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ABSTRACT 

Importance: Diagnostic codes are commonly used as inputs for clinical prediction models, to 

create labels for prediction tasks, and to identify cohorts for multicenter network studies. 

However, the coverage rates of diagnostic codes and their variability across institutions are 

underexplored. 

Objective: Primary objective was to describe lab- and diagnosis-based labels for 7 selected 

outcomes at three institutions. Secondary objectives were to describe agreement, sensitivity, 

and specificity of diagnosis-based labels against lab-based labels.  

Methods: This study included three cohorts: SickKidsPeds from The Hospital for Sick Children, 

and StanfordPeds and StanfordAdults from Stanford Medicine. We included seven clinical outcomes 

with lab-based definitions: acute kidney injury, hyperkalemia, hypoglycemia, hyponatremia, 

anemia, neutropenia and thrombocytopenia. For each outcome, we created four lab-based 

labels (abnormal, mild, moderate and severe) based on test result and one diagnosis-based 

label. Proportion of admissions with a positive label were presented for each outcome stratified 

by cohort. Using lab-based labels as the gold standard, agreement using Cohen’s Kappa, 

sensitivity and specificity were calculated for each lab-based severity level.   

Results: The number of admissions included were: SickKidsPeds (n=59,298), StanfordPeds 

(n=24,639) and StanfordAdults (n=159,985). The proportion of admissions with a positive 

diagnosis-based label was significantly higher for StanfordPeds compared to SickKidsPeds across 

all outcomes, with odds ratio (99.9% confidence interval) for abnormal diagnosis-based label 

ranging from 2.2 (1.7-2.7) for neutropenia to 18.4 (10.1-33.4) for hyperkalemia. Lab-based 

labels were more similar by institution. When using lab-based labels as the gold standard, 

Cohen’s Kappa and sensitivity were lower at SickKidsPeds for all severity levels compared to 

StanfordPeds.  
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Conclusions: Across multiple outcomes, diagnosis codes were consistently different between 

the two pediatric institutions. This difference was not explained by differences in test results. 

These results may have implications for machine learning model development and deployment.  
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INTRODUCTION 

Machine learning models based on electronic health records (EHRs) are increasingly 

being developed and implemented into routine care. They have improved outcomes related to 

reducing acute care visits among ambulatory cancer patients1, decreasing in-hospital clinical 

deterioration2, increasing serious illness conversations3, improving platelet utilization4 and 

refining antibiotic choice5 as examples.  

To develop models, inputs or features are extracted from EHRs; these reflect different 

aspects of care such as diagnostic codes, laboratory tests, microbiology results, medication 

administrations, blood product administration, and procedures. Diagnostic codes are also 

frequently used to define the outcome of interest or label.  How well each institution generates 

accurate diagnostic codes may vary depending on the coding process specific to the instution6 

and clinical diagnostic practice specific to the hospital unit or physician6-8. This variability might 

influence the performance and generalizability of machine learning models developed at 

institutions with different diagnostic coverage rates. In pediatric populations, the coverage rates 

of diagnostic codes and their variability across institutions are underexplored9,10. 

 A challenge to studying the question of diagnostic code coverage is the creation of gold 

standard labels as the diagnostic codes themselves are often used to develop these labels. One 

type of clinical data in which the label is inherent within the result itself is laboratory-based 

outcomes. Abnormal lab tests can be defined using institution-specific reference ranges. In 

addition, levels of severity (mild, moderate, and severe) for each abnormal lab test can be 

defined based upon widely accepted thresholds. Thus, evaluating diagnostic code coverage 

against lab-based definitions provides a pragmatic setting in which to evaluate this question. 

Consequently, the primary objective was to describe lab- and diagnosis-based labels for 

selected outcomes at three institutions. Secondary objectives were to describe agreement, 

sensitivity, and specificity of diagnosis-based labels against lab-based labels.  
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METHODS 

Design 

 This study used data derived from EHRs at three institutions, namely The Hospital for 

Sick Children (SickKids) in Toronto, Ontario; Lucile Packard Children’s Hospital (primarily 

pediatric-directed care) in Palo Alto, California and Stanford Health Care (primarily adult-

directed care) in Palo Alto, California. The overall goal was to compare lab- and diagnosis-

based labels for pediatric patients at SickKids vs. Stanford. We included a Stanford adult cohort 

for descriptive purposes. 

 

Data Sources 

SEDAR: The data source at SickKids was the SickKids Enterprise-wide Data in Azure 

Repository (SEDAR)11. SEDAR contains a curated version of Epic Clarity data that is being 

used for operational, quality improvement and research purposes. This study was approved as 

a quality improvement project at SickKids and consequently, the requirement for Research 

Ethics Board approval and informed consent were not required. 

STARR: The Stanford medicine research data repository (STARR)12 is the clinical data 

warehouse that contains records routinely collected in the EHR of Stanford Medicine, which is 

comprised of Lucile Packard Children’s Hospital and Stanford Health Care. The data have been 

mapped to the standard concept identifiers and structure of the Observational Medical 

Outcomes Partnership Common Data Model (OMOP-CDM)13, resulting in a dataset named 

STARR-OMOP. This study used a de-identified version of STARR-OMOP12 in which protected 

health information has been redacted. Because of de-identification, requirement for Institutional 

Review Board approval and informed consent were not required for data use. 

 

Cohorts 
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We defined three cohorts. SickKidsPeds was obtained using SEDAR while StanfordPeds 

and StanfordAdults were obtained using STARR-OMOP and applying age-specific restrictions. 

Table 1 summarizes the inclusion criteria for each cohort. Across all three cohorts, inpatient 

admissions were included if they occurred between 2018-06-02 to 2022-08-01. The pediatric 

cohorts (SickKidsPeds and StanfordPeds) included patients who were 28 days or older and 

younger than 18 years on the day of admission.  We excluded neonates 1 to 27 days of age 

because Lucile Packard Children’s Hospital has an obstetrical unit and consequently includes 

healthy newborns while SickKids does not have an obstetrical unit and does not routinely see 

healthy newborns.  StanfordAdults included adult patients aged 18 or above on the day of 

admission. Multiple admissions per patient were permitted as long as eligibility criteria were met.  

 

Outcome Definitions 

 We included seven clinical outcomes that have lab-based definitions, namely acute 

kidney injury (AKI), hyperkalemia, hypoglycemia, hyponatremia, anemia, neutropenia, and 

thrombocytopenia. We appreciate there are a large number of potential lab-based outcomes; 

these seven were chosen based on our current research interests and because they are 

clinically meaningful. The outcomes were chosen a priori, before conducting any of the 

analyses. We purposely did not include abnormal high and low for the same lab test (for 

example, hyperglycemia and hypoglycemia) as they may be correlated. For each outcome, we 

created four lab-based labels based on the test result and one diagnosis-based label; these five 

labels were evaluated in each patient admission. Appendix 1 shows the thresholds for each 

severity level (mild, moderate, and severe levels) of the lab-based labels; these thresholds were 

based upon research studies or guidelines14-20. We also labeled the result as abnormal if the 

result was above or below (not both) of the institution-specific reference range. For lab-based 

labels, units for lab results were normalized, and severity level was nested. For example, a 

patient admission with severe hypoglycemia would also be included in the analyses for mild and 
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moderate hypoglycemia. For the diagnosis-based label, we considered an outcome to be 

present if at least one outcome-related diagnosis code was assigned to the admission.  

 

Concept Selection for Lab-based and Diagnosis-based Labels  

 We adopted different search strategies for concepts in STARR-OMOP and SEDAR due 

to differences in structure and vocabularies for clinical codes. Diagnosis codes were derived 

from the “condition_occurrence” table for STARR-OMOP and from the “diagnosis” table for 

SEDAR. Lab test results were obtained from the “measurement” table for STARR-OMOP and 

from the “lab” table for SEDAR. For face validation, diagnosis codes and lab result distributions 

obtained from STARR-OMOP were reviewed by three clinicians (KEM, CA and LS) to identify 

errors related to normalization or concept selection.  At SickKids, this same review was only 

conducted by one clinician (LS) due to access restrictions.  

  

Baseline Characteristics by Cohort   

 To explore whether there were differences in the cohorts with respect to patients, we 

described the demographic characteristics and raw lab results of patients between centers. 

Demographic characteristics included age, sex, length of stay, and the prevalence of in-hospital 

mortality. For the evaluation of raw lab results, we determined the minimum or maximum result 

for each lab test per admission and stratified by cohort.  

To gain insight into whether there were differences between pediatric institutions with 

respect to laboratory procedures or clinical practice, we described the institution- and age 

group-specific reference ranges for abnormal lab results by SickKidsPeds and StanfordPeds. The 

pediatric age groups were defined by the National Institute of Child Health and Human 

Development21 as infancy (28 days – 12 months), toddler (13 months – 2 years), early childhood 

(2 – 5 years), middle childhood (6 – 11 years) and early adolescence (12 – 17 years). In 
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addition, we evaluated lab testing frequency calculated as the number of tests per inpatient day 

for each admission.  

 

Statistical Analysis 

 The primary objective was to describe lab- and diagnosis-based labels at the three 

institutions. These were presented as the proportion of admissions with at least one positive 

label. To describe the odds of a lab- or diagnosis-based label by whether the pediatric 

admission occurred at StanfordPeds vs. SickKidsPeds, analysis was complicated by the large 

number of admissions and multiple testing (35 separate evaluations for this analysis alone). In 

addition, there were multiple admissions per patient, resulting in correlation within individuals. 

To address these concerns, we took several steps. First, we focused on describing the odds 

ratio (OR) and 99.9% confidence interval (CI) for a lab- or diagnosis-based label by pediatric 

institution. Second, we described the 99.9% confidence interval rather than the 95% confidence 

interval to help address multiple testing. Third, we did not calculate P values but rather, focused 

on describing CIs with the exception of comparing lab testing frequency by institution. Finally, to 

address multiple admissions per patient, OR and 99.9% CI were calculated using mixed-effects 

logistic regression. Models included each binary label as the outcome, institution and pediatric 

age group as fixed effects and subject as random intercept. Analysis was performed using the 

glmer function from lme4 package in R.  

 The secondary objectives were to describe agreement, sensitivity, and specificity of 

diagnosis-based labels against lab-based labels.  Agreement in each cohort was described 

using Cohen’s Kappa coefficient. Sensitivity and specificity of the diagnosis-based labels were 

determined using each of the lab-based labels as the gold standard. For each metric, we 

presented the median and ranges stratified by cohort and lab-based severity (abnormal, mild, 

moderate and severe).  
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 As an exploratory analysis, we separately evaluated each visited unit during admissions 

at each pediatric institution. We examined the weighted proportion of positive lab-based labels 

and positive diagnosis-based labels for each hospital unit and calculated Spearman’s rho (r) 

based on the average across lab-based severity.  

To describe lab-based reference ranges for pediatric patients, we described the 

threshold for an abnormal lab test by pediatric age group stratified by institution. Where the 

threshold varied within an age group, the range was visually depicted using a bar rather than a 

line. To compare testing frequency between pediatric institutions, mixed-effects linear 

regression was performed with number of lab tests per admission as the outcome, institution 

and pediatric age group as fixed effects and subject as random intercept. Analysis was 

performed using the lmer function from the lme4 package in R.  

All analyses were conducted using Python (version 3.7) and R (version 4.1.2).  

 

RESULTS 

Baseline Characteristics 

The number of admissions included were: SickKidsPeds (n=59,298), StanfordPeds 

(n=24,639) and StanfordAdults (n=159,985). Characteristics of the three cohorts are listed in Table 

1. The distributions of age, sex, in-hospital mortality, and median length of stay were similar 

between SickKidsPeds and StanfordPeds while the distribution of sex and in-hospital mortality 

differed at StanfordAdult. Table 2 shows the distribution of minimum or maximum results for each 

lab test per admission by cohort. Distributions appeared similar between StanfordPeds and 

SickKidsPeds with the exception of minimum absolute neutrophil count, which was lower at 

SickKidsPeds vs. StanfordPeds. Appendix 2 shows that the reference ranges varied between 

SickKidsPeds and StanfordPeds. Reference ranges for glucose and sodium were the same for all 

age groups except infants. Reference ranges for potassium and platelets were notably different 

by institution across age groups.  Appendix 3 shows the average number of lab tests performed 
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per inpatient day across all admissions stratified by institution. SickKidsPeds performed 

significantly fewer tests compared to StanfordPeds for all tests.  

 

Prevalence of Lab-based and Diagnosis-based Labels   

Table 3 provides the percentage of admissions with a positive lab- and diagnosis-based 

label. Table 3 and Figure 1 show OR and 99.9% CI. The proportion of admissions with a 

positive diagnosis-based label was significantly higher for StanfordPeds compared to SickKidsPeds 

across all outcomes, with OR (99.9% CI) for abnormal diagnosis-based label ranging from 2.2 

(1.7-2.7) for neutropenia to 18.4 (10.1-33.4) for hyperkalemia. Lab-based labels were more 

similar by institution although several were significantly different as demonstrated by CIs that did 

not cross 1.   

 

Agreement between Outcome Definitions  

Figure 2 shows the evaluations of diagnosis-based labels against each of the lab-based 

labels using Cohen’s Kappa coefficient, sensitivity, and specificity. Overall, diagnosis codes had 

high specificity (mean=0.984, standard deviation (SD)=0.026) but low sensitivity (mean = 0.203, 

SD=0.158) and low Kappa (mean=0.213, SD=0.132) with lab-based labels. Compared to 

StanfordPeds, SickKidsPeds diagnosis-based labels had lower Kappa statistic and sensitivity, but 

higher specificity. 

Figure 3 plots the weighted proportions of positive diagnosis-based labels against the 

weighted proportions of positive lab-based labels for each hospital unit at SickKidsPeds and 

StanfordPeds. At StanfordPeds, units associated with more patients with lab-based labels also had 

more patients with a positive diagnosis-based label for a clinical outcome, with Spearman r 

ranging from 0.513 (hyponatremia) to 0.871 (neutropenia). In contrast, the Spearman r’s were 

generally lower at SickKidsPeds across all outcomes, and ranged from 0.010 (hypoglycemia) to 

0.356 (anemia).  
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DISCUSSION 

 Our results showed that despite similar demographic characteristics, there were large 

differences between the two pediatric institutions in the proportion of admissions with diagnosis 

codes for the evaluated clinical outcomes. In addition, diagnosis-based labels generally had low 

agreement with lab-based labels and displayed low sensitivity but high specificity when 

considering lab-based labels as the gold standard, with differences observed between the two 

institutions. In addition, we found differences between the two institutions in terms of test 

ordering frequency and even laboratory test references ranges. 

These results suggest that if machine learning models are intended for deployment at 

multiple institutions, reliance on diagnostic codes, either as feature or labels, could be 

problematic if institutions have different coding practices. Second, they suggest that using 

institutional reference ranges to categorize laboratory test results may contribute to geographic 

dataset shift. This study contributes to the body of evidence that demonstrates the limitations of 

using diagnosis codes for outcome identification. Studies have reported low sensitivity rate 

when using diagnosis codes to identify, for example, acute kidney injury22, obesity23, and 

symptoms of coronavirus disease 201924. In addition, this study showed differences between 

and within institutions in diagnostic practice that may have contributed to the differences in the 

performance of diagnosis codes for outcome identification. 

Diagnosis codes from the EHR are commonly queried during feature extraction25-29, label 

creation30, and cohort identification31. Heterogeneity in diagnostic practice across hospital units 

within the same institution (e.g., SickKids) can impact a model’s performance within sub-

populations or spuriously associate certain units with the outcome of interest during model 

development. In addition, the cross-institution difference in diagnostic coding practice has 

implications for network studies as it violates the assumption that coding practice is comparable 
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across institutions and creates heterogeneity in outcome prevalence as an artifact of code 

availability.  

While we found that the proportions of positive lab-based labels were more similar 

between pediatric institutions, there were significant differences although smaller than that 

observed for diagnosis-based labels. Possible contributions were the observed differences in 

lab testing frequency between the two pediatric institutions. In addition, the reference ranges 

themselves were different for tests with the same absolute interpretation regardless of where 

the test was conducted. For example, two hypothetical children with the same platelet count 

could be considered to have a normal test at one institution and an abnormal test at the second 

institution. Some SickKids reference ranges were based upon those established by the 

Canadian Laboratory Initiative on Pediatric Reference Intervals (CALIPER) initiative,32 which 

contributed to the disparity. Nonetheless, this has implications for machine learning models. 

First, it is common during feature processing to categorize lab test results as normal, high, and 

low based upon the reference range25,33. Having different reference ranges would thus produce 

different features despite having the same numerical value. Second, different reference ranges 

may impact downstream clinical decision making and variability of resultant clinical actions, for 

example procedures and medication administrations. Since these actions will be recorded in the 

EHR, impact on clinical decision making can further worsen geographic dataset shift.   

The strengths of this study include the ability to evaluate multiple institutions in different 

countries and the involvement of clinician co-investigators who contributed to the identification 

of concepts to include in the various label definitions. However, this study is limited for several 

reasons. First, we only evaluated seven outcomes. In addition, the outcomes were restricted to 

those that have lab-based definitions in order to use lab tests to develop gold standard labels. 

Outcomes that are more complex might require chart review to establish gold standards and 

more sophisticated electronic phenotyping approaches to reach reasonable performance34,35. 

Finally, our analyses were restricted to admissions within a relatively narrow time period (2018-
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2022). It might be useful to characterize practice differences over time as temporal distribution 

shift can negatively impact model performance over time27,36.  

 In conclusion, across multiple outcomes, diagnosis codes were consistently different 

between the two pediatric institutions. This difference was not explained by differences in test 

results. These results may have implications for machine learning model development and 

deployment.  
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Table 1. Inclusion criteria and cohort characteristics  
 

 SickKidsPeds StanfordPeds StanfordAdults 
Inclusion Criteria    
Age at Admission ≥ 28 days and 

< 18 years 
≥ 28 days and 

< 18 years 
≥ 18 years 

 
Admission Date 2018-06-02 to 

2022-08-01 
2018-06-02 to 
2022-08-01 

2018-06-02 to 
2022-08-01 

    
Cohort Characteristics    
Number Admissions 59,298 24,639 159,985 
Number Patients 36,585 14,518 103,170 
Median Age at Admission [IQR] 6 [2 - 12] 6 [2 - 12] 57 [36 - 71] 
Pediatric Age Group, n (%)    

Infant (28 days – 12 months) 8980 (15.1%) 3869 (15.7%)  
Toddler (13 months – 2 years) 5661 (9.5%) 2269 (9.2%)  
Early childhood (2 – 5 years) 10263 (17.3%) 4307 (17.5%)  
Middle childhood (6 – 11 years) 14837 (25.0%) 6056 (24.6%)  
Early adolescence (12 – 17 years) 19557 (33.0%) 8138 (33.0%)  

Sex, n (%)    
Females  27,264 

(46.0%) 
11,800 
(47.9%) 91,770 (57.4%) 

Males  32,030 
(54.0%) 

12,837 
(52.1%) 68,207 (42.6%) 

Unknown  4 (<0.1%) 2 (<0.1%) 15 (<0.1%) 
Patient Outcomes    

In-hospital mortality, n (%) 297 (0.5%) 203 (0.8%) 3088 (1.9%) 
Median length of stay [IQR] 2 [1-5] 3 [1-6] 3 [2-6] 

 
Abbreviations: SickKids – The Hospital for Sick Children; Peds – pediatrics; IQR – 
interquartile range  
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Table 2. Distribution of minimum or maximum results for each lab test per 
admission and stratified by cohort 
 
Lab Test Units SickKidsPeds 

Median (IQR) 
StanfordPeds 

Median (IQR) 
StanfordAdults 
Median (IQR) 

Maximum 
Creatinine  

umol/L 42.0 
(29.0 - 60.0) 

34.5 
(23.0 - 53.0) 

78.7 
(61.0 - 109.6) 

Maximum 

Potassium  
mmol/L 4.5 

(4.1 – 5.0) 
4.4 

(4.1 – 4.9) 
4.4 

(4.1 – 4.8) 
Minimum Glucose  mmol/L 4.9 

(4.3 - 5.5) 
4.9 

(4.3 - 5.6) 
5.2 

(4.6 - 5.9) 
Minimum Sodium  
 

mmol/L 138.0 
(136.0 – 
140.0) 

137.0 
(134.0 – 139.0) 

135.0 
(132.0 – 138.0) 

Minimum Absolute 
Neutrophil Count  

10^9/L 2.2 
(1.1 – 3.9) 

3.4 
(1.9 – 5.9) 

5.5 
(3.6 – 7.7) 

Minimum 
Hemoglobin  

g/L 102.0 
(85.0 – 119.0) 

99.0 
(81.0 - 117.0) 

103.0 
(85.0 - 119.0) 

Minimum Platelet 
Count  

10^9/L 231.0 
(147.0 - 
321.0) 

219.0 
(140.0 - 303.0) 

188.0 
(139.0 - 243.0) 

 

Abbreviation: SickKids: The Hospital for Sick Children; Peds: pediatrics; IQR: 
interquartile range. 
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Table 3. Proportion of admissions with positive lab- and diagnosis-based labels 
by cohort  

Severity* Outcome** SickKidsPeds StanfordPeds StanfordAdults Odds Ratio  
(99.9% CI)*** 

Number 
Admissions  59,298 24,639 159,985  

Lab 
(Abnormal) 

AKI 4,553 (7.7%) 2,266 (9.2%) 41,761 (26.1%) 1.3 (1.1,1.4) 
Hyperkalemia 5,475 (9.2%) 1,596 (6.5%) 9,790 (6.1%) 0.7 (0.6,0.8) 
Hypoglycemia 3,006 (5.1%) 1,613 (6.5%) 12,161 (7.6%) 1.4 (1.2,1.5) 
Hyponatremia 3,888 (6.6%) 4,141 (16.8%) 53,512 (33.4%) 2.9 (2.6,3.2) 
Neutropenia 4,263 (7.2%) 1,804 (7.3%) 5,085 (3.2%) 1.0 (0.9,1.2) 

Anemia 14,839 (25.0%) 10,496 (42.6%) 119,796 (74.9%) 2.4 (2.2,2.6) 
Thrombocytopenia 10,667 (18.0%) 3,844 (15.6%) 44,636 (27.9%) 0.8 (0.7,0.9) 

Lab (Mild)  

AKI 4,478 (7.6%) 3,461 (14.0%) 31,930 (20.0%) 1.8 (1.6,2.1) 
Hyperkalemia 3,408 (5.7%) 1,848 (7.5%) 9,776 (6.1%) 1.3 (1.2,1.5) 
Hypoglycemia 3,844 (6.5%) 2,197 (8.9%) 13,115 (8.2%) 1.5 (1.3,1.6) 
Hyponatremia 6,169 (10.4%) 5,648 (22.9%) 66,559 (41.6%) 2.6 (2.4,2.8) 
Neutropenia 4,868 (8.2%) 1,921 (7.8%) 5,099 (3.2%) 0.9 (0.8,1.1) 

Anemia 21,232 (35.8%) 11,436 (46.4%) 114,488 (71.6%) 1.6 (1.5,1.7) 
Thrombocytopenia 7,061 (11.9%) 3,844 (15.6%) 44,636 (27.9%) 1.4 (1.2,1.5) 

Lab 
(Moderate)  

AKI 1,650 (2.8%) 1,550 (6.3%) 11,321 (7.1%) 2.1 (1.8,2.4) 
Hyperkalemia 1,939 (3.3%) 1,137 (4.6%) 4,790 (3.0%) 1.4 (1.3,1.6) 
Hypoglycemia 2,084 (3.5%) 1,178 (4.8%) 7,366 (4.6%) 1.4 (1.2,1.6) 
Hyponatremia 885 (1.5%) 917 (3.7%) 15,027 (9.4%) 2.5 (2.1,3.0) 
Neutropenia 3,346 (5.6%) 1,172 (4.8%) 2,850 (1.8%) 0.9 (0.7,1.0) 

Anemia 17,039 (28.7%) 9,429 (38.3%) 91,276 (57.1%) 1.6 (1.4,1.7) 
Thrombocytopenia 4,175 (7.0%) 2,349 (9.5%) 19,327 (12.1%) 1.4 (1.2,1.7) 

Lab 
(Severe)  

AKI 616 (1.0%) 612 (2.5%) 5,804 (3.6%) 2.4 (1.9,2.9) 
Hyperkalemia 810 (1.4%) 588 (2.4%) 1,331 (0.8%) 1.8 (1.5,2.1) 
Hypoglycemia 1,088 (1.8%) 585 (2.4%) 4,042 (2.5%) 1.3 (1.1,1.6) 
Hyponatremia 301 (0.5%) 269 (1.1%) 3,790 (2.4%) 2.1 (1.6,2.8) 
Neutropenia 2,290 (3.9%) 635 (2.6%) 1,316 (0.8%) 0.7 (0.6,1.0) 

Anemia 2,675 (4.5%) 1,912 (7.8%) 14,239 (8.9%) 1.8 (1.6,2.0) 
Thrombocytopenia 2,328 (3.9%) 1,306 (5.3%) 7,189 (4.5%) 1.4 (1.2,1.7) 

Diagnosis  

AKI 176 (0.3%) 1,139 (4.6%) 9,440 (5.9%) 15.1 (11.3,20.0) 
Hyperkalemia 38 (0.1%) 353 (1.4%) 2,453 (1.5%) 18.4 (10.1,33.4) 
Hypoglycemia 209 (0.4%) 412 (1.7%) 1,385 (0.9%) 4.3 (3.1,5.8) 
Hyponatremia 388 (0.7%) 708 (2.9%) 5,219 (3.3%) 4.2 (3.4,5.2) 
Neutropenia 776 (1.3%) 790 (3.2%) 1,572 (1.0%) 2.2 (1.7,2.7) 

Anemia 974 (1.6%) 4,238 (17.2%) 30,935 (19.3%) 9.7 (8.3,11.3) 
Thrombocytopenia 192 (0.3%) 2,132 (8.7%) 10,334 (6.5%) 14.8 (10.7,20.6) 

 
* Abnormal, mild, moderate and severe according to Appendix 1. Abnormal means either above or below 
(not both) reference range 
** Lab-based measure of acute kidney injury was hypercreatinemia 
*** Odds ratio for SickKidsPeds vs. StanfordPeds obtained using mixed-effects logistic regression with each 
binary label as outcome, institution and pediatric age group as fixed effects, and subject as random 
intercept.  
Abbreviation: AKI: acute kidney injury; SickKids: The Hospital for Sick Children; Peds: pediatrics. 
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Figure Legend 
Figure 1. Odds of a lab- or diagnosis-based label by whether the pediatric 
admission occurred at Stanford vs. SickKids 
Figure shows odds ratio and 99.9% confidence interval showing odds of an abnormal 
label by institution. Dashed line indicates an odds ratio of 1. An odds ratio of >1 
corresponds to higher odds of assigning a positive label for StanfordPeds compared to 
SickKidsPeds. Odds ratios were obtained using mixed-effects logistic regression with 
each binary label as outcome, institution and pediatric age group as fixed effects and 
subject as random intercept  
 
Figure 2. Cohen’s Kappa, sensitivity, and specificity for diagnosis-based labels 
against lab-based labels   
The figure shows median, interquartile range (shaded box) and range (whiskers)  
 
Figure 3. Agreement between diagnosis-based labels and lab-based labels across 
hospital units  
The numbers on the x- and y- axis represent the weighted proportion of positive lab-
based labels and positive diagnosis-based labels for each hospital unit visited during 
the admission. Spearman rho (r) was calculated based on the average across lab-
based severity 
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Figure 1. Odds of a lab- or diagnosis-based label by whether the pediatric 
admission occurred at Stanford vs. SickKids 
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Figure 2. Cohen’s Kappa, sensitivity, and specificity for diagnosis-based labels 
against lab-based labels   
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Figure 3. Agreement between diagnosis-based labels and lab-based labels across 
hospital units  
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Appendix 1. Thresholds for each severity level of the lab-based labels 
Outcome Test Unit Mild Moderate Severe 
Acute Kidney 
Injury 

Creatinine µmol/L ≥1.5x 
baseline1 
or 
increase 
of 26.5 

≥2x 
baseline 

≥3x or 
increase 
of 353.6 

Hyperkalemia Potassium mmol/L >5.5 >6 >7 
Hypoglycemia Glucose mmol/L <3.9 <3.5 <3 
Hyponatremia Sodium mmol/L ≤135 <130 <125 
Neutropenia Absolute 

neutrophil 
count2 

109/L <1.5 <1.0 <0.5 

Anemia Hemoglobin g/L <120 <110 <70 
Thrombocytopenia Platelet 109/L <150 <100 <50 

 
1 Baseline defined as the minimum creatinine over the 3-month period prior to the index 
time, or the upper bound of the normal reference range in the absence of an observed 
value  
2 Absolute neutrophil count was the sum of neutrophil and band counts. If a complete 
blood count differential was not performed or not reported, we categorized neutropenia 
if the total white blood cell count met the threshold 
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Appendix 2. Institution- and age group-specific threshold for abnormal lab test for 
SickKidsPeds (blue) and StanfordPeds (red)  

 
Abbreviation: SickKids: The Hospital for Sick Children; Peds: pediatrics.  
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Appendix 3. Average number of lab tests per inpatient day across all admissions 
by cohort  
 SickKidsPeds 

Mean±SD  
StanfordPeds 
Mean±SD 

StanfordAdults 
Mean±SD 

P Value* 
SickKidsPeds vs. 
StanfordPeds 

Creatinine  0.19±0.33 0.36±0.45 0.70±0.54 <0.001 
Potassium  0.39±0.82 0.62±1.09 0.76±0.69 <0.001 
Glucose  0.45±1.39 0.70±1.42 1.37±1.94 <0.001 
Sodium  0.38±0.81 0.72±1.27 0.88±0.92 <0.001 
Neutrophils  0.15±0.26 0.28±0.46 0.72±0.71 <0.001 
Hemoglobin 0.22±0.34 0.53±1.02 0.76±0.55 <0.001 
Platelet 0.22±0.34 0.23±0.35 0.71±0.49 <0.001 

 
* P value obtained using mixed-effects linear regressions with lab testing frequency as 
the outcome, institution and pediatric age group as fixed effects and subject as random 
intercept.  
 Abbreviation: SickKids: The Hospital for Sick Children; Peds: pediatrics; SD: standard 
deviation 
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