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2

17 ABSTRACT
18 Background  Deep learning, which is a part of a broader concept of artificial 

19 intelligence (AI) and/or machine learning has achieved remarkable success in 

20 vision tasks. While there is growing interest in the use of this technology in 

21 diagnostic support for skin-related neglected tropical diseases (skin NTDs), there 

22 have been limited studies in this area and fewer focused on dark skin. In this 

23 study, we aimed to develop deep learning based AI models with clinical images 

24 we collected for five skin NTDs, namely, Buruli ulcer, leprosy, mycetoma, scabies, 

25 and yaws, to understand how diagnostic accuracy can or cannot be improved 

26 using different models and training patterns.  

27 Methodology This study used photographs collected prospectively in Côte 

28 d'Ivoire and Ghana through our ongoing studies with use of digital health tools for 

29 clinical data documentation and for teledermatology. Our dataset included a total 

30 of 1,709 images from 506 patients. Two convolutional neural networks, ResNet-

31 50 and VGG-16 models were adopted to examine the performance of different 

32 deep learning architectures and validate their feasibility in diagnosis of the 

33 targeted skin NTDs.  

34 Principal findings The two models were able to correctly predict over 70% of 

35 the diagnoses, and there was a consistent performance improvement with more 

36 training samples. The ResNet-50 model performed better than the VGG-16 

37 model. Model trained with PCR confirmed cases of Buruli ulcer yielded 1-3% 

38 increase in prediction accuracy over training sets including unconfirmed cases.  

39 Conclusions Our approach was to have the deep learning model distinguish 

40 between multiple pathologies simultaneously – which is close to real-world 

41 practice. The more images used for training, the more accurate the diagnosis 
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42 became. The percentages of correct diagnosis increased with PCR-positive 

43 cases of Buruli ulcer. This demonstrated that it may be better to input images 

44 from the more accurately diagnosed cases in the training models also for 

45 achieving better accuracy in the generated AI models. However, the increase was 

46 marginal which may be an indication that the accuracy of clinical diagnosis alone 

47 is reliable to an extent for Buruli ulcer. Diagnostic tests also have its flaws, and 

48 they are not always reliable. One hope for AI is that it will objectively resolve this 

49 gap between diagnostic tests and clinical diagnoses with addition of another tool. 

50 While there are still challenges to be overcome, there is a potential for AI to 

51 address the unmet needs where access to medical care is limited, like for those 

52 affected by skin NTDs.

53
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59 AUTHOR SUMMARY

60 The diagnosis of skin diseases depends in large part, though not exclusively on 

61 visual inspection. The diagnosis and management of these diseases is thus 

62 particularly amenable to teledermatology approaches. The widespread 

63 availability of cell phone technology and electronic information transfer provides 

64 new potential for access to health care in low-income countries, yet there are 

65 limited efforts targeting these neglected populations with dark skin and 

66 consequently limited availability of tools. In this study, we leveraged a collection 

67 of skin images gathered through a system of teledermatology in the West African 

68 countries of Côte d'Ivoire and Ghana, and applied deep learning, a form of 

69 artificial intelligence (AI) - to see if deep learning models can distinguish between 

70 different diseases and support their diagnosis. Skin-related neglected tropical 

71 diseases, or skin NTDs, prevail in these regions and were our target conditions: 

72 Buruli ulcer, leprosy, mycetoma, scabies, and yaws. The accuracy of prediction 

73 depended on the number of images that were fed into the model for training with 

74 marginal improvement using laboratory confirmed cases in training. Using more 

75 images and greater efforts in this area, it is possible that AI can help address the 

76 unmet needs where access to medical care is limited.

77
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79 INTRODUCTION

80 Deep learning has achieved remarkable success in vision tasks such as 

81 image classification, image localization and image semantic segmentation, which 

82 also includes skin disease prediction. Deep learning is a part of a broader concept 

83 of artificial intelligence and/or machine learning whereby it uses vast volumes of 

84 data and complex algorithms to train a model to perform certain tasks. The 

85 success of the approach undoubtedly can be attributed to the ability of learning 

86 abstract semantic knowledge with the hierarchical network architecture from 

87 visual signals (1). It is increasingly gaining interest and becoming more important 

88 in the field of dermatology in this digital era. Evidence is accumulating that deep 

89 learning can assist healthcare providers to make better clinical decisions, even 

90 to an extent that sometimes exceeds human judgement (2, 3, 4). However, many 

91 of the diseases studied are pigmented lesions such as melanoma and basal cell 

92 carcinoma, or inflammatory dermatoses which often affect people with lighter skin 

93 color and thus provide a high degree of contrast (5, 6, 7).

94 Skin-related neglected tropical diseases, or skin NTDs, comprise a group 

95 of infectious diseases whose morbidity is expressed on the skin. They include at 

96 least nine diseases and disease groups listed by the World Health Organization 

97 (WHO) (8). More than 1 billion people are known to be either at risk or infected 

98 by skin NTDs (9). They mainly prevail in poor communities of low- and middle-

99 income countries (LMICs) where resources are scarce and where there are 

100 limited numbers of dermatologists to diagnose the conditions. Additionally, skin 

101 NTDs more often affect people of color. Availability of screening systems, 

102 therefore, is critical for this set of diseases which will enable earlier diagnosis and 
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103 treatment. The longer the delay in diagnosis, the more patients with skin NTDs 

104 may be left with life-long disabilities and deformities. 

105 While there is growing interest in the use of deep learning for diagnosis 

106 of skin NTDs to fill in these gaps, there have been limited studies to date which 

107 investigated the development of an AI model for a combination of these less 

108 studied diseases in the less studied populations. In this study, we aimed to 

109 develop deep learning based AI models with clinical images we collected for five 

110 skin NTDs, namely, Buruli ulcer, leprosy, mycetoma, scabies, and yaws, to 

111 understand how diagnostic accuracy is influenced by different models, especially 

112 when the training images are relatively small in number and collected under 

113 diverse conditions. All of the images are from dark-skinned African populations, 

114 with Fitzpatrick skin type IV or above. We anticipate that our findings will support 

115 future development of AI models for the skin NTDs, and in addition, other skin 

116 diseases in people with darker skin types.

117

118 METHODS

119 This study used photographs that were collected prospectively in the 

120 West African countries of Côte d’Ivoire and Ghana, through our ongoing studies 

121 with use of digital health tools for clinical data documentation and for 

122 teledermatology. The description of the design of this study can be found 

123 elsewhere (10). Briefly, photographs of skin lesions were collected with clinical 

124 information including demographics and disease description to support 

125 dermatologists in providing diagnoses remotely. The photographs were taken 

126 using the camera on Lenovo Tab M10 FHD Plus smart tablets under field 

127 conditions and in rural clinics from a total of six health districts (four in Côte 
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128 d’Ivoire and two in Ghana) known to be endemic with one or more skin NTDs. 

129 Image resolution was 1920 x 2560 pixels stored in JPEG format. Written informed 

130 consent was obtained from all patients for use of their images. The study has 

131 ethical approvals from the institutional review board of the Tulane University 

132 School of Public Health and Tropical Medicine (2020-2054-SPHTM) (USA), the 

133 Ministry of Health of Côte d’Ivoire (No. IRB000111917), and the Ministry of Health 

134 of Ghana (GHS-ERC:014/05/21).

135

136 Dataset screening

137 Images were selected from our data repository for which diagnoses for 

138 one of the five targeted diseases (Buruli ulcer, leprosy, mycetoma, scabies, and 

139 yaws) were made remotely and in person by two dermatologists with more than 

140 10 years of experience in diagnosing patients locally. A portion of cases of Buruli 

141 ulcer underwent polymerase chain reaction (PCR) testing for confirmation. 

142 Likewise, dual path platform (treponemal and non-treponemal) (DPP) testing 

143 (Chembio Diagnostics, Medford, NY, USA) was done for a portion of cases of 

144 yaws. Table 1 shows the data summary of the five diseases, with number of 

145 patients and number of images for each disease. Multiple images were obtained 

146 for most patients. For Buruli ulcer and yaws, the numbers within parenthesis were 

147 those with positive results with PCR and DPP, respectively.

148

149 Table 1. Patient and image sample sizes 

Buruli ulcer* Leprosy Mycetoma Scabies Yaws*

Patients 200 (97) 38 12 107 149 (62)
Images 784 (361) 131 32 389 373 (147)
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150 *Parentheses indicate the number with positive PCR or DPP test results for Buruli 

151 ulcer or yaws, respectively. Multiple photographs were taken for each patient.

152

153 AI-based skin disease diagnosis model 

154 Convolutional neural networks (CNNs) are the popular deep learning 

155 techniques to extract feature representation from the image samples for disease 

156 diagnosis. CNNs are multi-layer neural networks with convolutional filters to 

157 capture the visual pattern from skin images. In this study, we adopted two popular 

158 CNNs, the ResNet-50 (50-layer residual neural network) (11) and the 16-layer 

159 VGG-16 model (12). The purpose was to examine the performance of different 

160 deep learning architectures and validate the feasibility of deep learning models 

161 in diagnosis of these skin diseases.

162 All the original images were resized into the same size as a 3D tensor 

163 with 224 x 224 x 3 pixel resolution to fit the input of deep learning models. Data 

164 augmentations and normalization pre-processing strategies were also employed 

165 following existing image classification tasks (13). These were then sent to the 

166 Resnet-50 model or VGG-16 model, pre-trained on the ImageNet dataset, which 

167 is a large-scale, open-source image repository (14). Each image was represented 

168 as a 2048-dimensional feature vector for ResNet-50, and a 4096-dimensional 

169 feature vector for VGG-16. Following this, we designed the disease diagnosis 

170 classifier with output of a 5-dimensional vector as a 5-disease probability vector. 

171 For model optimization, we adopted stochastic gradient descent (SGD) with a 

172 momentum of 0.9 as optimizer to update the whole network parameters (i.e., 

173 ResNet50 and classifier parameters). We performed the experiments using the 

174 PyTorch library running on one GPU (NVIDIA Titan V).
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175 To train our designed models, the images from k% of patients from our 

176 collection chosen at random was used as a training set, and the images from the 

177 remaining patients were used to evaluate the model performance. We tested if 

178 and how laboratory confirmation may change the accuracy of the classifier. With 

179 our datasets (Table 1), we performed two kinds of experiments: firstly, using all 

180 cases [clinical diagnosis] (Task 1), and secondly, using only those cases that 

181 tested positive with PCR or DPP for Buruli ulcer and yaws, respectively [test 

182 positives] (Task 2). Otherwise, the analysis was the same. There was no patient 

183 overlap between the training and test sets. 

184 We adopted two metrics, the Top-1 accuracy (%) and the Matthew’s 

185 correlation coefficient (MCC, 0~1) to evaluate our model (15). Top-1 accuracy 

186 measures the proportion of test images for which the predicted disease matches 

187 the single target disease. MCC is a reliable statistical score that produces a high 

188 value only if the prediction obtained good results in all the four confusion matrix 

189 categories (true positives, false negatives, true negatives, and false positives). 

190 To map the learned visual representations, we used the dimensionality reduction 

191 method, Principal Component Analysis (PCA) (16).

192

193 RESULTS

194 Table 2 presents the results of diagnostic accuracy from the two models 

195 (ResNet-50 and VGG-16) using all images as Task 1 and using images from 

196 laboratory confirmed positive cases of Buruli ulcer and yaws in training as Task 

197 2. From the results across Tasks 1 and 2, we observed a consistent performance 

198 improvement when we had more training samples.

199
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200 Table 2: Diagnostic accuracy of the two network models with different 

201 percentages of images for training

202 (a) Task 1: Clinical diagnosis

203 ResNet-50

k% 30 40 50 60 70
Top-1 Acc 78.55% 79.36% 82.20% 82.84% 84.63%
MCC 0.6776 0.6897 0.7308 0.7394 0.7715

204 VGG-16

k% 30 40 50 60 70
Top-1 Acc 76.61% 78.45% 80.55% 80.27% 82.22%
MCC 0.6440 0.6758 0.7038 0.6984 0.7336

205

206 (b) Task 2: Lab test positives

207 ResNet-50

k% 30 40 50 60 70
Top-1 Acc 75.71% 76.52% 77.19% 79.15% 84.17%
MCC 0.6505 0.6615 0.6725 0.7011 0.7706

208
209 VGG-16

k% 30 40 50 60 70
Top-1 Acc 73.64% 74.93% 75.79%% 78.72% 79.44%
MCC 0.6204 0.6407 0.6515 0.6948 0.7011

210 ResNet-50 and VGG-16 are two CNN image models with the former having the higher number 

211 of layers. K% is the percentage of all images used in training. Training and test samples did not 

212 overlap. Top-1 Acc: top-1 accuracy is the proportion of test images for which the predicted 

213 diagnosis by the model matches the actual diagnosis. MCC: Matthew’s correlation coefficient is 

214 a statistical value assessed by results obtained from four confusion matrix categories. A higher 

215 value means better prediction (range, 0-1). 

216
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217 Confirmatory analysis and confusion matrix

218 To further understand our AI diagnosis model for each disease, we analyzed the 

219 confusion matrices of the two models to examine if the model trained with images 

220 from the diagnostic test positive data would contribute to better performance. For 

221 Setting A, we used 50 PCR positive Buruli ulcer patients with PCR positives plus 

222 the other 4 diseases to train the model based on ResNet-50. For Setting B, we 

223 used 50 clinically diagnosed Buruli ulcer patients (including every patient 

224 diagnosed as Buruli ulcer irrespective of their PCR results) plus the other 4 

225 diseases to train the model based on ResNet-50. The test set was the same for 

226 the two models, which included 100 clinically diagnosed Buruli ulcer patients plus 

227 the other 4 diseases. There was no patient overlap between the training and test 

228 set. Overall, Setting A was able to achieve 80% accuracy while this was 77% for 

229 Setting B. 

230 Figure 1 shows confusion matrices by each disease. Each row of the 

231 matrix represents the instances of actual diagnosis [ground truth], while each 

232 column represents the instances of predicted diagnosis by the deep learning 

233 model [prediction]. Each diagonal element denotes the correct diagnosis by the 

234 model per disease. The prediction accuracy increased in Setting A by 1-3% as 

235 compared to Setting B across all diseases besides for mycetoma, where there 

236 were smaller number of images. For both Settings A and B, Buruli ulcer and 

237 scabies had the highest percentages of correct diagnosis, 88% and 85% for both, 

238 respectively.

239

240 Qualitative Analysis
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241 Figure 2 provides eight example images which resulted in incorrect 

242 prediction by our pilot AI model based on ResNet-50, with (k=50)% training data 

243 for all data (Task 1). Numbers in the parentheses represent the likelihood of the 

244 diagnosis by the prediction model [prediction label] as compared to the actual 

245 diagnosis [true label], or the ground truth. An uncertainty score is also given to 

246 each test image, which is calculated by the correlation between the predicted 

247 probability with random guess. Higher correlation means higher uncertainty score. 

248 The uncertainty score indicates the degree of irrelevant evidence the AI model 

249 finds for the given test image used to predict its diagnosis. For example, Figure 

250 2(a) shows a true label score for yaws of 0.187 and a predicted label for Buruli 

251 ulcer of 0.254 with high uncertainty of 0.93. This means that the model predicted 

252 the image to be more like Buruli ulcer than yaws, however it was also highly 

253 uncertain. An uncertainty score closer to 1 represents higher uncertainty for the 

254 diagnosis output. When it is 100% uncertain, AI estimates it to be a random guess 

255 and provides a confidence score of 0.200 (5 diseases, 1/5 = 0.200). The AI 

256 prediction is better when the uncertainty score is lower, although the diagnosis 

257 could still be incorrect. 

258

259 Feature Visualization

260 To further understand why we can achieve better performance on Buruli 

261 ulcer and scabies but worse performance for instance on mycetoma, we used, 

262 PCA (16) to map the learned visual representations (2048-dimensional features 

263 of ResNet-50) of each test class image to a 2-D plane. The goal was to visualize 

264 the learned feature representation and provide a direct way to understand the 

265 discriminative ability of AI features from raw skin images. Figure 3a shows the 
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266 training samples while Figure 3b lists the test samples, where each dot in the 2-

267 D plane denotes one image sample and the same color means the image 

268 samples of the same disease. From the results, we observed that our 

269 classification model can learn discriminative features from raw skin images to 

270 differentiate diseases in the training stage, while the model generalization ability 

271 to test images becomes poorer, which means the model cannot easily 

272 differentiate the test images like the training ones.  

273

274 DISCUSSION

275 In this report, we explored how deep learning might help in screening 

276 and/or diagnosis of skin NTDs, which often affects people with darker skin tones. 

277 Two deep learning models were examined in our work. Between the ResNet-50 

278 and VGG-16 models, we conclude that the ResNet-50 model achieved better 

279 performance (around 2% better prediction for all evaluation) in predicting our skin 

280 images. The major difference between the two models is the depth of their layers, 

281 i.e., ResNet-50 contains 50 layers of convolutional, pooling operations, while 

282 VGG-16 only contains 16 layers of the same. Generally, deeper models with more 

283 layers can extract more powerful representations from image data (12). This 

284 tendency was consistent also for our dataset which focused on skin disease 

285 diagnosis. However, models with more layers contain more parameters, which 

286 make them heavier, and less efficient (12). VGG-16 is more efficient as fewer 

287 layers are included. 

288 Although classified together as skin NTDs, the target infections have 

289 quite different appearances, presentations, and progressions. The lesions can be 

290 raised, depressed, smooth or rough, various colors or multicolored even for the 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.23287243doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.14.23287243
http://creativecommons.org/licenses/by/4.0/


14

291 same condition. We observed that deep learning approaches to identification of 

292 Buruli ulcer, scabies and yaws showed good performance of close to over 80% 

293 prediction, perhaps since these were trained with more images. Especially for 

294 Buruli ulcer where there were 784 images, the performance was over 90%. 

295 Leprosy and mycetoma, used smaller sample sizes and had poorer performance. 

296 For leprosy, we speculate that it was not only the sample size, but also the 

297 complexity of the disease presentation that impacted performance (17). We had 

298 a range of images from tuberculoid to borderline to lepromatous type leprosy, as 

299 well as some included deformities and wounds that developed due to peripheral 

300 neuropathy. We stratified these different conditions and ran the same analysis, 

301 with an expectation that this may increase power by reducing variance. However, 

302 this further decreased the number of our samples, and we were unable to obtain 

303 any meaningful results this time. Likewise, similar results were obtained for yaws, 

304 when stratified for ulcerative versus non-ulcerative (papilloma, hyperkeratosis, 

305 etc.) lesions. However, we believe if there were enough images, stratifying may 

306 increase the accuracy of the predicted diagnosis. Moreover, as prior study on AI-

307 based diagnosis for leprosy showed, clinical data other than images, most 

308 importantly loss of sensation for leprosy, are essential to be combined in the deep 

309 learning dataset for better model development (17).

310 The percentages of correct diagnosis increased with PCR-positive cases 

311 of Buruli ulcer. This demonstrated that it may be better to input images from the 

312 more accurately diagnosed cases in the training models also for achieving better 

313 accuracy in the generated AI models. It was interesting to see that the PCR-

314 confirmed cases of Buruli ulcer contributed in increasing the diagnostic accuracy 

315 not just for Buruli ulcer but also for other diseases. On the other hand, contrary 
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316 to our hypothesis, the percentage increase was minimal (3% for Buruli ulcer), 

317 which may be an indication that the accuracy of clinical diagnosis alone is reliable 

318 to an extent. Especially for Buruli ulcer, a previous study by Eddyani et al. has 

319 shown that sensitivity of clinical diagnosis was as high as 92% (95% CI, 85-96%), 

320 which was the highest among any other methods including PCR (18). PCR results 

321 can be false negatives in Buruli ulcer due to several factors, for example, site of 

322 sample collection, skills in sample taking and duration of the wound (19). While it 

323 is currently the preferred test for diagnostic confirmation, it has its flaws and is 

324 not always reliable. In many studies, PCR is considered 65-70% sensitive (20) or 

325 even only 61% sensitive (21). Specificity is perhaps highest for the PCR positive 

326 cases, but sensitivity is highest for clinically identified cases. The PCR positive 

327 cases should be enriched for true cases, but it also misses true cases. One hope 

328 for AI – which our findings also support – is that it will objectively resolve this gap 

329 between diagnostic tests like PCR and clinical diagnoses with addition of another 

330 tool. 

331 Incorrect diagnoses made by our model were skewed towards other skin 

332 NTDs being diagnosed as Buruli ulcer, as about half of our images were Buruli 

333 ulcer. Fairness issues in deep learning arise when the dataset is extremely 

334 imbalanced across different categories or groups (22). When these images with 

335 incorrect prediction were reviewed, some cases would have been difficult to 

336 differentiate even with the human eye, such as the case of yaws in Figure 2(b), 

337 for example. On the other hand, some cases with obviously different 

338 presentations were predicted to be Buruli ulcer, such as the case of mycetoma in 

339 (d) and leprosy in (f). We were unsure why they were predicted to be Buruli ulcer. 

340 For cases shown in (a) and (g), images and location on the limbs may have 
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341 played some role in these being predicted as a Buruli ulcer case, as the most 

342 commonly affect body parts in Buruli ulcer are the limbs (23, 24). Figure 2(c) was 

343 a case of yaws, but the main lesion was not centered, and the lesion of interest 

344 was not very obvious. The backgrounds or the clothes may have disturbed the 

345 predictions in cases such as in (a), (e), (g), and (h). It will be necessary to 

346 understand these patterns in order to resolve incorrect predictions, which will be 

347 one of our future study directions. 

348 A major source of bias in AI applications stems from the availability and 

349 variety of images used in training. There are a very limited number of images of 

350 these diseases and a more limited number of images of people of color. In 

351 addition, the phrase "people of color” embraces a huge range of hues and surface 

352 characteristics even within the African continent. One of the strong points of this 

353 pilot has been the use of local dermatologists. In one example in the field, the 

354 local dermatologists recognized a series of deeply pigmented lesions as being a 

355 reaction to skin whitening agents, a diagnosis that would not easily be arrived at 

356 by physicians in the US or Europe. A key observation here has been to reinforce 

357 the need for more images from a wider diversity of cases from this part of the 

358 world, similarly to the recently recognized gap in dermatological training in 

359 general (25, 26). We were able to derive almost the same, if not close, accuracy 

360 in diagnosis with the model trained with images from clinical diagnosis over those 

361 trained with images with laboratory confirmation – this was partly possible 

362 because of the involvement of our skilled local dermatologists. 

363 There are limitations to our study, some of which were already described, 

364 such as limited number of images and imbalance in image numbers between 

365 diseases. Moreover, images were taken under different conditions, and they were 
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366 highly heterogeneous, for example, distracting objects in the background or 

367 lighting. We are currently working on how to mitigate them, as the photos are 

368 taken under field conditions in Côte d’Ivoire and Ghana where conditions are less 

369 formal than with many other studies. As it is difficult to mandate the images be 

370 taken in a uniform environment in these settings, and as this will also limit the 

371 number of images that we can use for deep learning, it is potentially more up to 

372 the technology how we can overcome this challenge. If such technology can be 

373 developed, it could be beneficial for the development of deep learning models for 

374 a wide range of skin diseases that are common in the developing world, in 

375 addition to what were targeted in this study.

376

377 Conclusions

378 Here, we presented our exploratory approach in developing deep 

379 learning models for skin NTDs and the challenges that we encountered. These 

380 attempts have only just begun. We hope that the lessons learnt here will support 

381 the future development of AI technology for these neglected diseases in the 

382 neglected populations. Our approach was to have the deep learning model 

383 distinguish between multiple pathologies simultaneously. This is different from 

384 many other studies where deep learning models were asked to make a diagnosis 

385 of a single disease. However, in real-world, what happens in clinicians’ mind is 

386 that we are required to compare between different pathologies – accordingly, we 

387 devised an approach that is more in line with this practice. AI is not yet a 

388 replacement for human diagnosis, but if used well and appropriately, it is a tool 

389 that can be useful in screening for diseases and improving patient outcomes. 
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390 Particularly, the hope is that it will address the unmet needs where access to 

391 medical care is limited, like for those affected by skin NTDs. 

392
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