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Abstract 

Acute traumatic brain injury (TBI) is associated with substantial metabolic abnormalities, both 

centrally and in the periphery. We have previously reported extensive changes in the circulating 

metabolome resulting from TBI, including changes proportional to disease severity and 

associated with patient outcomes. The observed metabolome changes in TBI likely reflect 

several pathophysiological mechanisms supporting the concept that TBI is a systemic disease 

after the primary injury. However, one of the main metabolic changes we have observed 

following a TBI are changes in lipids, including the structural lipids that are known to be present 

in the myelin in the brain.  

Here, we conducted a study to investigate the relationship between traumatic microstructural 

changes in white matter seen on magnetic resonance imaging (MRI) and quantitative  lipidomic 

changes in the blood in a subset of patients with TBI recruited to the MRI sub-study of the 

Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI) study. 

In total, there were 103 patients who had both a magnetic resonance imaging (MRI) scan and 

serum samples available for analysis. From serum, 201 known lipids were quantified. Diffusion 

tensor fitting generated fractional anisotropy (FA) and mean diffusivity (MD) maps for the MRI 

scans, in addition to volumetric data. Association matrices and partial correlation networks 

were built to elucidate the connections between the lipid groups and the maps.  

We found that there are distinct directions of associations between the neuroimage data (FA 

and MD sets) and the concentrations of circulating lipids after injury. The FA and MD values 

were in inverse relationship with the severity of TBI (higher MD values, lower FA). We also 

observed that the lipid associations to FA and MD show different metabolic signatures. 

Lysophosphatidylcholines (LPC) associate mostly with FA while sphingomyelins (SM) 

associate with MD. Only phosphatidylcholines( PC) have strong associations with both as well 

as with the volumetric data. Finally, we found that the lipid changes are not associated with the 

number of regions with abnormalities.  

In conclusion, we have identified groups of lipids which assocate with specific MRI imaging 

metrics following TBI. There appears to be consistent patterns of lipid changes associating with 

the specific microstructure changes in the CNS white matter. There is also a pattern of lipids 

with regional specficity, suggesting that blood-based lipidomics may provide an insight into the 

underlying disease mechanisms in TBI. 
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Abbreviations: CE, cholesterol ester; Cer, ceramide; CT, computed tomography; FA, 

fractional anisotropy measures; LPC, lysophosphatidylcholine; MD, mean diffusivity; MS, 

mass spectrometry; PC, phosphatidylcholine; PS, phosphatidylserine; SM, sphingomyelin; 

TBI, traumatic brain injury; TG, triaclyglycerol. 
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Introduction 

Traumatic brain injury (TBI) affects over 50 million people worldwide every year1,2. Despite 

being so common, the dynamic pathophysiology and determinants of outcome trajectories 

remain poorly understood; TBI has been described as the most complex disease in the most 

complex organ3. This is particularly true when attempting to understand the changes that may 

occur in circulating metabolites after TBI. Understanding these metabolic abnormalities is 

critical, since such knowledge might allow us to design and evaluate novel therapies.  Indeed, 

we already know that TBI is associated with substantial metabolic abnormalities, which have 

been mainly demonstrated in humans using positron emission tomography4,5 and magnetic 

resonance spectroscopy6,7. However, these techniques are expensive and logistically 

demanding, and are thus not suitable for large studies or broad clinical implementation.   

Metabolomic and lipidomic analysis of systemic blood provides one convenient approach to 

address this issue. We have previously reported extensive changes in the circulating 

metabolome resulting from TBI, including changes proportional to disease severity and 

associated with patient outcomes8-10. The observed metabolome changes in TBI likely reflect 

several pathophysiological mechanisms supporting the concept that TBI is a systemic disease. 

However, one of the main metabolic changes we have observed following a TBI are changes 

in lipids10, that are known to be present in the myelin in the brain.  Myelin is rich in lipids which 

constitute approximately 80% of the dry weight of myelin, and this makes changes in lipid 

profile a prime target for characterizing damage to the brain. Previously, the correlations that 

we have demonstrated between metabolomics and lipidomic changes and computed 

tomography (CT) are limited, since CT does not characterize microstructural abnormalities. 

Furthermore, CT does not provide any detailed information on the state of the myelin in the 

central nervous system (CNS) and therefore, associating the lipid changes with damage to the 

myelin is challenging especially since this is an important driver of outcome11. 

Magnetic resonance imaging (MRI) has the potential to characterize microstructural damage 

and improve our understanding of the pathophysiology underlying different metabolomic 

profiles after TBI. This technique provides researchers with a window into the axonal and 

myelin health in the CNS. In particular, advanced quantitative MRI, including diffusion tensor 

imaging (DTI), have been shown to be sensitive to injury after TBI, and has been associated 

with the severity of injury and outcome12-14. DTI in particular is able to detect microstructural 

damage especially in the white matter., which may provide insights into the pathophysiology 
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of injuries15. Combining this information with lipid measures from the blood will allow us to 

better understand how changes in the myelin in the CNS can impact the host lipidome profile. 

Previous studies have demonstrated that circulating lipids can be utilized as a biomarker for 

microvascular disease16. In assessing the acute phase of TBI and the aftermath thereafter, 

lipidomic profiling may provide more information about the integrity of brain connectivity and, 

more generally, brain health. 

Here we report a study to investigate the relationship between traumatic microstructural 

changes in the brain seen on MRI and quantitative lipidomic changes in the blood in a subset 

of patients recruited to the MRI sub-study of the Collaborative European NeuroTrauma 

Effectiveness Research in TBI (CENTER-TBI) study. 

Materials and methods 

Study participants 

The CENTER-TBI study recruited 4509 patients from 18 European countries and Israel 

(https://www.center-tbi.eu/, registered at clinicaltrials.gov NCT02210221)17. The CENTER-

TBI database contains data from 65 centers whose data were collected between December 19, 

2014, and December 17, 2017. Ethical approval was obtained by each site in accordance with 

their local regulations (for details see https://www.center-tbi.eu/project/ethical-approval). 

Informed consent was obtained from all study participants or their legal 

representatives/relatives according to the local regulations of each center. Clinical data was 

accessed via the Neurobot platform (RRID/SCR_017004, core data, version 3.0; International 

Neuroinformatics Coordinating Facility; released November 24, 2020). 

Patients were included in the analysis for this study if they were aged ≥ 18 years, had blood 

samples taken within 24 hours of injury and had an MRI scan performed within four weeks of 

injury. For patients who had multiple MRI scans, the earliest one was used.  Imaging data from 

healthy controls were used to harmonize imaging data and detect MRI abnormalities. In total 

data from 104 healthy controls were used (Table 1), and more are provided in the following 

sections. All severities of TBI were included. Patients who had significant preexisting 

neurological disorders were excluded.  

In total there were 103 patients that had both an MRI scan and blood samples available for 

analysis.  

A flowchart of all the analyses and data acquisition can be seen in Fig. 1. 
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Analysis of lipids 

Blood samples of the patients were drawn within 24 hours of injury and were analyzed at Örebro 

University, Sweden.  

Blood samples were collected using gel-separator tubes for serum and centrifuged within 60 

minutes. Serum was processed, aliquoted (8 × 0·5 ml, one freeze-thaw cycle), and stored at 

−80 °C locally and at the central CENTER-TBI biobank (Pécs, Hungary)18 until shipment on 

dry ice to Örebro University, Sweden for analysis.  

The lipidomic platform for data analysis in this study has been described in detail elsewhere10. 

The analysis was performed with an adjusted version of the Folch procedure19. The internal 

standards used, the calibration curves, the instrument description, and the sample analysis using 

ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry 

are the same as described previously10.  In total, 201 known lipids were quantified that belong 

to the major lipidomic functional groups including ceramides (Cer), lysophosphatidylcholines 

(LPC), phosphatidylcholines (PC), sphingomyelins (SM), and triacylglycerols (TG). 

Image acquisition, processing, and harmonization  

Images were acquired on nine 3T MRI scanners across eight sites, using study specific protocols 

the details of which can be found at: https://www.center-tbi.eu/project/mri-study-protocols20.  

Sequences included volumetric T1-weighted MPRAGE (voxel size 1 mm), volumetric fluid-

attenuated inversion recovery, T2-weighted, susceptibility-weighted imaging and DTI. Base 

values of DTI were 2-mm isotropic voxels, 32 noncollinear directions, and a b value of 1000 

seconds/mm2. 

MRI images were reported centrally for the visible presence of lesions according to the 

Common Data Element (CDE) scheme for TBI 

(https://commondataelements.ninds.nih.gov/)21,22. Patients were classified as having a 

clinically abnormal MRI when at least one intracranial lesion secondary to TBI was detected.    

All images were processed on a TBI-specific pipeline23. Images underwent neck cropping and 

were corrected for bias field inhomogeneity. Diffusion images were corrected for noise, 

artefacts (Gibbs, head motion and eddy currents)24-27 and inhomogeneities in the magnetic 

field28. Diffusion tensors were fitted via weighted least-squares to generate fractional 

anisotropy (FA) and mean diffusivity (MD) maps using fsl (https://fsl.fmrib.ox.ac.uk). These 

were non-linearly co-registered using ANTS (http://stnava.github.io/ANTs/) to the JHU-ICBM 
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FA template29 to extract mean FA and MD measures for the regions of interest (Supplementary 

Table 2).  

Differences in sites and scanners were corrected for using ComBat harmonization,30,31 a 

statistical technique to minimize unwanted scanner effect while preserving the biological 

variability, for the FA and MD sets (based on the healthy controls). The values of the volumetric 

data were normalized per patient, dividing each patients ROI values by their respective total 

brain volume.  

For the remainder of this manuscript the 51 ROI brain volumetric segmentation will be referred 

to as the volumetric set, the JHU DTI-based white-matter FA map as the FA set, and the JHU 

DTI-based white-matter MD map as the MD set. 

Statistical analysis 

All statistical analyses for this work were performed in the R statistical program version 4.1.2.  

Frequency matrices 

A correlation analysis of the frequencies of the relationships was performed for the quantitative 

diffusivity metrics (FA and MD) features to determine which ROI were the most frequently 

correlated with the lipids; and to determine if there was a topological association between the 

brain and the lipid concentrations. For each lipid/ROI combination the Pearson correlation was 

calculated together with the corresponding p-values. The correlations that were not significant 

after Holm correction were filtered out, through the rcorr.adjust function in the RcmdrMisc 

package. The final table had the 201 lipids by the ROIs that had significant correlations with 

each lipid. These remaining ROIs in the frequency table were then summed to ascertain which 

have the most frequent significant associations with the different lipids.  

Furthermore, for each ROI, after the frequencies were calculated, it was determined if it was 

overall positively or negatively associated with the lipid concentrations (based on the mean 

value of correlations). A frequency beanplot of the ROIs was created to show the level of the 

associations of the ROIs with the lipids and whether their values tend to increase or decrease in 

relation to the concentration values of the lipids. Positive correlation is this context means that 

the FA and lipid values move in the same direction, i.e., both are reduced. 

Classification models 
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We sought to determine whether lipidomic changes could predict whether intracranial lesions 

were detected on the MRI (MRI positive) or not (MRI negative) in both the full set of patients 

(CT positive and negative, n = 102), and as a secondary analysis in patients with no 

abnormalities on CT (n = 44).  

A filtering process was applied to find a subset of lipids that had the highest association with 

the MRI findings. Two separate analyses were run, the first using a Welch t-test to find the 

lipids with the highest abilities to separate MRI positive/negative based on the p-values and the 

second based on a random forest model with the same task, and the most relevant lipids selected 

based on their Gini index. For each of the algorithms, the top 30 lipids associated with the MRI 

findings were selected, and the intersect of these two results provided the final subset of lipids 

for further analysis.  

The subset of lipids was used as predictors in penalized logistic regression models to assess 

their discriminatory ability. Performance was assessed in a test set following the model fit to a 

training set (70%-30% split) where the subset of lipids was selected from the training set. Two 

penalized models were selected lasso and ridge regression, and each set of the process was 

repeated 100 times (data split, subset selection, model fit on training set, evaluation on the 

testing set), and the results of the performance for each penalized model were aggregated.  

The penalized models were also run on the full set of lipids to compare the performance between 

them and the reduced set, and to validate the filtering process. Those analyses yielded eight 

under the curve values, four for the MRI positivity/negativity discrimination on the full set of 

patients (CT positive and negative) and four for the MRI positivity/negativity discrimination 

for the subset of patients with negative CT. 

Abnormalities at the individual patient level 

A separate analysis was carried on the individual patients to investigate which ones had the 

highest level of abnormalities defined using FA and MD. For those patients with the highest 

levels of abnormalities (please see below for definition) an analysis was performed to 

investigate whether patients who exhibited the most damage in the white matter tracts also 

exhibit differences in lipid concentrations either on the functional group level or the individual 

lipid level.  

To identify which patients had the highest irregularities a comparison analysis was performed 

with the images of the healthy control subjects of the study. For each ROI, a linear regression 

model was first fit with ROI as dependent variable and sex and age (fitted as a second-degree 
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polynomial) as predictors. The average values and a confidence internal (1 standard deviation 

from the baseline) for each range was calculated for the healthy controls ROI. Then, controlled 

for age and sex, it was determined if a patient’s ROI value was abnormal if it fell outside the 

baseline range. For a particular ROI, if both of the FA or MD values was outside the respective 

baseline range, the ROI value was designated as fully abnormal. The overall burden of injury 

was determined by calculating percentages of fully abnormal ROIs for each patient. 

The percentage burden of injury of the patients was correlated to the 48 ROIs to see if any 

patterns are shown for different brain areas. For this analysis the raw concentration of the lipids 

within each group was added and used for a heatmap of concentration related to the burden of 

injury. In that plot only fully abnormal percentages are shown. 

Abnormalities at the aggregate level 

To determine if the ROIs that were prominent in the frequency of associations to the lipids were 

related to the the initial  TBI location, that is whether the most frequent ROIs were the ones that 

were most affected in the injury, an abnormality frequency analysis of the ROIs was performed. 

In this analysis the ROIs of the TBI patients were compared with the respective ROIs of the 

healthy controls that undertook the scans.  

For this analysis, a two-sample Kolmogorov-Smirnov test was applied for each ROI separately 

for the FA and MD sets to test whether the different ROIs were different between the TBI 

patients and healthy controls. The p-values were corrected for multiple testing with the false 

discovery rate method for each set separately. The frequency of significant correlations was 

then extracted for each ROI and these were projected on a brain map visualization using the 

CARIMAS software (https://turkupetcentre.fi/carimas/). For comparison, the frequency of the 

significant correlations of the ROIs to the lipids were also projected, as well the average value 

of correlation of the ROIs to the lipids.  

Network analysis 

For the construction of the partial correlation networks, a similar process as the construction of 

the frequency matrices was applied. In this case, the different ROIs were compared with all 

lipids and the lipids with the highest frequencies were found. The tables constructed in this case 

were 48 x 20 for the FA and MD feature sets and 51 x 20 for the volumetric set. The significant 

correlations between the lipids and the ROIs of the three sets were filtered out and the frequency 

that each lipid appears in each table was summed up. That way the lipids that correlate the most 

with the imaging feature sets were identified. The 40 lipids with the most correlations were then 
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selected (20% of the total amount of lipids). The aim of this analysis was to find the lipids to 

be included in the partial correlation network, while the analysis of the frequency matrices was 

intended to visualize the patterns of relation between the ROIs and the lipids. It can point out 

to the ROIs that relate the most to the lipids, while the partial correlation network can show 

how the lipids and the brain regions are related to each other. These two analyses complement 

each other and elucidate the different ways that the brain regions and the circulating lipidome 

connect following acute TBI.  

For the partial correlation network, the library qgraph in R was used. The top forty lipids for 

each feature set were used, together with the ROIs. For the FA and MD feature sets the brain 

was split in 3 parts, middle, left and right and the correlations were controlled with the inclusion 

of time elapsed between injury and blood sample draw, time between the injury and the MR 

scan, propofol administration and age. For the volumetric data the brain was inputted as a 

whole, and the relationships were controlled for age. Only the significant partial correlations 

are shown on the network with an alpha level of 0.05 for all sets.  

Data availability 

Data are accessible based on submission of a data access request through the CENTER-TBI 

website: https://www.center-tbi.eu/data. CENTER-TBI is committed to data sharing, and in 

particular to responsible further use of the data. Hereto, we have a data sharing statement in 

place: https://www.center-tbi.eu/data/sharing. The CENTER-TBI Management Committee, in 

collaboration with the General Assembly, established the Data Sharing policy and Publication 

and Authorship Guidelines to assure correct and appropriate use of the data as the dataset is 

hugely complex and requires help of experts from the Data Curation Team or Bio-Statistical 

Team for correct use. This means that we encourage researchers to contact the CENTER-TBI 

team for any research plans and the Data Curation Team for any help in appropriate use of the 

data, including sharing of scripts. The complete Manual for data access is also available online: 

https://www.center-tbi.eu/files/SOP-Manual-DAPR-20181101.pdf  

Results 

In total there were 103 patients that had both an MRI scan and blood samples available for 

analysis. However, one patient did not have a reliable MRI designation and was excluded from 

the classification model. The demographics of the study population can be seen in Table 1 and 

study workflow is shown in Fig. 1. In both study groups, the majority were male (TBI: 75%; 
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control: 59%). The median age of the patients with TBI was 43 (range 18–82) years, and in 

healthy controls 40 years (range 21–65). The median GCS score was 15 (range 3–15) and 

Glasgow Outcome Scale Extended (GOSE) score 7 (range 1–8). For the baseline MRI findings 

there were 102 patients in the dataset that had a designation available, 62 of which were 

positive. For the baseline CT scan 33 were negative and a separate model only for these patients 

was developed (10 of 33 were MRI positive). 

Circulating lipidome associates with neuroimage findings 

Overall, the results show that specific lipid classes are correlated with the findings of MRI 

scans. Particularly, FA tracts mostly correlated with PC and LPC, MD mostly with SM and PC, 

and volumetric data show most correlations to PC and TG, but other groups as well. These 

correlations can be seen in Table 2. In general, FA values have positive correlations to the lipids, 

whilst MD have negative (Supplementary Tables 3 and 4). 

Overall, the patients with the highest proportions of abnormalities detected in the scans showed 

lower concentration of lipids, particularly in SM, Cer, and TG, consistent with previous 

findings10. Furthermore, the lipids showed a good discriminatory ability to differentiate patients 

who had a positive CT from those with a negative CT.  

Classification modelling for MRI/CT discrimination 

The penalized models (eight in total) confirmed the discriminatory ability of the metabolites 

for both the MRI-positivity/negativity discrimination for all patients, and for the subset of 

patients with negative CT. The CT discriminatory ability was not examined in this context but 

only the subset of patients with negative CT. For all patients, the models had an AUC of 0.79–

0.82, whereas for the CT negative patients, the models with the reduced sets of lipids had an 

AUC of 0.72, and the models with the full set of lipids had an AUC of 0.6, which is likely due 

to the low number of observations for this analysis (Supplementary Table 5). 

Associations of lipids with ROIs 

The overall lipidomic profile and the frequency of their occurrence (48 ROIs for FA and MD, 

51 ROIs for volumetric data) in the correlation matrices can be seen in Table 2. The top 25 

lipids for each set are shown. PC and LPC are the top lipid classes for the FA set, while SM 

and PC are the top lipid classes for the MD set. For the volumetric dataset, the classes that were 

overwhelmingly represented are PC, LPC, and TG.  
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The ROIs with the most relationships (frequency of at least 10%) with lipids (201 total lipids) 

are shown in Supplementary Tables 3 , 4, and 6 as frequencies of significant correlations to the 

lipids. The majority of negative correlations are shown in blue and positive in red. The FA ROIs 

with the highest frequency of correlations to lipids are the corona radiata and the cerebellar 

peduncle. FA values are reduced in the TBI patients with TBI compared to the controls.  

For the MD set, the corticospinal and the superior longitudinal fasciculus are the areas with the 

highest frequencies (Supplementary Table 3). All ROIs have negative correlations with the 

lipids, which means that the lipid values and the MD set values move in the opposite direction 

i.e. the lipid reduce and the MD values increase. For the volumetric data the ROIs overall show 

mixed correlations to the lipids. 

Furthermore, for each ROI the values of the significant correlations were plotted as a beanplot. 

The correlations for the FA and the MD sets can be seen in Fig. 2. For the FA set, the 

correlations between ROIs and lipids are mostly positive, and for the MD set it is predominantly 

negative correlations, as it is for the volumetric dataset in Supplementary Fig. 3, as also shown 

in Supplementary Tables 3 , 4, and 6. 

The heatmap that shows the lipid values related to the burden of injury (percentages of partially 

and fully abnormal ROIs) is shown in Fig. 3.  

Brain maps and correlation networks of white matter tracts 

In Fig. 4A, FA ROIs are mapped into the JHU brain atlas. This visualization shows the number 

of the abnormalities that each ROI showed in the aggregate data, the number of lipids that 

correlate significantly with that ROI, and the average value of these correlations. In the second 

row, the correlation of the lipids to the burden of injury is plotted to check if similar patterns 

can be seen and if the high correlations of lipids to ROIs is related to the burden of injury. Fig. 

4B shows the same but for the MD set. Overall, no patterns can be seen in either figure with 

respect to the lipids and the frequency of abnormalities. For FA, the lipids have a positive 

association with the ROIs and for MD, the lipids have a negative association with the ROIs. 

The top 40 lipids that correlated with the FA set were grouped into their lipid classes, and the 

results are shown in Fig. 5A. PC, LPC, SM, and TG classes all show strong correlations to the 

different white matter tracts. For the MD set the most strongly related classes of lipids are PC 

and SM (Fig. 5B). Lipid levels do not seem to be affected by the time elapsed between injury 

and blood sample collection nor the time of scans, when controlled for in the networks. 
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Discussion 

In this study, we have shown that there are distinct directions of associations between the 

neuroimaging data (FA and MD sets) and the concentrations of circulating lipids. As expected, 

the FA and MD values correlated with the severity of TBI (higher MD values, lower FA)32. We 

also observed that the lipid associations to FA and MD show different metabolic signatures. 

LPCs associate mostly with FA while SMs associate with MD. Only PCs have strong 

associations with both as well as with the volumetric data.  

FA has been shown to be sensitive to the changes in the microstructure of the brain33. However, 

connecting FA changes to specific brain microstructure changes is challenging due to the 

biologically unspecific nature of FA34. The primary associations with FA in our data were found 

with LPCs. We found previously that decreased serum LPC concentrations associated with 

more severe disease and poorer outcomes in TBI10. In animal models of TBI, LPC has been 

identified as one of the key lipid class that increased in the CNS following the injury35 and 

correlated with the presence of MCP-1 in the hippocampus36 – a key protein in attracting 

immune cells to the brain. However, none of these studies measured the LPCs concentrations 

in the blood. There are known transporters of LPCs in the CNS37 and decreased levels of 

circulating LPC have been associated with poor outcomes in other CNS diseases38. LPCs are 

also implicated in a wide range of inflammatory diseases39. Given these previous findings, the 

positive associations of LPCs with FA as observed in our study may reflect an increased 

inflammatory drive associating with changes in brain microstructure following a TBI. 

SM is a key lipid class needed for the synthesis of myelin in the CNS40. Decreased serum levels 

of SMs following a TBI and inverse associations with MD changes suggest that SMs are 

recruited for myelin repair following the membrane damage in TBI. Similar inverse relationship 

between SMs levels and MD has been observed in Alzheimer’s disease41. SMs are also 

converted to ceramide in inflammatory conditions, which could be another non-exclusive cause 

for reduced levels of circulating SMs. 

The lipids, which were consistently associated both with the diffusion imaging and the 

volumetric data were PCs. PCs are a key component of cellular membranes and therefore 

changes in brain microstructure will disrupt PC metabolism42. PCs can also be broken down 

into free fatty acids, which can be utilized as an energy source in the CNS. Other acute brain 

injuries have been shown to increase activity of enzymes involved in fatty acid metabolism 

immediately following the injury43. We have earlier shown that medium-chain fatty acids are 
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associated with severity of TBI9,10. It is known that TBI causes an energy crisis within the 

CNS44 and therefore the increased utilization of PCs could be related to the severity of the 

energy crisis that is reflected in the poor imaging metrics. 

The association with quantitative white matter imaging metrics and PCs was global as can be 

seen in Fig. 3. This global distribution of association is seen to a lesser extent with the TGs. In 

contrast, the ceramide associations seem to form two main clusters; one of more central fibres 

with the strongest associations and the other of the longer tracts with lower association. CEs 

and PCs associations were also stronger with these longer white tracts, while SMs were 

associated with more central tracts. The pathophysiology of what is leading to theses different 

predilections for different types and regions of white matter is likely to be complex. An increase 

in  ceramide in the plasma has been associated with several inflammatory and other 

neurodegenerative diseases including multiple scleroisis45and Alzheimer’s disease46. The 

different roles CEs and ceramides play in emergy balance may influence different patterns 

seen47. 

The observed lack of lipid associations with specific brain volume regions in the gray matter 

suggests that changes in the levels of circulating lipids do not reflect the primary cortical injury 

in TBI. However, the consistant associations with volumetric data from with deeper white 

matter structures suggest that the lipid changes reflect this deeper injury type. This could result 

from the secondary brain injury driven by axonal damage occurring in these structures. 

However, these findings  are in line with our previous work, where we could see clear 

assocations between polar metabolites and deeper brain volume changes48. This suggests that 

the patterns of associations between the volumes and metabolites regardless of type is more 

clear in the deeper brain regions. 

Limitations  

This is the largest study to date combining serum metabolomics and MRI imaging including 

the diffusion-weighted imaging. However, the sample size is still small and further validation 

studies are required to support our findings. The underlying reasons for the lipid changes 

observed are also difficult to pinpoint due to the difficulty in obtaining tissue or fluid samples 

from within the CNS, and therefore studies in suitable experimental models would be needed 

in order to understand the causes of the observed lipid changes. 

Conclusions 
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We have identified groups of lipids which assocate with specific MRI imaging metrics 

following TBI. There appears to be consistent patterns of lipid changes associating with the 

specific microstructure changes in the CNS white matter. There is also a pattern of lipids with 

regional specficity, suggesting that blood-based lipidomics may provide an insight into the 

underlying disease mechanisms in TBI. 
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Table 1. Patient and control demographic characteristics. 

 TBI patients Healthy 

controls 

Number of subjects 103 104 

Age (interquartile 

range) 

43 (28.5-58) 39.5 (28.5-58) 

Sex 77M/26F 61M/42F (1 

missing) 

Baseline GCS 

(interquartile range) 

15 (10.75-15) - 

68.9 % mild 

6.8 % moderate 

21.4 % severe 

Stratum 33 admission (32 mild, 1 moderate)  

28 ER (27 mild, 1 NA) 

42 ICU (23 mild, 6 moderate, 22 

severe, 2 NA) 

GOSE (interquartile 

range) 

7 (6-8) - 

Time of imaging 

(interquartile range) 

2 (1-16) - 

MRI 62 positive/40 negative, 1 NA - 

CT 54 positive/45 negative, 4 NA - 

 

F, female; M, male; GCS, Glasgow Coma Score; GOSe, Glasgow Outcome Score extended; 

Median values are shown for the characteristics. Three stratums were present based on 

treatment intensity: admission to hospital, emergency room (ER visit), admission to intensive 

care unit (ICU). 
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Table 2. Lipids that have the largest relative frequencies (number of correlations devided by 

the number of ROIs) of significant correlation to the feature sets.  

 

Associations with FA Association with MD Associations with volume 

Lipid Freq Lipid Freq Lipid Freq 

LPC(20:4) 0.458 PC(O-36:4) 0.354 PC(36:4) 0.431 

LPC(16:0) 0.438 PC(O-38:4) 0.354 TG(16:0/18:2/18:2) 0.431 

LPC(20:5) 0.396 SM(d18:2/18:1) 0.333 TG(54:6) 0.373 

LPC(16:0e) 0.375 PC(O-22:1/20:4) 0.333 CE fragment 0.353 

LPC(18:1) 0.375 PC(34:3) 0.333 PC(O-38:6) 0.294 

PC(34:3) 0.333 PC(O-38:5) 0.292 TG(18:2/22:5/16:0) 0.216 

PC(35:1) 0.292 SM(d18:1/22:1) 0.271 PC(O-40:6) 0.196 

PC(O-36:4) 0.292 SM(d41:2) 0.271 TG(54:6) 0.196 

PC(O-38:5) 0.292 PC(O-40:6) 0.229 PC(33:0) 0.176 

PC(O-40:6) 0.292 TG (48:4) 0.229 SM(d18:1/24:0) 0.176 

LPC(18:2) 0.271 PC(P-18:0/18:1) 0.208 LPC(16:0) 0.157 

PC(O-36:3) 0.25 PC(O-40:5) 0.188 LPC(16:0e) 0.157 

PC(18:0) 0.25 SM(d18:1/18:1) 0.188 SM(d18:1/22:1) 0.157 

PC(36:4) 0.208 PC(35:4) 0.188 LPC(18:0) 0.137 

PC(40:8) 0.208 SM(d16:1/23:0) 0.188 LPC(20:5) 0.137 

PC(O-38:4) 0.208 SM(d41:1) 0.167 PC(38:1) 0.137 

SM(d36:2) 0.188 TG(58:10) 0.146 PC(O-40:5) 0.137 

TG (48:4) 0.167 PC(36:4) 0.146 PC(O-40:6) 0.137 

PC(35:4) 0.146 SM(d40:1) 0.146 PC(P-18:0/22:6) 0.118 

PC(37:4) 0.146 PC(34:2) 0.146 SM(d18:1/24:2) 0.118 

LPC(14:0) 0.146 PC(O-36:3) 0.146 LPC(22:6) 0.098 
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LPC(22:6) 0.146 SM(d18:1/24:0) 0.146 TG (48:4) 0.098 

PC(O-34:2) 0.146 SM(d38:2) 0.146 LacCer(d18:1/16:0) 0.078 

PC(O-40:5) 0.146 LPC(14:0) 0.125 LPC(18:1) 0.078 

PC(P-18:0/18:2) 0.146 PC(35:1) 0.125 LPC(18:2) 0.078 
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Figure 1. Flowchart of data acquisition and analysis. The final analysis included 103 patients 

that fulfilled the inclusion criteria, and the classification models included 102. 
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Figure 2. Correlations of the white matter tracts to individual lipid concentrations. The 

beanpots show that the fractional anisotrophy (FA) set (left) has mostly positive correlations, 

on average at about 0.2, while the mean diffusivty (MD) set (right) has mostly negative 

correlations. 
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Figure 3. Relation of the main lipid groups to the burden of injury. The burden of injury 

was a summary matrix of FA and MD abonormalities, to asses the deviance from control values. 

The lipid group values are unadjusted summed concentrations of the lipids within each group. 

L, left; R, right. 
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Figure 4. Brain maps of lipid correlations and burden of injury. On the top row of each 

subplot, the values of significant correlations to each brain region are shown. On the bottom 

row, the burden of injury for each region is shown as frequency of abnormalities per region. No 

visible pattern between the top and bottom rows can be seen. (A) FA of the white matter tracts. 

The correlations on top range from -0.27 (deep blue) to 0.24 (bright red) and the frequencies on 

bottom from 0 (black) to 37 (bright red).  (B) MD of the white matter tracts. The correlations 

on top range from -0.23 (deep blue) to 0.26 (bright red) and the frequencies on bottom from 0 

(black) to 54 (bright red). 
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Figure 5. Partial correlation networks. These networks display the individual lipid 

correlations to other lipids, the white matter tracts, time from injury, time from scan, age, and 

propofol administration. The 40 lipids with the highest number of significant correlations are 

shown. (A) FA of the white matter tracts. (B) MD of the white matter tracts.  

Abbriviations: CE, cholesterol ester; Cer, ceramide;LPC, lysophosphatidylcholine; PC, 

phosphatidylcholine; PS, phosphatidylserine; SM, sphingomyelin; TG, triacylglycerol; FA, 

fractional anisotropy measures; MD, mean diffusivity. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.14.23287262doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.14.23287262
http://creativecommons.org/licenses/by-nc-nd/4.0/

