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Abstract 12 

Accurate measurement of exposure to SARS-CoV-2 in the population is crucial for 13 

understanding the dynamics of disease transmission and evaluating the impacts of 14 

interventions. However, it is particularly challenging to achieve this in the early phase of a 15 

pandemic because of the sparsity of epidemiological data. In our previous publication[1], we 16 

developed an early pandemic diagnostic tool that can link minimum datasets: 17 

seroprevalence, mortality and infection testing data to estimate the true exposure in 18 

different regions of England and found levels of SARS-CoV-2 population exposure are 19 

considerably higher than suggested by seroprevalence surveys. Here, we re-examined and 20 

evaluated the model in the context of reconstructing the first COVID-19 epidemic wave in 21 

England from three perspectives: validation from ONS Coronavirus Infection Survey, 22 

relationship between model performance and data abundance and time-varying case 23 

detection rate. We found that our model can recover the first but unobserved epidemic 24 

wave of COVID-19 in England from March 2020 to June 2020 as long as two or three 25 

serological measurements are given as model inputs additionally, with the second wave 26 

during winter of 2020 validated by the estimates from ONS Coronavirus Infection Survey. 27 

Moreover, the model estimated that by the end of October in 2020 the UK government’s 28 

official COVID-9 online dashboard reported COVID-19 cases only accounted for 9.1% (95%CrI 29 

(8.7%,9.8%)) of cumulative exposure, dramatically varying across two epidemic waves in 30 

England in 2020 (4.3% (95%CrI (4.1%, 4.6%)) vs 43.7% (95%CrI (40.7%, 47.3%))).  31 

 32 
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 33 

Introduction 34 

The COVID-19 pandemic has inflicted devastating effects on global populations and 35 

economies [2, 3] and now still affecting countries in many different ways. Reviewing the 36 

challenges posted by the COVID-19 pandemic and evaluating previous responses is vital 37 

important for future pandemic preparedness [4-7]. Accurate estimation of exposure 38 

remains crucial for understanding the dynamics of disease transmission and assessing the 39 

impacts of interventions along different stages of pandemic. However, this is particularly 40 

challenging in the early phase since most of the characteristics of the pathogen are 41 

unknown and at the same time epidemiological data are sparse.   42 

Confirmed COVID-19 cases was typically the first type of data to be collected and reported 43 

mostly due to the syndrome surveillance systems [8, 9]. However, it usually underestimates 44 

the true exposure in the population because of the limited capacity of diagnoses, the 45 

unsolid definition of cases, testing criteria and etc. Large-scale viral infection survey in the 46 

community can help to solve the testing issue. For example, the UK Office for National 47 

Statistics (ONS) conducted a national wide COVID-19 viral testing survey, namely Covid 48 

Infection Survey (CIS) [10] that successfully tracked the trajectories of COVID-19 infections in 49 

the community of UK since April of 2020. Because of its representative sampling across 50 

households in the general population this study is recognised to have a strong power to 51 

capture asymptomatic infections which might be missed out by symptomatic testing scheme 52 

in the early pandemic and can provide reliable estimates of prevalence over time [11]. 53 

However, this study started collecting samples from April of 2020 and then reporting the 54 

estimates of daily incidence from May of 2020 while the first death due to COVID-19 disease 55 

in the UK was documented in February 2020 [12]. This implies that the transmission of 56 

COVID-19 in the community began earlier than the survey, and the survey might not be able 57 

to recover the early epidemic curve.  58 

Serologic studies that measure how many people have antibodies against the virus are a 59 

promising tool for pinning down the stage of the pandemic because of its ability of capturing 60 

past infections regardless of clinical symptoms [13]. If the antibody elicited by the virus lasts 61 

for lifetime, representative sampling in a population followed by the antibody testing will 62 

provide robust estimates of exposure. However, cohort studies following individuals over 63 

time after they’ve had a known COVID-19 infection were able to determine that antibodies 64 
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are only measurable up to 6–9 months [14-16], on average, varying across testing assay [17] 65 

and antigen types [18]. The immediate implication is that serological studies will inevitably 66 

under-estimate the number of people exposed, since some will have a lower antibody count 67 

when the study is conducted and test negative. Linking multiple publicly available datasets, 68 

we proposed a method that have been published previously [1] to estimate the true level of 69 

exposure after considering the antibody decay. Here we further examined and evaluated 70 

the model in the context of reconstructing the first COVID-19 pandemic from three 71 

perspectives: validation from ONS Infection Survey, relationship between model 72 

performance and data abundance and time-varying case detection rate.  73 

 74 

Result 75 

Reconstruction of the early epidemic 76 

In our previous paper, we presented a simple model to link together three key metrics for 77 

evaluating the progress of an epidemic, applied to the context of SARS-CoV-2 in England: 78 

antibody seropositivity, infection incidence and number of deaths. We use these three 79 

metrics to estimate the antibody seroreversion rate and region-specific infection fatality 80 

ratios. In doing so, the cumulative number of infections in England are estimated, showing 81 

that cross-sectional seroprevalence data underestimate the true extent of the SARS-CoV-2 82 

epidemic in England in the early pandemic. Estimates for the IgG (spike) seroreversion rate 83 

and IFR are broadly consistent with other studies, which supports the validity of these 84 

findings.  85 

The model was set up based on the important observation about the COVID-19 infection 86 

timeline that seroconversion in individuals who survive occurs at approximately the same 87 

time as death for those who do not. Therefore, a simple ordinary differential equation (ODE) 88 

was formulated to model the rate of change in the number of seropositive individuals in 89 

different regions of England which will increase as new infections were generated that was 90 

calculated by the daily number of deaths dividing by infection fatality ratio and will decrease 91 

as antibody decay. The model predicted seropositive population were fitted to observed 92 

seroprevalence using a Bayesian observation model.  93 

Validation from ONS Infection Survey 94 

Comparing the incidence of SARS-CoV-2 in England estimated by our model with those 95 

inferred by ONS Coronavirus Infection Survey (Figure 1), we found that our model could 96 
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reveal the first but unobserved epidemic wave of COVID-19 in England from March 2020 to 97 

June 2020 additionally, with the second wave validated by the estimates from ONS Infection 98 

Survey. Further, we found our model results were highly consistent with those using SEIRS 99 

type compartmental models with time-varying force of infection [19, 20]. 100 

 101 

Relationship between model performance and data abundance  102 

We then examined the relationship between model performance and data abundance - how 103 

estimates of exposure from our model change with more serological data points being 104 

added into the fitting procedure one by one over time (Figure 2). We found a highly robust 105 

pattern of exposure across different regions of England was estimated in general. 106 

Specifically, the model could only start estimating the interested quantities: exposure and 107 

two parameters (infection fatality ratio and antibody decaying rate) when at least two 108 

serological measurements from April to June 2020 in each region were given as inputs. 109 

However, these estimates were already highly consistent with those when more serological 110 

measurements were added although the credible bands were wider. The wide credible 111 

bands suggested a bigger uncertainty around the estimates when little information was 112 

available. When three serological measurements in each of region were included the 113 

estimates of exposure level became largely consistent at the results when all serological 114 

measurements were used. This might be attributed to the timing of these third serological 115 

measurements since then the seroprevalence in most regions started decreasing. With 116 

more and more serological measurements being added, the credible bands of estimates of 117 

exposure gradually narrowed.  118 

 119 

Time-varying case detection rate  120 

While comparing the reported cases with the incidence estimated by our model (Figure 3), 121 

we found the UK government’s official COVID-9 online dashboard 122 

(https://coronavirus.data.gov.uk) reported COVID-19 cases in England only accounted for 123 

9.1% (95%CrI (8.7%,9.8%)) of cumulative exposure by the end of October 2020. Further, the 124 

relative size of two infection waves in England in 2020 estimated by our model, Spring wave 125 

from February to June and Autumn wave from September to November, were reversed 126 

compared those reported by the confirmed cases. The case detection rate relative to the 127 

total exposure was also dramatically different in these two-epidemic waves. If separating 128 
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the two waves from the first of August 2020, we found during January 2020 to August 2020 129 

the case detection rate was only 4.3% (95%CrI (4.1%, 4.6%)) which increased to 43.7% 130 

(95%CrI (40.7%, 47.3%)) during August 2020 to October 2020, highlighting the dominate 131 

effect of testing effort in shaping the case curve in the early stage of a pandemic. The testing 132 

issue, e.g. the limited capacity of tests and symptom-based testing strategy posted a big 133 

challenge for understanding the early pandemic. Viral surveys in the general population can 134 

solve the sampling issue, but still have the problem of not sampling early on. Serological 135 

data even from some convenient samples, e.g., blood donors can help to pin down the 136 

progress of the pandemic when antibody decay is teased out.  137 

 138 

Discussion 139 

Accurate reconstruction of exposure time series is necessary to assess how policies 140 

influenced transmission over time, in particular when reporting is lagged, and multiple 141 

interventions may have been undertaken in succession. For example, [21] made use of the 142 

comparison of exposure between general population and pregnant women in New York City 143 

to conclude the effectiveness of shielding during pregnancy. Moreover, the prior exposure 144 

level in the population can be used to inform future intervention design, e.g., vaccination 145 

prioritisation. For example, in the early stage of the COVID-19 vaccination campaign, when 146 

dose supply and administrative capacity were initially limited worldwide, a modelling study 147 

[22] explored how uncertainty about previous exposure levels and about a vaccine’s 148 

characteristics affects the prioritization strategies for reducing deaths and transmission. This 149 

model showed use of individual-level serological tests to redirect doses to seronegative 150 

individuals improved the marginal impact of each dose while potentially reducing existing 151 

inequities in COVID-19 impact.  152 

 153 

Here, we evaluated a simple dynamic model that we published previously and 154 

demonstrated its ability of reconstructing the first epidemic wave before large-scale survey 155 

sampling by providing robust estimates of exposure over time. One key element of the 156 

model was fitting model to serologic data that was generated from healthy adult blood 157 

donors supplied by the NHS Blood and Transplant (NHS BT collection) serum samples using 158 

the Euroimmun anti-spike IgG assay and reported in the Weekly national Influenza and 159 

COVID-19 surveillance report. This suggests that convenient samples, for example here 160 
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serum samples from blood donors have the promising power to provide primary 161 

information of epidemic progress in a short timeframe especially during the emergency of a 162 

new outbreak from a novel pathogen.  163 

 164 

Because of the rigorous sampling design and robust estimation power ONS Covid Infection 165 

Survey can almost be seen as a golden standard for estimating community prevalence. Our 166 

model does not take any results or estimates from the survey as inputs, so the comparison 167 

exercise that we conducted here between estimates of exposure from our model with ONS 168 

Covid Infection Survey provides a real-world validation. Moreover, we showed the 169 

modelling approach is a valuable early pandemic diagnostic tool and can clearly recover the 170 

first epidemic wave that the survey was unable to capture because of late starting time. 171 

Using the inferred daily incidence, we explicitly demonstrated the variation of case 172 

detection rates over two epidemic waves in England in 2020. It provides quantitative 173 

information for studying the association between the capacity, behaviour, strategy of 174 

testing with the epidemic evolution and further supported the argument that confirmed 175 

cases largely underestimate the extent of disease transmission. 176 

 177 

Moreover, the simple structure of the presented model avoids unnecessary complexity and 178 

structure-based uncertainty in a full dynamic model where compartmental models 179 

simulating the disease spread in different groups of population including susceptible, 180 

expose, infected and recovered are developed. The exercise of studying the model 181 

performance against data abundance suggests the modelling results remain highly robust in 182 

data sparse setting that is particularly important, for example, in Low- or Middle-Income 183 

Country (LMIC). 184 

  185 
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 186 

Figure 1. Comparison of model predicted daily incidence of SARS-CoV-2 in England. The 187 

green lines show the predictions of median daily incidence by our model [1] based on 188 

Equation (1) and (2) in the Materials and Methods section. The orange lines show the 189 

predictions of median daily incidence from ONS Coronavirus Infection Survey while the 190 

orange shaded areas correspond to the 95% CrI.  191 

  192 
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Figure 2. Comparison of estimates of exposure in seven regions of England as more 197 

serological measurements are given as model inputs (left to right). The green and orange 198 

lines show the model predictions of median exposure and seroprevalence, respectively, 199 

while the shaded areas correspond to the 95% CrI.  200 

 201 

 202 

Figure 3. Comparison between estimates of daily incidence with reported cases of SARS-203 

CoV-2 in England and case detection rate. Here, all serological measurements were used in 204 

the model fitting. In the top figure, the green lines show the predictions of median daily 205 

incidence by our model based on Equation (1) and (2) in the Materials and methods section 206 

while the shaded areas correspond to the 95% CrI. The red lines show the reported 207 

confirmed cases in England downloaded from GUV.UK dashboard. In the bottom figure, the 208 

blue lines show the estimates of median case reporting rate in England based on Equation 209 

(3) and (4) while the shared areas correspond to the 95% CrI.   210 

 211 

Materials and methods 212 

Data sources 213 

We used publicly available epidemiological data to conduct the analysis, as described below. 214 

ONS estimated incidence  215 

Office for National Statistics (ONS) launched Coronavirus (COVID-19) Infection Survey in 216 

England on 26 April 2020 to estimate how many people across England, Wales, Northern 217 
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Ireland and Scotland would have tested positive for COVID-19 infection, regardless of 218 

whether they report experiencing symptoms that is one of the primary goals of the survey. 219 

The survey is based on a random sample of households to provide a nationally 220 

representative survey. Everyone aged 2 years and over in each household sample was asked 221 

to take a nose and throat swab for SARS-CoV-2 using reverse transcriptase polymerase chain 222 

reaction (RT-PCR). Every participant is swabbed once. they are then invited to have repeat 223 

tests every week for another four weeks and then monthly. More descriptions about the 224 

survey design can be found [23]. Using Bayesian multilevel generalised additive regression 225 

model to model the swab test result (positive or negative) as a function of age, sex, time, 226 

and region, the study estimated community prevalence of SARS-CoV-2 in England since April 227 

2020 [10]. Combine the estimates of community prevalence and estimates of duration of 228 

PCR testing positivity, the survey modelling team also published the estimates of daily 229 

incidence based on a deconvolution model [23].  230 

To conduct the comparison of estimates of incidence between our model and ONS survey, 231 

we retrieved the SARS-CoV-2 daily incidence in England in 2020 from the Office for National 232 

Statistics (ONS) [11] on March 17, 2023 as shown in Figure 1.  233 

 234 

Model estimated exposure 235 

Cumulative exposure to SARS-CoV-2 in seven regions of England estimated by the model 236 

that we published before were obtained from [1]. Here, we firstly transformed and 237 

aggregated the cumulative exposure by region of England to daily incidence in England using 238 

Equation (1) and Equation (2).  239 

 240 

7-day average of reported COVID-19 cases in England 241 

7-day average of reported COVID-19 daily cases in England in 2020 were retrieved from the 242 

UK government’s official COVID-9 online dashboard [12] on March 17, 2023 as shown in 243 

Figure 3.  244 

 245 

Method 246 

We firstly calculated the incidence in England estimated by exposure model [1] by 247 

computing the difference of cumulative exposure in two successive days and adding 248 

together to the whole England as shown in Figure 1 and Figure 3:  249 
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 250 

𝐼𝑖(𝑡) = 𝐸𝑖(𝑡 + 1) − 𝐸𝑖(𝑡), 𝑡 = 1,2, … , 𝑛, 𝑖 = 1,2, … ,7 251 

Equation (1) 252 

𝐼𝐸𝑛𝑔𝑙𝑎𝑛𝑑(𝑡) = ∑ 𝐼𝑖(𝑡)

7

𝑖=1

 253 

Equation (2) 254 

Here, 𝐸𝑖(𝑡) is the daily exposure at region 𝑖 estimated by exposure model [1], 𝑛 is the total 255 

number of days from 1 January 2020 to 7 November 2020, 𝑖 = 1, … 7 represents London, 256 

Southwest, Southeast, Northeast, Northwest, East, Midland. 𝐼𝐸𝑛𝑔𝑙𝑎𝑛𝑑(𝑡) represents the 257 

daily incidence of England.  258 

The 7-day average model predicted incidence can be calculated by  259 

𝐼�̅�𝑛𝑔𝑙𝑎𝑛𝑑(𝑡) =
1

7
∑ 𝐼𝐸𝑛𝑔𝑙𝑎𝑛𝑑(𝑖), 𝑡 = 4, 5, … , 𝑛 − 4

𝑡+3

𝑖=𝑡−3

 260 

Equation (3) 261 

Here,   𝑡 = 4 refers to the fourth day of 2020, 𝑛 is the end date of the comparison exercise, 262 

7 November 2020.  263 

The estimated reporting ratio as shown in Figure 3 was calculated by  264 

 265 

𝑟(𝑡) =
𝐼�̅�𝑛𝑔𝑙𝑎𝑛𝑑(𝑡)

𝐶(𝑡)
 266 

Equation (4) 267 

Here, 𝐶 is the 7-day average reported cases in England from the UK government’s official 268 

COVID-9 online dashboard [12].  269 

While testing the relationship between model performance and data abundance in Figure 2, 270 

we firstly obtained all the data and codes from paper [1] and rerun the model by adding the 271 

seroprevalence measurements one by one into the model.  272 

 273 
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