1	The real-world effectiveness of an intranasal spray A8G6
2	antibody cocktail in the post-exposure prophylaxis of
3	COVID-19
4	
5	Xiaosong Li ^{1*} , Pai Peng ^{2,3*} , Haijun Deng ^{2,3*} , Qian Yang ¹ , Shi Chen ¹ , Benhua
6	Li ¹ , Miao He ⁴ , Zhu Yang ⁵ , Ni Tang ^{2,3#} , Ailong Huang ^{2,3#}
7	
8	Author Affiliations:
9	¹ Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of
10	Chongqing Medical University, Chongqing 400016, China.
11	$^{2}\mbox{Key}$ Laboratory of Molecular Biology for Infectious Diseases (Ministry of
12	Education), Department of Infectious Diseases, Chongqing Medical University,
13	Chongqing, China.
14	³ Institute for Viral Hepatitis, the Second Affiliated Hospital of Chongqing
15	Medical University, Chongqing, China.
16	⁴ Laboratory Animal Center of Chongqing Medical University, Chongqing,
17	China
18	⁵ Department of Gynecology and Obstetrics, the Second Affiliated Hospital of
19	Chongqing Medical University
20	
21	* These authors contributed equally to this work.
22	[#] Correspondence: Ai-long Huang (ahuang@cqmu.edu.cn) and Ni Tang
23	(nitang@cqmu.edu.cn)
24	
25	Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of
26	Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the
27	Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
28	Yixue Yuan Road No.1, Chongqing, 400016, P. R. China.

29 Tel/Fax: 86-23-68486780

30 Summary

31	Background Due to the continuous appearance of novel SARS-CoV-2
32	variants that are resistant to approved antibodies and leading to the epidemic
33	rebound, several approved neutralizing antibodies have been paused for their
34	usage against COVID-19. Previously, we identified A8G6, an antibody
35	combination of two synergic SARS-CoV-2 neutralizing antibodies 55A8 and
36	58G6, that showed broad neutralizing activities against Omicron variants.
37	When administrated by the nasal spray delivery system, A8G6 showed
38	promising efficacy in COVID-19 animal models and also showed favorable
39	safety profile in preclinical models as well as in a first-in-human trial. The aim
40	of this study is to evaluate the real-world efficacy of A8G6 neutralizing antibody
41	nasal spray in post-exposure prevention of COVID-19.
41 42	nasal spray in post-exposure prevention of COVID-19.
41 42 43	nasal spray in post-exposure prevention of COVID-19. Methods From November 27, 2022 to January 31, 2023, an open-label,
41 42 43 44	nasal spray in post-exposure prevention of COVID-19. Methods From November 27, 2022 to January 31, 2023, an open-label, non-randomized, two-arm, blank-controlled, investigator-initiated trial was
41 42 43 44 45	nasal spray in post-exposure prevention of COVID-19. Methods From November 27, 2022 to January 31, 2023, an open-label, non-randomized, two-arm, blank-controlled, investigator-initiated trial was conducted in Chongqing, China. High-risk healthy participants (18-65 years)
 41 42 43 44 45 46 	nasal spray in post-exposure prevention of COVID-19. Methods From November 27, 2022 to January 31, 2023, an open-label, non-randomized, two-arm, blank-controlled, investigator-initiated trial was conducted in Chongqing, China. High-risk healthy participants (18-65 years) within 72 hours after close contact to SARS-CoV-2 infected individuals were
 41 42 43 44 45 46 47 	nasal spray in post-exposure prevention of COVID-19. Methods From November 27, 2022 to January 31, 2023, an open-label, non-randomized, two-arm, blank-controlled, investigator-initiated trial was conducted in Chongqing, China. High-risk healthy participants (18-65 years) within 72 hours after close contact to SARS-CoV-2 infected individuals were recruited and received a three-dose (1.4 mg/dose) A8G6 nasal spray
 41 42 43 44 45 46 47 48 	nasal spray in post-exposure prevention of COVID-19. Methods From November 27, 2022 to January 31, 2023, an open-label, non-randomized, two-arm, blank-controlled, investigator-initiated trial was conducted in Chongqing, China. High-risk healthy participants (18-65 years) within 72 hours after close contact to SARS-CoV-2 infected individuals were recruited and received a three-dose (1.4 mg/dose) A8G6 nasal spray treatment daily or no treatment (blank control) for 7 consecutive days. The
 41 42 43 44 45 46 47 48 49 	nasal spray in post-exposure prevention of COVID-19. Methods From November 27, 2022 to January 31, 2023, an open-label, non-randomized, two-arm, blank-controlled, investigator-initiated trial was conducted in Chongqing, China. High-risk healthy participants (18-65 years) within 72 hours after close contact to SARS-CoV-2 infected individuals were recruited and received a three-dose (1.4 mg/dose) A8G6 nasal spray treatment daily or no treatment (blank control) for 7 consecutive days. The primary end points were 1) the occurrence of positive SARS-CoV-2 RT-PCR

51 to SARS-CoV-2 positive conversion at the end of day 7. The secondary end

52	points were 1)	viral load of	SARS-CoV-2	when participants	became
----	----------------	---------------	------------	-------------------	--------

53	SARS-CoV-2	positive; 2)) the time from	SARS-CoV-2	infection to nega	tive
----	------------	--------------	-----------------	------------	-------------------	------

- 54 COVID-19 conversion. Safety end point of the nasal spray AG86 was analyzed
- 55 by recording adverse events during the whole course of this trial. This study
- 56 was registered with Chictr.org (ChiCTR2200066416).
- 57

58	Findings Of 513 enrolled participants, 173 in the A8G6 treatment group and
59	340 in the blank-control group were included in the analysis. SARS-CoV-2
60	infection occurred in 151/340 (44.4%) subjects in the blank control group and
61	12/173 (6.9%) subjects with the A8G6 treatment group. The result indicates
62	that the intranasal spray A8G6 reduces the risk of SARS-CoV-2 infection
63	(HR=0.12, 95% CI, 0.07-0.22; <i>p</i> <0.001). The prevention efficacy of the A8G6
64	treatment within 72-hours exposure was calculated to be 84.4% (95% CI:
65	74.4%-90.4%). Moreover, compared to the blank-control group, the time from
66	the SARS-CoV-2 negative to the positive COVID-19 conversion was
67	significantly longer in the AG86 treatment group (mean time: 3.4 days in the
68	A8G6 treatment group vs 2.6 days in the control group, $p=0.019$). In the
69	secondary end-point analysis, the A8G6 nasal treatment had no effects on the
70	viral load at baseline SARS-CoV-2 RT-PCR positivity and the time of the
71	negative COVID-19 conversion (viral clearance). Finally, 5 participants (3.1%)
72	in the treatment group reported general adverse effects. We did not observe
73	any severe adverse effects related to the A8G6 treatment in this study.

74

75	Interpretation In this study, the intranasal spray AG86 antibody cocktail
76	showed potent efficacy for prevention of SARS-CoV-2 infection in close
77	contacts of COVID-19 patients.
78	
79	Funding Chongqing Biomedical R&D Major Special Project, Project (No.
80	CSTB2022TIAD-STX0013), Chongqing Science and Health Joint Medical
81	High-end Talent Project (No. 2022GDRC012), Science and Technology
82	Research Program of Chongqing Municipal Education Commission (No.
83	KJZD-K202100402), CQMU Program for Youth Innovation in Future Medicine
84	(No. W0073).

85 **Research in context**

86 Evidence before the study

87	Two potent neutralizing antibodies 55A8 and 58G6 against SARS-CoV-2 were
88	identified from the plasma of COVID-19 convalescent patients. In our previous
89	studies, the synergetic neutralization of the antibody combination of 55A8 and
90	58G6 (A8G6) had been shown in structural mechanism, as well as in vitro and
91	in vivo. Pre-clinical evaluation of A8G6 nasal spray showed promising efficacy
92	against Omicron BA.4/5 infection in golden syrian hamsters challenged with
93	live virus. In a first-in-human trial, A8G6 also showed favorable safety profile
94	and nasal concentration over IC90 of neutralization activity against Omicron
95	BA.4/5. The preliminary data showed that the intranasal spray A8G6 had the
96	excellent efficacy, safety and druggability to protect against COVID-19.
97	

98 Added value of this study

99 This is the first human trial showing that a nasal spray of neutralizing antibody 100 cocktail is efficacious in preventing SARS-CoV-2 infection but is not efficacious 101 in the post-infection treatment of COVID-19. In the Omicron wave of the 102 COVID-19 pandemic in China in November, 2022, COVID-19 close contacts 103 receiving the A8G6 treatment in the designated quarantine hotels showed a 104 significantly lower incidence of SARS-CoV-2 infection. Additionally, the A8G6 105 treatment delayed time from exposure to the diagnosis of the COVID-19 106 positivity (median time: 3.4 days in the treatment group vs 2.6 days in the

107	control group). Furthermore, we analyzed the effects of the A8G6 treatment on
108	the clinical status of close contacts who became infected with SARS-CoV-2.
109	Results suggests that there were no significant differences in viral load of
110	SARS-CoV-2 at the beginning of positive infection and the time of the viral
111	clearance between A8G6 treatment and blank control groups. Overall, the trial
112	result is consistent with the mechanism of action of nasal spray antibody
113	cocktail for the prevention of SARS-CoV-2 infection. Finally, low safety risk of
114	the nasal spray A8G6 was also shown in the trial.
115	
116	Implications of all the available evidence
116 117	Implications of all the available evidence We observed the use of A8G6 to reduce the risk of SARS-CoV-2 infection.
116 117 118	Implications of all the available evidence We observed the use of A8G6 to reduce the risk of SARS-CoV-2 infection. This study provided supporting evidences for the real-world effectiveness and
116 117 118 119	Implications of all the available evidence We observed the use of A8G6 to reduce the risk of SARS-CoV-2 infection. This study provided supporting evidences for the real-world effectiveness and safety of the nasal spray A8G6 among high-risk close contacts in the
116 117 118 119 120	Implications of all the available evidence We observed the use of A8G6 to reduce the risk of SARS-CoV-2 infection. This study provided supporting evidences for the real-world effectiveness and safety of the nasal spray A8G6 among high-risk close contacts in the post-exposure prevention of COVID-19 during the Omicron BA.5.2 wave in
 116 117 118 119 120 121 	Implications of all the available evidence We observed the use of A8G6 to reduce the risk of SARS-CoV-2 infection. This study provided supporting evidences for the real-world effectiveness and safety of the nasal spray A8G6 among high-risk close contacts in the post-exposure prevention of COVID-19 during the Omicron BA.5.2 wave in China. This is the first proof of concept of using nasal spray neutralizing
 116 117 118 119 120 121 122 	Implications of all the available evidence We observed the use of A8G6 to reduce the risk of SARS-CoV-2 infection. This study provided supporting evidences for the real-world effectiveness and safety of the nasal spray A8G6 among high-risk close contacts in the post-exposure prevention of COVID-19 during the Omicron BA.5.2 wave in China. This is the first proof of concept of using nasal spray neutralizing antibody for the prevention of viral infection. It implicates that the promising
 116 117 118 119 120 121 122 123 	Implications of all the available evidence We observed the use of A8G6 to reduce the risk of SARS-CoV-2 infection. This study provided supporting evidences for the real-world effectiveness and safety of the nasal spray A8G6 among high-risk close contacts in the post-exposure prevention of COVID-19 during the Omicron BA.5.2 wave in China. This is the first proof of concept of using nasal spray neutralizing antibody for the prevention of viral infection. It implicates that the promising efficacy of the nasal spray A8G6 makes it possible for the fast-acting

125 1. Introduction

126	At present, SARS-CoV-2 is still defined as a Public Health Emergency of
127	International Concern. Due to the continuous evolution of SARS-CoV-2, its
128	variants led to a high risk of COVID-19 global transmission. Although
129	vaccination played important roles in the preventing and controlling of
130	COVID-19, ^{1,2} the neutralizing antibodies (NAbs) elicited by vaccines were
131	heterogeneous among different individuals and were waning within several
132	months. ³⁻⁵ NAbs blocking the entry of SARS-CoV-2 into host cells have been
133	developed for the COVID-19 prevention or therapy. Several SARS-CoV-2
134	targeting monoclonal antibodies (mAbs) have previously been authorized for
135	use through an emergency use authorization (EUA). ⁶⁻¹⁰ However, due to the
136	failure or significant decrease of neutralization against some emerging
137	SARS-CoV-2 variants, the usage of these antibody drugs was limited. There is
138	an urgent need to develop broad-spectrum and effective NAbs against the
139	circulating and other novel SARS-CoV-2 variants. Furthermore, those
140	approved neutralizing antibodies, when administrated systematically, provided
141	limited efficacy in the prevention of viral infection. We hypothesized that this
142	was due to the low concentration of those neutralizing antibodies at nasal
143	compartment when administered systematically. As a potentially more effective
144	prophylactic approach, we proposed to use neutralizing antibodies as nasal
145	spray to prevent viral infection at the viral entry point to human body.

147	A8G6 was a combination of 58G6 and 55A8 monoclonal NAbs which were
148	identified from COVID-19 convalescent patients at early 2020. ¹¹ Previous
149	study showed that 58G6 recognized both the steric site $S^{470-495}$ and another
150	region $S^{450-458}$ on the receptor binding domain (RBD) of SARS-CoV-2 spike
151	protein (S protein). When administrated as a nasal spray, 58G6 demonstrated
152	prophylactic efficacy against authentic SARS-CoV-2 ancestral strain and the
153	Beta variant (B.1.351) in the transgenic mice expressing human ACE2 (hACE2)
154	and against Delta and Omicron variants in hamster model. ^{12,13} 55A8 exhibited
155	potent binding affinities to the S proteins of ancestral SARS-CoV-2 strain,
156	Delta, Omicron BA.1, BA.2, and BA.4/5 at sub-picomolar level. When the two
157	NAbs simultaneously interacted with S protein, 58G6 and 55A8 recognized
158	different and complementary epitopes in RBD of SARS-CoV-2 and further
159	occluded the accessibility of the S protein to ACE2. Therefore, A8G6 antibody
160	cocktail which consisted of two potent neutralizers 58G6 and 55A8 displayed a
161	synergetic potency and the broad neutralization against the Omicron
162	variants. ¹⁴ Moreover, intranasal delivery of the cocktail A8G6 demonstrated
163	potent protection against Omicron in hamster model. A first-in-human trial of
164	the intranasal spray A8G6 antibody cocktail in healthy volunteers provided
165	evidences for safety and the potential clinical efficacy in preventing Omicron
166	BA.4/5 infections (unpublished, manuscript in preparation). The real-world
167	effectiveness of the A8G6 nasal spray needs to be further evaluated.

	169	Here we conducted an	open-label	, non-randomized,	, two-arm, bla	nk-controlled
--	-----	----------------------	------------	-------------------	----------------	---------------

- trial among close contacts of COVID-19 patients in several designated
- 171 quarantine hotels to assessed the effectiveness and safety of A8G6 intranasal
- spray for the post-exposure prophylaxis of COVID-19 during the Omicron
- 173 BA.5.2 wave occurred in November, 2022 in Chongqing, China.
- 174
- 175 **2. Methods**
- 176 Study design
- 177 In this study, an open-label, non-randomized, two-arm, blank-controlled,
- investigator-initiated trial was designed to assess the efficacy and safety of the
- 179 intranasal spray cocktail A8G6 in preventing SARS-CoV-2 infection among
- 180 close contacts with COVID-19 patients. The clinical trial was conducted at 6
- designated quarantine hotels in Yuzhong District, Chongqing, China from
- 182 November 27, 2022 and was completed on December 12, 2023.
- 183
- 184 Recruited participants in the treatment group self-administrated a three doses
- of 0.7 mg (140µl) A8G6 nasal spray per day for 7 treatment days. The drug
- 186 was supplied by Chongqing Mingdao Haoyue Biotechnology Co., LTD
- 187 (Chongqing, China), stored at 2-8 °C. In the blank control group, participants
- did not receive any treatment. After enrollment, SARS-CoV-2 infection was
- 189 confirmed by a reverse transcription polymerase chain reaction (RT-PCR) test
- of oropharyngeal swab. During this trial, with the adaption of the

anti-COVID-19 policy, not only RT-PCR, but also rapid antigen tests were used
to confirm the SARS-CoV-2 infection status.

193

194	The trial was carried out in accordance with all applicable national and local
195	regulatory requirements. Data and Safety Monitoring Board of The Second
196	Affiliated Hospital of Chongqing Medical University oversaw trial conduct and
197	documentation. The protocol has been approved by the Chinese clinical test
198	registration center (the world health organization international clinical trials
199	registered organization registered platform (ICTRP), the registration number:
200	ChiCTR2200066416) and the Ethics Committees of The Second Affiliated
201	Hospital of Chongqing Medical University (the approval number: 2022127-1).
202	
203	Participants
204	During November COVID-19 wave in Chongqing, China, when patients had
205	been diagnosed as COVID-19 with the positive RT-PCR test for SARS-CoV-2

206 (index cases), their close contacts were immediately transferred to the

207 designated quarantine sites. At 6 quarantine sites in Chongqing, healthy adults

aged between 18 to 65 years who had a close contact with index cases within

209 72 hours were enrolled into this study. The maximum time interval between

exposure to treatment was \leq 72 hours. All vaccination status is eligible for

211 inclusion. Exclusion criteria included positive RT-PCR at baseline, nasal

discomfort, the use of other COVID-19 antibody drugs and drug-drug

- 213 interference with participants' regular medication (additional details about
- 214 eligibility criteria were described in the appendix).
- 215
- All study participants were capable of self-administrating the intranasal spray,
- 217 recording and recalling clinical signs. All participants were provided and
- voluntarily signed written informed consent before the study.
- 219

220 Procedures

221	At six quarantine sites in the Yuzhong District, Chongqing, site investigation
222	was carried out to screen eligible participants. Eligible participants were given
223	the choice to join the A8G6 treatment group or blank control group. For eligible
224	participants that showed "no preference" in either group, they were randomly
225	assigned to A8G6 treatment group or blank control group. Oropharyngeal
226	swabs were taken for quantitative and qualitative RT-PCR assessments at
227	baseline prior to treatment and though the treatment period and a follow-up
228	period. Subjects with positive RT-PCR results before treatment were excluded.
229	The SARS-CoV-2 viral load was present by viral genome copies per mL log10
230	values with the conversion of the open reading frame of 1ab (ORF1ab) and
231	nucleocapsid (N-gene) cycle threshold (Ct) values (RT-PCR was conducted by
232	Yuzhong District Center for Disease Control and Prevention, in Chongqing,
233	China. Conversion of Ct values to viral genome copies was calculated
234	according to the manufacturer's instructions of 2019-nCoV viral RNA kit

produced by BioPerfectus Technologies, catalog number: JC10223-1N).

236

- 237 Subjects' demographic data, health and COVID-19 vaccination status were
- recorded at the baseline visit (Day 0). The use of nasal spray, rapid antigen
- tests or RT-PCR test for COVID-19 were recorded every day during the study
- 240 participation. When participants in both groups were diagnosed with
- 241 SARS-CoV-2 infection, the related symptoms and symptomatic treatment for
- 242 COVID-19 were reported until the trial completed. In the treatment group, all
- 243 participants were requested to self-report and record the adverse events. Due
- to the relaxation of COVID-19 control and policy starting from December 4,
- 245 2022, some participants returned to home for further isolation. The follow-up
- visits were adjusted to retrospective telephonic visit according to a
- 247 questionnaire form from that day.
- 248

249 Outcomes

The primary endpoint analysis included all participants in both the treatment and control groups. The primary endpoint was to assess the efficacy of the intranasal spray A8G6 for post-exposure prophylaxis of COVID-19. In this study, we compared the COVID-19 incidence of the close contacts between the A8G6 treatment individuals and the blank-controlled individuals. We also compared the time from enrollment to SARS-CoV-2 infection between the two groups. The secondary efficacy analysis included the guantitative data of

257 SARS-CoV-2 RNA (log10 copies per mL) at baseline of the positive COVID-19,

- the time to conversion of SARS-CoV-2 RNA from positive to negative (viral
- clearance) and the time to symptom remission of COVID-19 patients.

260

261 Safety endpoints was adverse event types and the incidence rate of adverse

events among all participants of the A8G6 treatment group during the study.

263 An adverse effect was defined as any abnormal signs or symptoms and

harmful results caused by the study drug.

265

266 Statistical analysis

The sample size in this clinical trial was determined on the basis of statistical power calculations. We proposed greater than 90% power to detect a 20% relative difference between the A8G6 treated and control group at a two-sided alpha level of 0.05 (ie., a 20% prevention efficacy of A8G6). The formula is as follows:

$$n = \frac{2pq(Z_{1-\frac{\alpha}{2}} + Z_{1-\beta})^2}{\delta^2}$$

which p is the proportion of participants develop COVID-19 in A8G6 treated group, q is in the control group, δ is the difference between two group, α is two-sided alpha level, and 1- β is statistical power. In this clinical trial, we assume that q is 0.1, 20% relative reduction of A8G6 treated group is 0.08. Assuming a dropout rate of 20%, at total of 5160 participants will be recruited.

278	The primary efficacy endpoints including COVID-19 incidence and time to
279	confirmed SARS-CoV-2 infection. The COVID-19 incidence was analyzed
280	using the Kaplan-Meier method and log-rank test, and the time to confirmed
281	SARS-CoV-2 infection was analyzed using Wilcoxon rank-sum test. The
282	secondary efficacy endpoints including viral load when confirmed
283	SARS-CoV-2 infection and the time to negative conversion of SARS-CoV-2
284	determined by RT-PCR. The viral load when confirmed SARS-CoV-2 infection
285	was analyzed using Wilcoxon rank-sum test, negative conversion of
286	SARS-CoV-2 and remission time were conducted using Kaplan-Meier method
287	and log-rank-test. Safety was assessed in participants in the full analysis set
288	who received A8G6 nasal spray treatment during the 8-day quarantine period.
289	
290	Database from the Service Platform for COVID-19 Prevention and Control
291	created by Yuzhong District Center for Disease Control and Prevention were
292	authorized for us to use and analyze. Data including demographic and clinical
293	characteristics of the cohorts, endpoints in this clinical trial were collected from
294	an applet of WeChat (a social media platform in China), called "Yuzhong
295	Information Exchange". All data were summarized with descriptive statistics
296	(number of subjects (%), median (IQR), mean \pm sd). The credible interval for
297	nasal spray was calculated with the use of a beta-binomial model with prior
298	beta (1, 1) adjusted for the treatment duration time. Continuous variables were

299	compared with the Mann–Whitney U-test, and Categorical variables were
300	conducted using χ^2 test or Fisher's exact test. A P value of <0.05 was
301	considered statistically significant. Statistical analyses were performed using R
302	software, version 3.6.0.
303	
304	Role of the funding source
305	The funder of the study had no role in study design, data collection, data
306	analysis, data interpretation, or writing of the report. All authors
307	had full access to all the data in the study and had final responsibility for the
308	decision to submit for publication.
309	
310	3. Results
310 311	3. Results Since November 27, 2022, a total of 657 individuals were screened in the
310 311 312	3. ResultsSince November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according
310 311 312 313	 3. Results Since November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according to the inclusion and exclusion criteria. The remaining 556 individuals were
310 311 312 313 314	 3. Results Since November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according to the inclusion and exclusion criteria. The remaining 556 individuals were assigned into either A8G6 treatment group or blank-controlled group based on
310 311 312 313 314 315	 3. Results Since November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according to the inclusion and exclusion criteria. The remaining 556 individuals were assigned into either A8G6 treatment group or blank-controlled group based on their preference during singing of consent form. For participants who indicated
 310 311 312 313 314 315 316 	3. Results Since November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according to the inclusion and exclusion criteria. The remaining 556 individuals were assigned into either A8G6 treatment group or blank-controlled group based on their preference during singing of consent form. For participants who indicated "no preference" in study group assignment, they were randomly assigned to
 310 311 312 313 314 315 316 317 	3. Results Since November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according to the inclusion and exclusion criteria. The remaining 556 individuals were assigned into either A8G6 treatment group or blank-controlled group based on their preference during singing of consent form. For participants who indicated "no preference" in study group assignment, they were randomly assigned to A8G6 treatment group or the blank control group. Ten participants in the
 310 311 312 313 314 315 316 317 318 	3. Results Since November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according to the inclusion and exclusion criteria. The remaining 556 individuals were assigned into either A8G6 treatment group or blank-controlled group based on their preference during singing of consent form. For participants who indicated "no preference" in study group assignment, they were randomly assigned to A8G6 treatment group or the blank control group. Ten participants in the treatment group and 33 participants in the control group were excluded due to
 310 311 312 313 314 315 316 317 318 319 	3. Results Since November 27, 2022, a total of 657 individuals were screened in the designated quarantine hotels. There were 101 individuals excluded according to the inclusion and exclusion criteria. The remaining 556 individuals were assigned into either A8G6 treatment group or blank-controlled group based on their preference during singing of consent form. For participants who indicated "no preference" in study group assignment, they were randomly assigned to A8G6 treatment group or the blank control group. Ten participants in the treatment group and 33 participants in the control group were excluded due to consent withdrawal or loss to follow up (Figure 1). The full analysis set (n=513)

321	completed the study.	The per-protocol	population ((n=162) in	the treatment
				\ /	

- 322 group comprised participants who received the A8G6 treatment or no
- 323 treatment, were treated within 72 hours after exposure.
- 324

325	The final number of subjects completing the trial was 173 subjects in the A8G6
326	treatment group and 340 subjects in the control group, respectively. In the
327	treatment group, 4 participants started to self-administrated A8G6 at the same
328	day after exposure (Day 0); 73 participants used the nasal spray at the first day
329	after exposure (Day 1); 49 participants at the second days after exposure (Day
330	3); 35 participants at the third day after exposure (Day 3) and 12 participants at
331	more than 4 days after exposure (Day≥4). Among all participants in the full
332	analysis set, median age was 36.0 (interquartile range, IQR: 26.0-48.0) years;
333	there was a comparable sex ratio between the A8G6 group (55.5% for male
334	and 44.5% for female) and the control group (58.2% for male and 41.8% for
335	female); median BMI was 22.9 (IQR: 20.8-25.4); 18 (10.4%) participants in the
336	treatment group have comorbidities, while 44 (12.9%) participants in the
337	control group have comorbidities. 98.6% participants received different doses
338	of COVID-19 vaccines (Table 1).
339	
340	Efficacy of A8G6 nasal spray in the post-exposure prevention of

341 SARS-CoV-2 infection

342 After enrollment, oropharyngeal swabs of all subjects in the full analysis set

343	were taken for RT-PCR test for SARS-CoV-2 infection every day. In total,
344	163/513 (31.8%) participants developed COVID-19 during the 14-day
345	follow-up study. Among them, 12/173 (6.9%) individuals were in the A8G6
346	treatment group and 151/340 (44.4%) were in the blank control group (Table
347	1-3, Figure 2A). This difference in COVID-19 incidence rate between groups
348	was statistically significant (Hazard ratio, HR=0.12, 95% CI, 0.07-0.22;
349	log-rank p <0.001). The mean (±SD) time of the positive COVID-19 conversion
350	was significantly longer in the A8G6 group compared to the control group
351	(3.4 \pm 1.1 days vs 2.6 \pm 1.2 days, p=0.019) (Figure 2B). Similar results of data
352	analysis were obtained in the per protocol set (data not shown).
353	
354	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baseline
354 355	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baseline After enrollment, oropharyngeal swabs of all subjects were taken for RT-PCR
354 355 356	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baseline After enrollment, oropharyngeal swabs of all subjects were taken for RT-PCR test for SARS-CoV-2 every day. When participants were diagnosed as
354 355 356 357	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baselineAfter enrollment, oropharyngeal swabs of all subjects were taken for RT-PCRtest for SARS-CoV-2 every day. When participants were diagnosed asSARS-CoV-2 infection, the Ct values of ORF1ab and N genes were recorded
354 355 356 357 358	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baselineAfter enrollment, oropharyngeal swabs of all subjects were taken for RT-PCRtest for SARS-CoV-2 every day. When participants were diagnosed asSARS-CoV-2 infection, the Ct values of ORF1ab and N genes were recordedand converted into copies per mL log10 values. Five subjects (41.7%) in the
354 355 356 357 358 359	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baselineAfter enrollment, oropharyngeal swabs of all subjects were taken for RT-PCRtest for SARS-CoV-2 every day. When participants were diagnosed asSARS-CoV-2 infection, the Ct values of ORF1ab and N genes were recordedand converted into copies per mL log10 values. Five subjects (41.7%) in theA8G6 treatment group had high viral load (>105 copies/ml) of the ORF1ab
354 355 356 357 358 359 360	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baselineAfter enrollment, oropharyngeal swabs of all subjects were taken for RT-PCRtest for SARS-CoV-2 every day. When participants were diagnosed asSARS-CoV-2 infection, the Ct values of ORF1ab and N genes were recordedand converted into copies per mL log10 values. Five subjects (41.7%) in theA8G6 treatment group had high viral load (>10 ⁵ copies/ml) of the ORF1abgene, compared with 69 subjects (45.7%) in the control group (Table 3); Five
354 355 356 357 358 359 360 361	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baselineAfter enrollment, oropharyngeal swabs of all subjects were taken for RT-PCRtest for SARS-CoV-2 every day. When participants were diagnosed asSARS-CoV-2 infection, the Ct values of ORF1ab and N genes were recordedand converted into copies per mL log10 values. Five subjects (41.7%) in theA8G6 treatment group had high viral load (>10 ⁵ copies/ml) of the ORF1abgene, compared with 69 subjects (45.7%) in the control group (Table 3); Fivesubjects (41.7%) in the A8G6 treatment group had high viral bad high viral load of the N gene
 354 355 356 357 358 359 360 361 362 	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baselineAfter enrollment, oropharyngeal swabs of all subjects were taken for RT-PCRtest for SARS-CoV-2 every day. When participants were diagnosed asSARS-CoV-2 infection, the Ct values of ORF1ab and N genes were recordedand converted into copies per mL log10 values. Five subjects (41.7%) in theA8G6 treatment group had high viral load (>10 ⁵ copies/ml) of the ORF1abgene, compared with 69 subjects (45.7%) in the control group (Table 3); Fivesubjects (41.7%) in the A8G6 treatment group had high viral load of the N gene(>10 ⁵ copies/ml), compared with 100 subjects (66.2%) in the control group.
 354 355 356 357 358 359 360 361 362 363 	The effect of A8G6 on the viral load of SARS-CoV-2 infection at baselineAfter enrollment, oropharyngeal swabs of all subjects were taken for RT-PCRtest for SARS-CoV-2 every day. When participants were diagnosed asSARS-CoV-2 infection, the Ct values of ORF1ab and N genes were recordedand converted into copies per mL log10 values. Five subjects (41.7%) in theA8G6 treatment group had high viral load (>10 ⁵ copies/ml) of the ORF1abgene, compared with 69 subjects (45.7%) in the control group (Table 3); Fivesubjects (41.7%) in the A8G6 treatment group had high viral load of the N gene(>10 ⁵ copies/ml), compared with 100 subjects (66.2%) in the control group.There were no significant differences on the percentage of participants with

365	the two groups. That is, despite participants received the A8G6 treatment,
366	when they became infected with SARS-CoV-2, they had a comparable level of
367	viral load compared to infected participants in the blank control group (Figure
368	3). The same analysis conducted in the per protocol set obtained the

- 369 consistent results.
- 370

371 The effect of A8G6 on the time to the COVID-19 recovery

- 372 When participants became infected with SARS-CoV-2 in both groups, RT-PCR
- tests or rapid antigen tests of their oropharyngeal swabs for COVID-19 and the
- 374 COVID-19 related symptoms were continuously monitored and recorded.
- 375 Subjects in both groups who were infected with SARS-CoV-2 during the trial
- period reported the conversion to COVID-19 negative by the end of the trial.
- 377 The time of SARS-CoV-2 negativity between groups showed no statistical
- differences (*p*=0.946) (Figure 4). There is a similar result in the per protocol
- 379 set.
- 380

381 Safety

- 382 Participants receiving A8G6 treatment (n=173) were required to recorded
- 383 adverse events (AEs). Thereinto, AEs reported by COVID-19 negative
- 384 participants (n=161) were not correlated with COVID-19, but might be
- 385 correlated with the A8G6 treatment. AEs reported by COVID-19 positive
- 386 participants (n=12) might be correlated with COVID-19 or A8G6. Therefore,

387	after the exclusion of AEs related to COVID-19, the presumptive AEs related to
388	A8G6 treatment were analyzed. Total of 96.9% of the participants in the A8G6
389	treatment group had no treatment-related adverse effects. Only 3.1% subjects
390	reported one adverse event. The special performance included nasal swelling
391	(N=2, 1.24%), dry throat (N=2, 1.24%) and ageusia (N=1, 0.62%) (Table 4). No
392	adverse events of special interest were reported during the trial period, and no
393	participants withdrew from the trial because of an adverse event. There is a
394	similar result in the per protocol set.
395	

- 396
- 397

399 4. Discussion

400	The nasal spray antibody cocktail A8G6 had demonstrated broad spectrum
401	potency blocking the SARS-CoV-2 infection in our previous preclinical data
402	and also demonstrated favorable safety profile in a first-in-human trial
403	(unpublished data, manuscript in preparation). In this study, we conducted an
404	open-label, non-randomized, two-arm, blank-controlled trial among close
405	contacts of COVID-19 patients in several designated quarantine hotels, during
406	the COVID-19 outbreak occurred in November, 2022 in Chongqing, China.
407	The intranasal spray antibody cocktail A8G6 was assessed to the
408	effectiveness and safety for the post-exposure prophylaxis of COVID-19 in the
409	real-world. Our data suggest that the application of A8G6 in the close contacts
410	within the 72-hour exposure decreased COVID-19 incidence rate by more than
411	30%. Moreover, the A8G6 treatment prolonged the occurrence of SARS-CoV-2
412	infection by at least one day.
413	
414	At present, most previously authorized COVID-19 antibody treatments under
415	EUA were administrated via vein or intramuscular injection with a high dosage.
416	Those treatment also had several adverse effected that affect quality of life,
417	including pain at the site of injection, allergic reaction, nausea and so on. 15 As
418	a respiratory pathogen, SARS-CoV-2 infection is primarily caused by breathing
419	in infectious viral particles through nasal airway. An intranasal spray of
420	neutralizing antibodies may provide a more direct protection against viral entry.

421	Moreover, this non-invasive drug delivery is easier to use and may result in
422	better medication compliance. In our study, the favorable safety profile of
423	A8G6 with the few adverse effects was consistent with other nasal spray
424	drugs. ¹⁶ Thus, A8G6 can be used in a wide range of population, especially in
425	some special population with comorbidities and immunocompromised
426	population. The effective treatment of A8G6 among high-risk patients could
427	reduce medical cost, usage of medical resources and COVID-19 transmission
428	risk. Furthermore, participants who experienced SARS-CoV-2 infection under
429	the A8G6 treatment, showed delayed COVID-19 infection by \sim 1 day, which
430	could provide important relieve on medical resources at the epidemic peak.
431	
432	Currently, there were a few other antibody nasal sprays in clinical development.
433	The neutralization efficacy of nasal mucosal samples against SARS-CoV-2
434	variants after the nasal spray treatment of a monoclonal antibody 35B5 was
435	calculated as 60%. ¹⁷ The effectiveness of the SA58 nasal spray was evaluated
436	as 77.7% (95% CI: 52.2% - 89.6%) and 61.83% (95% CI: 37.5% - 76.69%) in
437	medical personnel and healthy workers, respectively. ^{18,19} In our primary
438	endpoint analysis, the nasal spray A8G6 antibody cocktail showed decreased
439	risk of infection of close contacts with COVID-19 patients. The prevention
440	efficacy of the A8G6 treatment within 72-hour exposure was calculated to be
441	84.4% (95% CI: 74.4-90.4). A8G6 showed comparable or better COVID-19
442	prevention in the real world than other similar antibody nasal spray.

444	Current data in this study showed that 6.9% of A8G6 treated participant
445	became SARS-CoV-2 positive (vs 44.4% in the blank control group) during the
446	study period. Our results suggested that post-infection A8G6 treatment
447	provided limited benefits on viral load reduction and time to viral clearance.
448	This is consistent with the potential mechanism of action of A8G6 nasal spray.
449	Once SARS-CoV-2 virus enters into the cells and starts viral replication, A8G6
450	neutralizing antibody has limited efficacy to stop the viral replication. Our data
451	also indicated that baseline characteristics of these two groups in the efficiency
452	of viral replication were similar. ²⁰ In another study, the similar viral load were
453	also reported between the vaccinated individuals with breakthrough infections
454	and unvaccinated individuals with SARS-CoV-2 infection. ²¹
455	
456	There were several limitations for this study. First limitation is the lack of a
457	placebo arm. We did not conduct this study with the double-blind procedure
458	because there was a small window of time to initiate and complete the study so
459	not allowing enough time for the placebo to be produced before the trial.
460	Second limitation is the lack of participant randomization in the study design.
461	This was primarily due to a large percentage of eligible participants not feel
462	comfortable to take the A8G6 treatment at time of enrollment. Therefore, we
463	have to assign those participants to blank-controlled group. Under this
464	situation, complete randomization was not possible. Third limitation is the lack

465	of participants developing severe COVID-19 that need hospitalization due to
466	small sample size. Therefore, this study did not assess the efficacy of A8G6 in
467	preventing severe COVID-19. During the study period, there was an
468	adjustment of the public health policy of the COVID-19 pandemic in China, that
469	the SARS-CoV-2 infected persons no longer were reported in the future. As a
470	result, the definition of close contacts became difficult and it became difficult to
471	enroll more participants to increase the sample size. Fourth limitation is that
472	the study was conducted in the designated quarantine hotels. Study
473	participants were assumed to be single-exposure to positive COVID-19
474	individuals. The effects of increased infection risks of multiple exposures in the
475	real world on the A8G6 efficacy should be considered in the further study.
476	
477	In conclusion, we observed potent post-exposure prevention efficacy of
478	intranasal spray AG86 antibody combination in close contacts of COVID-19
479	patients. This proof-of-concept study result suggested the potential beneficial
480	effect of neutralizing antibody administrated as nasal spray in COVID-19
481	prevention. Currently A8G6 nasal spray is under clinical development to further
482	assess its efficacy and safety.
483	

484 **Contributors**

485	AH, NT and XL designed the trial and study protocol. PP contributed to the
486	literature search. XL and HD verified the data. PP and HD wrote the first draft
487	manuscript. AH, NT, XL, PP, HD and ZY contributed to the data interpretation
488	and revision of the manuscript. HD, XL, NT and PP contributed to data
489	analysis. XL monitored the trial. QY, SC, BL, MH and XL were responsible for
490	the site work including the recruitment, follow-up, and data collection, and XL
491	was the site coordinator. All the authors had full access to all the data in the
492	study and had final responsibility for the decision to submit for publication.
493	
494	Declaration of interests
495	All authors declare no competing interests.
496	
497	Data sharing
498	De-identified individual participant-level data will be available upon written
499	request to the corresponding author following publication.
500	
501	Acknowledgements

- 502 We thank Dr. Yang Tian and Chengyong Yang (Mindao Haoyue Co., Ltd.
- 503 , Chongqing, China) for the constructive suggestion about the trial design and
- 504 manuscript. We thank all the participants who took part and contribute
- specimens in our study. We also thank the support from Yuzhong District
- 506 Center for Disease Control and Prevention (Chongqing) and all medical

507 personnels who worked hard in this trial.

509 Figures and Tables

510 **Table 1. Demographic and Clinical Characteristics of the Cohort.**

Characteristic	A8G6 (N=173)	Control (N=340)	Total (N=513)
Age			
Median age (IQR, year)	29.0 (24.0-40.0)	41.0 (30.0-50.0)	36.0 (26.0-48.0)
Mean±sd	32.6±10.4	40.1±12.2	37.6±12.2
Sex			
Male	96 (55.5%)	198 (58.2%)	294 (57.3%)
Female	77 (44.5%)	142 (41.8%)	219 (42.7%)
Weight (mean±sd)	60.0 (53.0-70.0)	63.0 (55.0-70.0)	63.0 (55.0-70.0)
BMI (mean±sd)	22.2 (19.6-24.5)	23.1 (21.3-25.6)	22.9 (20.8-25.4)
Comorbidities			
Metabolic disease	6 (3.5%)	28 (8.2%)	34 (6.6%)
Respiratory disease	3 (1.7%)	7 (2.1%)	10 (1.9%)
Cardiovascular diseases	1 (0.6%)	1 (0.3%)	2 (0.4%)
Other	8 (4.6%)	8 (2.4%)	16 (3.1%)
All	18 (10.4%)	44 (12.9%)	62 (12.1%)
Vaccine type			
Inactivated vaccine	156 (90.2%)	317 (93.2%)	473 (92.2%)
Recombinant vaccine	12 (6.9%)	17 (5.0%)	29 (5.7%)
Inactivated + Recombinant vaccine	3 (1.7%)	1 (0.3%)	4 (0.8%)
Unvaccinated	2 (1.2%)	5 (1.5%)	7 (1.4%)

Dose

0-dose	2 (1.2%)	5 (1.5%)	7 (1.4%)
1-dose	0 (0.0%)	5 (1.5%)	5 (1.0%)
2-dose	30 (17.3%)	42 (12.4%)	72 (14.0%)
3-dose	140 (80.9%)	286 (84.1%)	426 (83.0%)
4-dose	1 (0.6%)	1 (0.3%)	2 (0.4%)
Missing	0 (0.0%)	1 (0.3%)	1 (0.2%)
COVID-19 outcome			
Positive (n, %)	12 (6.9%)	151 (44.4%)	163 (31.8%)
Negative (n, %)	161 (93.1%)	189 (55.6%)	350 (68.2%)

517 Table 2. Demographic and Clinical Characteristics of COVID-19 positive

518 individuals	5
-----------------	---

Characteristic	A8G6 (N=12)	Control (N=151)	P value
Age			0.103
Median age (IQR, year)	36.0 (31.2-45.5)	42.0 (32.0-51.0)	
Mean±sd	36.3±10.4	41.8±12.0	
Sex			0.375
Male	8 (66.7%)	77 (51.0%)	
Female	4 (33.3%)	74 (49.0%)	
Weight (mean±sd)	61.5 (58.8-66.2)	63.0 (55.0-70.0)	0.934
BMI (mean±sd)	21.4 (20.9-23.2)	23.7 (21.4-26.0)	0.057
Clinical phenotype			0.694
Symptomatic	11 (91.7%)	127 (84.1%)	
Asymptomatic	1 (8.3%)	24 (15.9%)	
Days to COVID-19 confirmed			0.019
median days, IQR	3.5 (2.8-4.0)	3.0 (2.0-3.0)	
Mean±sd	3.4±1.1	2.6±1.2	
Duration of SARS-CoV-2 positive (day)			0.724
median days, IQR	6.5 (5.0-7.2)	7.0 (4.0-7.0)	
Mean±sd	6.7±1.9	6.3±2.5	
Viral load (Conversion according to Ct value			
of ORF1ab gene)			1.000

High level, >10 ⁵ copies/ml	5 (41.7%)	69 (45.7%)	
Low level, <10 ⁵ copies/ml	7 (58.3%)	82 (54.3%)	
Viral load (Conversion according to Ct value			0 117
of N gene)			0.117
High level, >10 ⁵ copies/ml	5 (41.7%)	100 (66.2%)	
Low level, <10 ⁵ copies/ml	7 (58.3%)	51 (33.8%)	
Symptomatic treatment			0.039
Western medicine	11 (91.7%)	89 (58.9%)	
Traditional chinese medicine	0 (0.0%)	8 (5.3%)	
Combination of western and traditional chinese medicine	1 (8.3%)	6 (4.0%)	
Untreated	0 (0.0%)	48 (31.8%)	
Duration of Covid-19 symptoms (d)			0.401
median days, IQR	5.0 (1.5-5.0)	3.0 (2.0-4.5)	
Mean±sd	4.3±2.9	4.2±5.0	
Comorbidities			0.435
Metabolic disease	1 (8.3%)	17 (11.3%)	
Respiratory disease	1 (8.3%)	2 (1.3%)	
Cardiovascular diseases	0 (0.0%)	1 (0.7%)	
Other	1 (8.3%)	5 (3.3%)	
All	3 (25.0%)	25 (16.6%)	
Vaccine type			0.203
Inactivated vaccine	10 (83.3%)	143 (94.7%)	

Recombinant vaccine	2 (16.7%)	5 (3.3%)	
Unvaccinated	0 (0.0%)	3 (2.0%)	
Dose			1.000
0-dose	0 (0.0%)	3 (2.0%)	
1-dose	0 (0.0%)	1 (0.7%)	
2-dose	2 (16.7%)	24 (15.9%)	
3-dose	10 (83.3%)	123 (81.5%)	
Signs and symptoms			
Fever	10 (83.3%)	83 (55.0%)	0.071
Fatigue	4 (33.3%)	22 (14.6%)	0.102
Dry cough	6 (50.0%)	54 (35.8%)	0.361
Headache	3 (25.0%)	39 (25.8%)	1.000
Dizziness	0 (0.0%)	5 (3.3%)	1.000
Ageusia	2 (16.7%)	8 (5.3%)	0.161
Pharyngalgia	1 (8.3%)	12 (7.9%)	1.000
Myalgia	2 (16.7%)	37 (24.5%)	0.733
Chill	1 (8.3%)	3 (2.0%)	0.266
Rhinorrhea	0 (0.0%)	2 (1.3%)	1.000
Nasal congestion	0 (0.0%)	2 (1.3%)	1.000
Diarrhea	0 (0.0%)	4 (2.6%)	1.000
Anorexia	1 (8.3%)	6 (4.0%)	0.421
Vomiting	1 (8.3%)	1 (0.7%)	0.142

Arthralgia	2 (16.7%)	4 (2.6%)	0.063	
Nausea	0 (0.0%)	2 (1.3%)	1.000	
Abdominal pain	0 (0.0%)	1 (0.7%)	1.000	
Dry throat	0 (0.0%)	2 (1.3%)	1.000	
Insomnia	0 (0.0%)	2 (1.3%)	1.000	
Somnolence	0 (0.0%)	2 (1.3%)	1.000	
Asthma	0 (0.0%)	1 (0.7%)	1.000	
Expectoration	1 (8.3%)	0 (0.0%)	0.074	
Eye swelling	1 (8.3%)	0 (0.0%)	0.074	
Any	11 (91.7%)	127 (84.1%)	0.694	
520				

	-	
End Points	A8G6 (n=178)	Control (n=340)
Primary end point		
SARS-CoV-2 confirmed by RT-qPCR		
No. of participants (%)	12 (7.0%)	151 (44.4%)
Hazard ratio (95% Cl)	0.12 (0.07-0.22)	-
log rank P value	3.95E-21	-
Days to SARS-CoV-2 confirmed		
Total No. of days	41	392
Mean days to SARS-CoV-2 confirmed (days)	3.4	2.6
P value	0.019	-
Key secondary end points		
High viral load at SARS-CoV-2 confirmed, ORF1ab >10⁵ copies/ml		
No. of participants (%)	5 (41.7%)	69 (45.7%)
P value	1.000	-
High viral load at SARS-CoV-2 confirmed, N >10 ⁵ copies/ml		
No. of participants (%)	5 (41.7%)	100 (66.2%)
P value	0.117	-
SARS-CoV-2 negative conversion		
No. of participants (%)	12 (100.0%)	151 (100.0%)
Hazard ratio (95% CI)	0.98 (0.54-1.77)	-
log rank P value	0.946	-

529 Table 3. Primary and Key Secondary Efficacy End Points.

Duration of SARS-CoV-2 positive (day)

Total No. of days	80	917	
Mean days of SARS-CoV-2 positive duration	6.7	6.3	
P value	0.724	-	
530			

538 539	Table 4. Ind	lividuals (n) having	an adverse event (n=16	51).
540 541		Adverse events	n (%)	
542 543		Nasal swelling	2 (1.24%)	
		Dry throat	2 (1.24%)	
		Ageusia	1 (0.62%)	

544 Figure 1. Screening and follow-up of participants.

548 **COVID-19**.

- 551 Figure 3. SARS-CoV-2 viral load (log10 copies per ml) at baseline when
- 552 diagnosed with COVID-19.

555 Figure 4. Time-to-event curve for time to viral clearance of SARS-CoV-2.

557 References

- 558 1. Sharif N, Alzahrani KJ, Ahmed SN, Dey SKJFii. Efficacy, immunogenicity and safety of
- 559 COVID-19 vaccines: a systematic review and meta-analysis. 2021: 4149.
- 560 2. Tregoning JS, Flight KE, Higham SL, Wang Z, Pierce BFJNri. Progress of the COVID-19
- 561 vaccine effort: viruses, vaccines and variants versus efficacy, effectiveness and escape. 2021;
- 562 **21**(10): 626-36.
- 563 3. Andrews N, Stowe J, Kirsebom F, et al. Covid-19 vaccine effectiveness against the
- 564 Omicron (B. 1.1. 529) variant. 2022; 386(16): 1532-46.
- 565 4. Feikin DR, Higdon MM, Abu-Raddad LJ, et al. Duration of effectiveness of vaccines
- 566 against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and
- 567 meta-regression 2022.
- 568 5. Thomas SJ, Moreira Jr ED, Kitchin N, et al. Safety and efficacy of the BNT162b2 mRNA
- 569 Covid-19 vaccine through 6 months. 2021; **385**(19): 1761-73.
- 570 6. Abramowicz M, Zucotti G, Pflomm MJJ. Tixagevimab and cilgavimab (Evusheld) for
- 571 pre-exposure prophylaxis of COVID-19. 2022; **327**(4): 384-5.
- 572 7. Gottlieb RL, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in
- 573 combination with etesevimab on viral load in patients with mild to moderate COVID-19: a
- 574 randomized clinical trial. 2021; **325**(7): 632-44.
- 575 8. Gupta A, Gonzalez-Rojas Y, Juarez E, et al. Effect of sotrovimab on hospitalization or
- 576 death among high-risk patients with mild to moderate COVID-19: a randomized clinical trial.
- 577 2022; **327**(13): 1236-46.
- 578 9. Iketani S, Liu L, Guo Y, et al. Antibody evasion properties of SARS-CoV-2 Omicron

- 579 sublineages. 2022; **604**(7906): 553-6.
- 580 10. Orders MJMLDT. Casirivimab and imdevimab (REGEN-COV) for post-exposure
- 581 prophylaxis of COVID-19. 2021; **63**(1631): 130-1.
- 582 11. Han X, Wang Y, Li S, et al. A rapid and efficient screening system for neutralizing
- 583 antibodies and its application for SARS-CoV-2. 2021; 12: 653189.
- 584 12. Li T, Han X, Gu C, et al. Potent SARS-CoV-2 neutralizing antibodies with protective
- 585 efficacy against newly emerged mutational variants. 2021; 12(1): 6304.
- 586 13. Zhang X, Zhang H, Li T, et al. A potent neutralizing antibody provides protection against
- 587 SARS-CoV-2 Omicron and Delta variants via nasal delivery. 2022; 7(1): 301.
- 588 14. Zhang X, Luo F, Zhang H, et al. A cocktail containing two synergetic antibodies broadly
- neutralizes SARS-CoV-2 and its variants including Omicron BA. 1 and BA. 2. 2022: 2022.04.
- 590 26.489529.
- 591 15. Abdul A, Slenker AK. Monoclonal antibody therapy for high-risk coronavirus (COVID 19)
- 592 patients with mild to moderate disease presentations. [Updated 2021 Apr 20]. 2021.
- 593 16. Tandon M, Wu W, Moore K, et al. SARS-CoV-2 accelerated clearance using a novel nitric
- 594 oxide nasal spray (NONS) treatment: a randomized trial. 2022; 3.
- 595 17. Lin Y, Yue S, Yang Y, et al. Nasal Spray of Neutralizing Monoclonal Antibody 35B5
- 596 Confers Potential Prophylaxis Against Severe Acute Respiratory Syndrome Coronavirus 2
- 597 Variants of Concern: A Small-Scale Clinical Trial. 2022.
- 598 18. Si S, Jin C, Li J, et al. Safety and Effectiveness of SA58 Nasal Spray against COVID-19
- 599 Infection in Medical Personnel: An Open-label, Blank-controlled Study. 2022: 2022.12.
- 600 27.22283698.

- 19. Song R, Zeng G, Yu J, et al. Post-Exposure Prophylaxis with SA58 (anti-COVID-19
- 602 monoclonal antibody) Nasal Spray for the prevention of symptomatic Coronavirus Disease
- 603 2019 in healthy adult workers: A randomized, single-blind, placebo-controlled clinical study.
- 604 2023: 2022.12. 28.22283666.
- 605 20. V'kovski P, Kratzel A, Steiner S, Stalder H, Thiel VJNRM. Coronavirus biology and
- replication: implications for SARS-CoV-2. 2021; **19**(3): 155-70.
- 607 21. Singanayagam A, Hakki S, Dunning J, et al. Community transmission and viral load
- 608 kinetics of the SARS-CoV-2 delta (B. 1.617. 2) variant in vaccinated and unvaccinated
- 609 individuals in the UK: a prospective, longitudinal, cohort study. 2022; 22(2): 183-95.