Without this, infection codes 147 

unrelated to AKI in time would have a dominant impact in the formation of clusters. 148 

To prepare for cluster classification, we transformed the data into a matrix indicating the presence 149 

and absence of codes for each patient. 150 

Dimension reduction 151 

We used Multiple Correspondence Analysis (MCA) as a dimension reduction technique (15,19). 152 

Dimension reduction improves the efficiency of clustering methods, while preserving the global 153 
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structure and correlation between data points (19). We selected the optimum number of 154 

dimensions using a scree plot to observe the percentage of variance in each dimension (19). We 155 

applied the “elbow rule” to the plot to determine the number of dimensions to retain. 156 

K-means clustering and phenotyping 157 

We used k-means clustering to classify patients into groups. K-means clustering classifies 158 

patients into a pre-specified number of groups based on the distance from mean centre points 159 

that minimises the total within-cluster sum of squares (15). Patients with similar characteristics 160 

are therefore classified in the same clusters. We selected the optimum number of clusters using 161 

the NbClust package (20). This package calculates the optimum number of clusters using 30 162 

different indices and aggregates the results for the user to make an assessment of the optimum 163 

number of clusters in the dataset of interest (20). Due to the computational burden of applying 164 

different indices, a random sample of 25,000 patients from the cohort were selected to apply the 165 

method. To ensure consistency, five random samples were taken. 166 

Once we allocated patients to clusters we used the frequency of clinical codes in each cluster to 167 

describe the dominant characteristics of each, using Read code chapter level 2. 168 

Analysis 169 

We described the overall incidence of AKI admissions between 2015-2019 and disaggregated by 170 

age, sex, diagnostic position of AKI code, and the day during the admission where AKI was 171 

recorded. We described the clusters of AKI patients by age, sex, and Read codes at chapter level 172 

2. All Read codes were reviewed for describing the cluster, however 17 codes were selected for 173 

illustrative purposes and cover codes mostly commonly reported as well as being plausible risk 174 

factors for AKI. We labelled clusters with the description of the overall phenotype of the cluster 175 

based on the dominant characteristics observed. We then described the incidence of AKI 176 

admissions by the cluster phenotypes. 177 

Sensitivity analysis 178 

We conducted sensitivity analysis of the cluster phenotypes by 1) restricting the cohort to those 179 

who had an AKI ICD10 code of N17 (i.e. excluding N19 codes) 2) restricting the cohort to those 180 

where AKI was recorded in a primary diagnostic position and separately a secondary diagnostic 181 

position, 3) restricting the cohort to those diagnosed with AKI on admission (day 0), 4) setting 182 

random seeds to test the reproducibility of the clustering method, and 5) changing the number 183 

of dimensions included for the cluster analysis following MCA to observe the impact on the 184 

cluster phenotypes. 185 

Role of the funding source 186 

The funder had no role in the design, analysis, interpretation of the study results, writing of the 187 

report, or the decision to submit the paper for publication. 188 

Results 189 
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 190 

Incidence 191 

 192 

Among the cohort of 133,488 individual patients recorded to have an admission with AKI in 193 

England, between 2015-2019, there were a total of 198,754 admissions.. 52% were male and 194 

the median age was 78 (IQR: 66-86). AKI incidence increased over the entire observation 195 

period from 34,539 admissions in 2015 to 42,326 admissions in 2019. We observed distinct 196 

peaks in AKI admissions in December and January of each year (Figure 1, Supplementary 197 

figure 1), as well as June-July.  198 

 199 

Winter seasonality 200 

 201 

There were seasonal peaks in admissions among men and women (Figure 1A),  most 202 

prominently observed in people aged >75 (Figure 1D). AKI admission codes recorded on day 0-203 

1 of the admission had evidence of seasonality, with no seasonality observed where AKI was 204 

recorded >2 days after admission (Figure 1B). Analysis of diagnostic position of AKI codes also 205 

demonstrated that  seasonality is more apparent where AKI was recorded as non-primary 206 

reason for admission (diagnostic position >2) (Figure 1C). Among those with a secondary AKI 207 

code, the most common primary reasons for admissions were pneumonia, urinary tract 208 

infections (UTIs), sepsis, heart failure, and chronic obstructive pulmonary disease (COPD) 209 

(Supplementary table 4). These codes make up 30% of admissions where AKI was recorded as 210 

secondary code. Seasonality was most notable for admissions where pneumonia was the 211 

primary diagnosis (Figure 1E).  212 

 213 

Summer seasonality 214 

 215 

We observed short peaks in the summer of each year; one to two weeks in duration. These 216 

peaks were observed among men and women (Figure 1A) and across age groups (Figure 1D), 217 

although not consistently across all years. Summer peaks were only observed where people 218 

were coded with AKI on day 0-1 of admission (Figure 1B), and were observed where AKI was 219 

recorded as a primary or secondary diagnostic position (Figure 1C). These periods of increased 220 

AKI admissions in the summer across all years, coincide with heatwave alerts declared by the 221 

Meteorological Office in England (21) (Supplementary figure 2).  222 

 223 
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 224 
 225 

Figure 1: AKI admissions in HES-linked CPRD 2015-2029. Time series of weekly AKI admissions, 226 

2015 - 2019, England total and by A) sex of patients B) day AKI code was recorded during the admission 227 

C) diagnostic position of AKI record  D) age group E) primary diagnosis where AKI was a secondary code 228 

during the admission (primary diagnoses displayed make up 30% of all primary diagnoses recorded). 229 

 230 

Cluster classification 231 

 232 

There were 133,488 patients that were diagnosed with AKI during an admission between 2015-233 

2019. Among these patients there were 1,788 chapter level 3 Read codes available for 234 

dimension reduction using MCA. Of these, 938 codes were recorded less than 100 times across 235 

all patients in the time period, and were excluded. Thus 850 features were retained, which made 236 

up 99.6% of records reported among the cohort. Following exclusion of sparsely recorded 237 

variables, 130,625 patients were retained for the cluster analysis. 238 

 239 

Following dimension reduction we retained five dimensions for cluster analysis (Supplementary 240 

figure 3). K-means clustering was applied to the five dimensions, and the analysis of different 241 

indices selected between two to 10 clusters as the optimum number of clusters (Supplementary 242 

figure 4). More indices selected two and six as the optimum number of clusters for the dataset, 243 

therefore for the analysis we presented the cluster phenotypes up to k = 6 (Supplementary 244 

figure 5). 245 

 246 

As the number of clusters increased, further clusters were generally created as subsets of one 247 

existing cluster at each step of k (Figure 2). One exception was the creation of cluster 2 at k = 3, 248 

which was formed as a large branch from two existing clusters. At k = 4 a small cluster was 249 
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formed defined by a group of patients characterised by non-specific coding (discussed further 250 

later).  251 

 252 

 253 
Figure 2: Sankey diagram of clustering assignment by k-means at each step of k for a total of 6 clusters. 254 

  255 
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 256 
 257 

Figure 3: Cluster characteristics. Stratified by A) Relative frequency of cluster characteristics compared 258 

to overall cohort characteristics. B) Proportion by sex of each cluster and overall cohort. C) Percentage by 259 

age groups of each cluster and overall cohort. 260 

 261 

We identified the following six broadly defined phenotypes from the cluster classification based 262 

on the dominant characteristics in each cluster (Figure 3, Supplementary table 5 - 263 

Supplementary table 9):  264 

 265 

Cluster 1 (Less multi-morbid phenotype): The largest cluster contained 59,586 patients defined 266 

by a younger age profile with median age of 75 (IQR: 61-85) vs. 78 (IQR: 66-86) in the cohort 267 

overall. Across the selected 17 disease codes, there were 18-50% fewer codes in this group of 268 

patients. Codes were highest for hypertensive disease (45%), rheumatism (41%), and disorders 269 

of eye and adnexa (33%). 270 

 271 

Cluster 2 (Younger, mental health phenotype): The youngest cluster with median age 55 (IQR: 272 

45-66). There were 7,867 patients in the cluster with 88% with a record of non-psychotic mental 273 

health disorders. Codes were also higher for female genital tract disorders (34%), and liver 274 

biliary, pancreas and gastrointestinal diseases (28%). 34% of patients had alcohol dependence 275 

syndrome, compared to 4% in the cohort overall (Supplementary table 10). 276 

 277 

Cluster 3 (Established risk factors phenotype): Contained 20,098 patients, with a higher 278 

percentage of men and the oldest profile of patients with a median age of 83 (IQR: 76-88). This 279 

cluster was defined by a higher percentage of established risk factors for AKI. People had a 280 

higher proportion of cardiovascular disease codes with 2.7 times more ischemic heart disease 281 
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(55%), 2.4 times more other forms of heart disease including heart failure (63%), 1.4 times more 282 

vein, lymphatic, and circulatory disease (43%), and 1.4 times more hypertensive disease (76%). 283 

Furthermore, 51% had other endocrine gland diseases including diabetes and 27% had codes 284 

for nephritis, nephrosis, and nephrotic syndrome (including acute and chronic renal failure 285 

codes), which was the highest percentage between the different clusters for both sets of codes. 286 

 287 

Cluster 4 (General AKI phenotype): Contained 30,654 patients defined by a more typical 288 

phenotype of patient characteristics given no particular codes and conditions stood out. Few 289 

characteristics differed substantially from the  overall cohort, although with a slightly higher 290 

proportion of patients with hypertensive disease (61%), rheumatism (88%), and other forms of 291 

skin and subcutaneous tissue infections, inflammatory conditions, and disorders.  There were 292 

slightly more women in this group (53%) and slightly older than the cohort with a median age of 293 

80 (IQR: 71-87). 294 

 295 

Cluster 5 (Female multimorbid phenotype): Contained 11,609 patients with 70% female and 296 

older than the cohort overall with a median age of 81 (IQR: 73-88). Furthermore, patients in this 297 

cluster had 2.7 times more genital tract disorders (50%) such as menopausal and 298 

postmenopausal disorders, and 1.8 times more codes for non-psychotic mental disorders 299 

(70%). People in this cluster also had 2.2 times higher percentage of other urinary system 300 

diseases (58%), 2.2 times higher vein, lymphatic, and circulatory disease (67%), and 2.1 times 301 

higher percentage for liver, biliary, pancreas and gastrointestinal diseases (30%) codes than the 302 

overall cohort. 303 

 304 

Cluster 6 (High level coding phenotype): Was a small cluster of 811 patients who were defined 305 

by a high proportion of high level diagnostic codes. For example, rather than having a code for 306 

hypertensive disease or heart failure, only a broad code is recorded such as ‘circulatory system 307 

disease’. Most frequently recorded were Read codes for digestive system disease (67%), 308 

circulatory system disease (55%), genitourinary system disease (55%), and respiratory system 309 

disease (51%) (Supplementary table 7).  310 

 311 

Cluster time series 312 

 313 

Seasonal patterns of AKI admissions were not observed for the cluster 2, 5, and 6 (Figure 4, 314 

Supplementary figure 6, Supplementary figure 7, Supplementary figure 8) while they were 315 

evident for cluster 1, 3, and 4. In addition to seasonal trends, differences in changing incidence 316 

were observed between clusters during the study period. The incidence of weekly admissions 317 

remained stable for cluster 5 and 6; increased for clusters 1, 4, and 2; declined for cluster 3 318 

(Supplementary figure 5). 319 

 320 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.17.23287400doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.17.23287400
http://creativecommons.org/licenses/by/4.0/


 321 
Figure 4: Time series of weekly AKI admissions, 2015 - 2019, England, by assigned cluster. 322 

 323 

Sensitivity analysis 324 

 325 

When conducting sensitivity analyses, the same phenotypes were identified as the primary 326 

analysis when 1) we restricted the cohort to those coded with N17 only 2) we restricted the 327 

cohort to those who had AKI recorded only in a primary diagnostic position and separately for 328 

those who had AKI recorded only in a secondary diagnostic position, 3) when we restricted the 329 

cohort to those who were diagnosed on admission (day 0), and 4) when setting random seeds 330 

for reproducibility. 331 

 332 

We conducted a sensitivity analysis of 5) the number of dimensions included in the cluster 333 

analysis, and included 461 dimensions following MCA; equivalent to covering 70% of the 334 

variance explained in the dataset (Supplementary figure 9). Five cluster phenotypes remained 335 

the same when increasing the number of dimensions. One cluster, the mental health phenotype, 336 

was replaced with a small cluster (129 patients) of patients with musculoskeletal or connective 337 

tissue diseases. 338 

 339 

Discussion 340 

 341 

Our results demonstrate that admissions involving AKI in England between 2015-2019 show a 342 

seasonal pattern with the highest peaks in December/January and further increases in 343 

June/July, coinciding with heatwaves. Admissions for people aged over 80 years showed the 344 

greatest winter seasonal increases, as well as those where AKI was diagnosed on admission 345 

suggesting the onset and cause may have been community acquired.  346 
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 347 

Using unsupervised ML clustering to generate hypotheses in a data driven approach, we 348 

identified six phenotypes of AKI admissions, of which three demonstrated marked winter 349 

seasonality. These clusters were characterised by a general AKI phenotype, those with 350 

established risk factors phenotype, and those with a younger, less multi-morbid phenotype. 351 

Using clustering methods to describe phenotypes begins to hypothesise the different profiles of 352 

patients potentially predisposed to an increased risk of AKI in the winter. 353 

 354 

Results in context 355 

 356 

The observed seasonal increase of AKI in the winter months in England was consistent with 357 

previous studies which found increases in AKI reports and RRT use in the UK, and AKI 358 

admissions in Japan (4–6). However summer increases in AKI were not reported in these 359 

studies. These studies were not analysed on a weekly time scale and may not have been able 360 

to detect acute increases in admissions. Similar to findings in Japan, AKI admissions were most 361 

common in the elderly, and those diagnosed on admission, suggestive of community-acquired 362 

AKI (5). However, where pneumonia, UTIs, and sepsis were the most common primary 363 

diagnosis categories (where AKI was a secondary code) in this study, in Japan the most 364 

common admissions categories were cardiovascular and pulmonary disease. These differences 365 

may be a result of different coding practices and interpretations of primary admissions and not 366 

necessarily the underlying aetiology of AKI. The acute rise in AKI admissions we observed in 367 

the summer during heatwave alerts aligns with evidence linking increased ambient 368 

temperatures to an increased risk of AKI (8,22–28). This is an important observation given the 369 

current and increasing future impact of climate change. 370 

 371 

Our study shows that people diagnosed with AKI have a complex multi-morbid profile and 372 

potentially have a number of mechanisms which may increase their risk of AKI, especially in 373 

winter. This is in keeping with the picture described by Philips et al, in which they found that 374 

seasonal increases in AKI affected most major medical specialities, suggesting a number of 375 

mechanisms through which AKI may increase in the winter (4).  376 

 377 

Comparison of how the phenotypes identified in this work compare to other cluster classification 378 

studies is challenging given the large heterogeneity in approaches (29). Different methods of 379 

clustering, features included, dimension reduction techniques, and method of interpreting 380 

phenotypes (quantitative vs. qualitative) contributes to the heterogeneity in the characterisation 381 

of AKI phenotypes. Furthermore studies phenotype different subgroups of AKI such as those 382 

based on serum creatinine trajectories, severity, or biomarkers (all unavailable in this study) 383 

which further differentiate the clusters characterised from general AKI attendance (29). For 384 

example, Xu et al. used deep learning methods to characterise phenotypes of AKI patients in a 385 

critical care unit in Israel (30). The phenotypes they identified were mild, moderate, and severe 386 

kidney dysfunction which was associated with AKI stage 1, 2, and 3 respectively. Unlike our 387 

study, they found no comorbidities or demographic features defined the phenotypes identified. 388 

 389 

Limitations 390 
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 391 

Our study represents the most detailed examination of the seasonality of AKI in England to 392 

date. Using an unsupervised ML approach, we incorporated an unprecedented amount of data 393 

in order to be data-driven and hypothesis free and describe an objective picture of seasonal 394 

trends. However, there were several limitations to this approach. Firstly, only categorical 395 

features were included as part of phenotyping AKI (presence or absence of disease codes 396 

only). This excludes further clinical characteristics such as biomarkers, measures to determine 397 

severity of AKI,  duration of AKI, or medication which could further contribute to the phenotype 398 

of AKI patients, although many of these features are not available in routine data. While the 399 

inclusion of the full clinical picture of patients with AKI at the scale needed to use machine 400 

learning may be challenging, phenotyping only diagnosis codes may bias the clinical picture and 401 

warrants caution in how these clusters are interpreted.  402 

 403 

A further limitation was that a low proportion of the variance was explained in each dimension 404 

following dimension reduction, suggesting each variable contributes only a small amount of the 405 

variance in the data. The sensitivity analysis, which accounted for 70% of the variance, did not 406 

alter five of the cluster phenotypes, indicating that the clusters identified through the primary 407 

analysis may be stable despite being based on only a few dimensions. 408 

 409 

While the use of Read codes enabled the examination of many diagnoses to describe clusters, 410 

it could have introduced biases in how clusters are formed due to large variation in the 411 

sensitivity and specificity of different codes. For example, using diagnostic codes alone 412 

underestimates the prevalence of CKD in CPRD (31,32) and this may have impacted on cluster 413 

formation, reducing their external validity. Assessment of the sensitivity and specificity of all 850 414 

codes included would be challenging and presents an important limitation of an unsupervised 415 

approach to clustering. While an approach that more accurately characterises underlying 416 

comorbidities could produce clusters with higher external validity, it would likely necessitate a 417 

targeted approach that is not entirely hypothesis-free. Heterogeneity in the sensitivity and 418 

specificity of disease codes also applies for ICD-10 codes recorded in HES, with changes over 419 

time, and therefore warrants caution in interpreting longer-term trends (32,33). 420 

 421 

Interpretation and future studies  422 

Our analysis of the time series data show that there are likely seasonal factors that lead to 423 

increases in AKI which is important for planning of health care services (such as surges in renal 424 

replacement therapy). AKI is a common syndrome which can lead to serious long term adverse 425 

outcomes and further evidence of seasonal increases warrants further attention of identifying 426 

which triggers, such as infectious diseases, account for the most burden. There is strong 427 

evidence of individual level associations of developing AKI following infections (7), and further 428 

studies are needed to establish whether this translates to population level drivers of AKI trends. 429 

In addition, it would be beneficial to quantify the patients at high risk, temperature triggers and 430 

burden of heat-related AKI to enable planning of appropriate responses in a changing climate. 431 

Some individuals are more likely to be affected by winter-related triggers than others. This may 432 

be due to their underlying comorbidity profile (such as age, severity of CKD, or differences in 433 
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drug therapy. However, our results highlight that some individuals who develop AKI in winter 434 

have lower levels of comorbidities. This suggests that there may be interventions that reduce 435 

the risk of seasonal AKI such as identifying those at highest risk and ensuring vaccine uptake, 436 

optimisation of medications management, or increased provision of virtual clinics to improve 437 

management of long-term conditions. 438 

To build on our study, alternative clustering methodologies like Guassian mixture models, or 439 

supervised classification methods using known predictive AKI features could be applied. Further 440 

stratification of AKI as proposed by Vaara et al. by serum creatinine trajectories or severity of 441 

AKI may further disentangle possible aetiologies of AKI phenotypes (29). This could be 442 

achieved by the inclusion of secondary care data in defining clusters. 443 

In conclusion, our results demonstrate how AKI incidence in England has a distinct winter and 444 

summer (heat-related) seasonal pattern which has important implications on healthcare 445 

provision planning, public health, and clinical practice.  446 
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