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Abstract13

After a stroke, approximately one-third of patients suffer from aphasia, a language disorder that impairs14

communication ability. The standard behavioral tests used to diagnose aphasia are time-consuming,15

require subjective interpretation, and have low ecological validity. As a consequence, comorbid cognitive16

problems present in individuals with aphasia (IWA) can bias test results, generating a discrepancy between17

test outcomes and everyday-life language abilities. Neural tracking of the speech envelope is a promising18

tool for investigating brain responses to natural speech. The envelope of speech is crucial for speech19

understanding, encompassing cues for detecting and segmenting linguistic units, e.g., phrases, words and20

phonemes. In this study, we aimed to test the potential of the neural envelope tracking technique for21

detecting language impairments in IWA.22

We recorded EEG from 27 IWA in the chronic phase after stroke and 22 healthy controls while they23

listened to a 25-minute story. We quantified neural envelope tracking in a broadband frequency range as24

well as in the delta, theta, alpha, beta, and gamma frequency bands using mutual information analysis.25

Besides group differences in neural tracking measures, we also tested its suitability for detecting aphasia26

at the individual level using a Support Vector Machine (SVM) classifier. We further investigated the27

required recording length for the SVM to detect aphasia and to obtain reliable outcomes.28

IWA displayed decreased neural envelope tracking compared to healthy controls in the broad, delta, theta,29

and gamma band, which is in line with the assumed role of these bands in auditory and linguistic pro-30

cessing of speech. Neural tracking in these frequency bands effectively captured aphasia at the individual31

level, with an SVM accuracy of 84% and an area under the curve of 88%. Moreover, we demonstrated32

that high-accuracy detection of aphasia can be achieved in a time-efficient (5 minutes) and highly reliable33

manner (split-half reliability correlations between R=0.62 and R=0.96 across frequency bands).34

Our study shows that neural envelope tracking of natural speech is an effective biomarker for language35

impairments in post-stroke aphasia. We demonstrated its potential as a diagnostic tool with high reliabil-36

ity, individual-level detection of aphasia, and time-efficient assessment. This work represents a significant37

step towards more automatic, objective, and ecologically valid assessments of language impairments in38

aphasia.39

Keywords: Aphasia, natural speech processing, neural envelope tracking, diagnostics40
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1 Introduction41

Aphasia is an acquired language disorder impairing communication ability and is principally caused by42

a stroke in the language-dominant left hemisphere (Papathanasiou and Coppens, 2017). The current43

practice is to diagnose aphasia by means of behavioral language tests. However, these tests suffer from44

influences of co-morbid motor and cognitive problems (Rohde et al., 2018) and of a low ecological validity45

(Devanga et al., 2021; Wallace and Kimelman, 2013). Novel analysis techniques for EEG-data, i.e.,46

neural tracking of speech (e.g., see Lalor et al. (2009); Brodbeck et al. (2022); Crosse et al. (2021)), allow47

measuring brain responses while participants listen to natural speech, providing an ecologically valid48

way to measure speech processing. In this study, we test the potential of these novel EEG analyses for49

detecting language impairments in aphasia with high accuracy and in a time-efficient way.50

The current standard for diagnosing aphasia is based on performance on behavioral language tests,51

such as the Western Aphasia Battery (Kertesz, 1982), the Token test (de Renzi and Ferrai, 1978) or52

a picture-naming test (Van Ewijk et al., 2020). Yet, these tests have several disadvantages. First,53

behavioral testing is time-consuming, requiring active cooperation of the patient and scoring by the54

clinician. Second, behavioral assessment can lead to inaccurate initial diagnoses due to concomitant55

motor, memory, attention and executive impairments (Rohde et al., 2018), reportedly affecting over56

80% of individuals with aphasia (IWA) (El Hachioui et al., 2014). Finally, language tests consist of57

rather artificial tasks in which sounds, phonemes, words or short sentences are presented in isolation.58

This contrasts with natural speech processing where language components interact, and higher-level59

context integration takes place (Hamilton and Huth, 2018; Kandylaki and Bornkessel-Schlesewsky, 2019).60

Consequently, there is a discrepancy between clinical assessment and a patient’s natural speech abilities61

in everyday life (Lesser and Algar, 1995; Kim et al., 2022; Stark et al., 2021; Wallace and Kimelman,62

2013).63

EEG-based event-related potential (ERP) studies have been conducted to address limitations of behav-64

ioral testing. Studies have shown that IWA exhibit altered ERP components such as the P1, N1, P2, N2,65

P300, and N400 in response to language stimuli (Aerts et al., 2015; Becker and Reinvang, 2007; Ilvonen66

et al., 2001; Ofek et al., 2013; Pulvermüller et al., 2004; Robson et al., 2017). Together with the potential67

for automatic assessment that requires less active participation from the patient, these alterations suggest68

that ERPs may have diagnostic value in aphasia (Cocquyt et al., 2020). Nonetheless, ERP paradigms69

involve artificial language stimuli presented repeatedly to the participant, which questions the ecological70

validity of the obtained outcomes (Le et al., 2018). Furthermore, previous ERP studies in aphasia have71

not reported on the reliability of ERPs, the minimal required recording length and the sensitivity to72

capture language impairments at the individual level.73

Recent studies have investigated the EEG response to natural, running speech, which could open new74

perspectives to studying natural speech processing in IWA. When listening to speech, the brain tracks75
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the temporal envelope, which contains essential cues for speech understanding. The envelope consists76

of the slow-varying temporal modulations in the speech signal and encompasses cues for detecting and77

identifying lexical units (i.e., phonemes, syllables, words and phrases) and prosody (Peelle and Davis,78

2012). In fact, previous research showed that listeners can understand speech based on the low-frequency79

temporal envelope only (Shannon et al., 1995). Neural envelope tracking can be measured by applying80

encoding and decoding models on the stimulus and the recorded EEG. The level of tracking is reflected81

in the extent to which the models can either predict the neural signals or decode the envelope. In a linear82

(Crosse et al., 2021) or a mutual information-based (De Clercq et al., 2023) model, the neural tracking83

outcomes can be visualized over time and space (i.e., EEG channels), obtaining response properties similar84

to traditional ERP components (Brodbeck et al., 2022). The neural tracking technique is rapidly evolving85

and has led to crucial new insights as to how natural speech is processed in the brain. Neural envelope86

tracking is strongly related to speech understanding (Ding and Simon, 2013; Etard and Reichenbach,87

2019; Kaufeld et al., 2020), and can be used to objectively quantify speech intelligibility (Vanthornhout88

et al., 2018; Gillis et al., 2022).89

Prior research assigned the low-frequency temporal envelope primarily to speech understanding. The90

low-frequency envelope, i.e., delta (0.5–4 Hz) and theta (4-8 Hz) band, encompass cues for detecting and91

segmenting lexical units. The theta band tracks syllables and lower-level acoustic processing of speech92

(Etard and Reichenbach, 2019), while the delta band signal is associated with processing speech prosody93

and segmenting higher-level linguistic structures such as words and phrases (Ding et al., 2016; Giraud94

and Poeppel, 2012; Kaufeld et al., 2020). In addition to the delta and theta band, reflecting synthesis of95

higher-level auditory and linguistic structures, the alpha and beta bands are involved in attention and96

auditory-motor coupling (Wöstmann et al., 2017; Fujioka et al., 2015), while the gamma band is involved97

in encoding phonetic features (Giraud and Poeppel, 2012; Gross et al., 2013; Hyafil et al., 2015). In98

conclusion, specific frequency bands are believed to reflect different stages of speech processing.99

Neural envelope tracking of natural speech has been investigated in several clinical populations with100

language impairments. For individuals with primary progressive aphasia, a language disorder caused by101

a neurodegenerative disease, Dial et al. (2021) reported increased neural tracking in the theta band but102

no group differences in the delta band. The researchers argued that enhanced theta band tracking in103

individuals with primary progressive aphasia might reflect a compensation mechanism through increased104

reliance on acoustic cues. For individuals with dyslexia, a disorder characterized by phonological pro-105

cessing difficulties, decreased tracking in delta, theta and beta/gamma (phoneme- and phonetic-level)106

band have been reported (Di Liberto and Lalor, 2017; Lizarazu et al., 2021; Mandke et al., 2022). In107

conclusion, these studies have shown the potential for neural tracking to capture language impairments108

in clinical cohorts.109

The present study investigated whether we can differentiate IWA in the chronic phase after stroke110
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(i.e., ≥ 6 months post-stroke) from neurologically healthy, age-matched controls using EEG-based neural111

envelope tracking. Specifically, we used mutual information analyses to quantify neural envelope tracking,112

which captures linear and nonlinear effects and outperforms linear models (De Clercq et al., 2023).113

We described both groups’ responses to the speech envelope temporally and spatially at broadband114

frequency range. We further investigated neural tracking in specific frequency bands ranging from delta115

to gamma band, as different frequency bands are involved in different (sub-)lexical processes (Etard and116

Reichenbach, 2019; Ding et al., 2016; Giraud and Poeppel, 2012; Keitel et al., 2018; Peelle and Davis,117

2012).118

Secondly, we assessed the suitability of the neural tracking technique as a biomarker to capture language119

processing difficulties. To this end, we used a Support Vector Machine (SVM) to classify participants120

as healthy or aphasic using MI measures in different frequency bands as input to the model. Finally,121

we investigated how much data the neural tracking technique requires for good classification and reliable122

outcomes.123

2 Materials and methods124

2.1 Participants125

Our sample comprised 27 IWA (seven female participants, 73 ±11 y/o) in the chronic phase (≥ 6 months)126

after stroke and 22 neurologically healthy controls (seven female participants, 72 ±7 y/o). There was no127

significant age difference between groups (unpaired Wilcoxon rank sum test: W=343.5, p=0.36). IWA128

were recruited at the stroke unit of the University Hospital Leuven and via speech-language pathologists.129

Healthy controls were recruited, making sure they matched the age of IWA at the group level. The130

inclusion criteria for IWA were: (1) a left-hemispheric or bilateral stroke, (2) a diagnosis of aphasia in131

the acute stage after stroke using behavioral language tests and (3) no formal diagnosis of a psychiatric132

or neurodegenerative disorder. For more information regarding demographics, recruitment strategy and133

diagnosis in the acute stage after stroke, we refer to Kries et al. (2022). The study was approved134

by the ethical committee UZ/KU Leuven (S60007), and all participants gave written consent before135

participation. Research was conducted in accordance with the principles embodied in the Declaration of136

Helsinki and in accordance with local statutory requirements.137

Participants completed standardized clinical tests for aphasia at the time of participation as described in138

detail in Kries et al. (2022). IWA scored significantly lower on the ’Nederlandse Benoemtest’, i.e., Dutch139

Naming Test (Van Ewijk et al., 2020), and the ScreeLing test (El Hachioui et al., 2017; Visch-Brink140

et al., 2010) compared to healthy controls (W=57.5, p<0.001; W=101, p<0.001, respectively). Although141

seven IWA did not score below the cut-off threshold for aphasia on either of these tasks, they were still142

attending speech-language therapy sessions at the time of participation and had extended documentation143
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of language deficits in the acute stage after stroke (Kries et al., 2022).144

2.2 EEG experiment145

The EEG measurements took place in a soundproof, electromagnetically shielded booth using a 64-146

channel BioSemi ActiveTwo system (Amsterdam, the Netherlands) at a sampling frequency of 8,192 Hz.147

Participants were instructed to listen to a 25-minute-long story, De Wilde Zwanen, written by Christian148

Andersen and narrated by a female Flemish-native speaker, presented in silence while their EEG was149

recorded. The story was cut into five parts with an average duration of 4.84 minutes. After each story part,150

participants answered content questions about the preceding part, introduced to make the participant151

follow the content attentively. Participants had a short break after each story part and answered content152

questions about the preceding part. The protocol introduced these questions to make participants follow153

the story attentively. The story was presented bilaterally through ER-3A insert earphones (Etymotic154

Research Inc, IL, USA) using the software platform APEX (Francart et al., 2008).155

We determined a subject-dependent intensity level at which the story was presented based on the156

thresholds of the pitch tone audiometry (PTA). We defined hearing thresholds for octave frequencies157

between .25 and 4 kHz. For normal hearing participants, the story was presented at 60 dBA. For hearing158

impaired participants, defined as participants that have a hearing threshold >25 dB hearing loss on159

frequencies below 4 kHz, the volume was augmented with half of the pure tone average of the individual160

thresholds at .25, .5 and 1 kHz for both ears individually. This procedure was adapted from Jansen161

et al. (2012). To check whether age-related hearing loss differed between both groups, we calculated the162

Fletcher index, i.e., average of PTA thresholds at .5, 1 and 2 kHz. Hearing levels did not differ between163

groups (Fletcher index averaged across the right and left ear: W=326.5, p=0.56).164

2.3 Signal processing165

Envelope extraction166

We used a gammatone filter bank (Søndergaard et al., 2012) to extract the envelope. We used 28 channels167

spaced by one equivalent rectangular bandwidth and center frequencies from 50 Hz until 5000 Hz. The168

envelopes were extracted from each sub-band by taking the absolute value of each sample and raising it169

to the power of 0.6. The resulting 28 sub-band envelopes were averaged to obtain a single envelope. Next,170

the envelope was downsampled to 512 Hz to decrease processing time. The envelope was then filtered171

in frequency ranges of interest. These include delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta172

(12-30 Hz), low-gamma (30-49 Hz) and a broad (0.5-49 Hz, including all individual frequency ranges)173

band. We used high- and lowpass filters, with a transition band of 10% below the highpass and 10%174

above the lowpass frequency. A Least Squares filter of order 2000 was used, and we compensated for the175

group delay. After filtering, the envelope was normalized and further downsampled to 128 Hz.176
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EEG data processing177

EEG data were pre-processed using the Automagic toolbox (Pedroni et al., 2019) and custom Matlab178

scripts (The MathWorks Inc., Natick, MA, USA, 2021). The EEG signals were first downsampled to179

512 Hz to decrease processing time. Artifacts were removed using the artifact subspace reconstruction180

method (Mullen et al., 2015). Next, an independent component analysis was applied to the data, and181

components classified as "brain" or "other" (i.e., mixed components), using the EEGLAB plugin ICLabel182

(Pion-Tonachini et al., 2019), with a probability higher than 50% were preserved (average number of183

removed components: 26 ±7). The neural signals were projected back to the channel space, where the184

signals were average referenced. Subsequently, we filtered the EEG data in the same frequency bands185

using the same Least Squares filter as in the envelope extraction method. Next, normalization and further186

downsampling to 128 Hz were applied.187

2.4 Neural envelope tracking188

We investigated neural envelope tracking using the Gaussian copula MI analysis (Ince et al., 2017). In189

the Gaussian copula approach, all variables (the envelope and EEG channels) are first ranked on a scale190

from 0 to 1, obtaining the cumulative density function (CDF). By computing the inverse standard normal191

CDF, the data distributions of all variables are transformed to perfect standard Gaussians. Subsequently,192

the parametric Gaussian MI estimate can be applied to the data provided by:193

I(X; Y ) = 1
2ln2

[
|
∑

X ||
∑

Y |
|
∑

XY |

]
(1)

where I(X;Y) equals the MI between X and Y (here, the EEG and the envelope), expressed in bits. |
∑

X |194

and |
∑

Y | are the determinants of the covariance matrices of X and Y , and |
∑

XY | is the determinant of195

the covariance matrix for the joint variable. To obtain temporal information on MI, we shifted the EEG196

as a function of the envelope over time (using an integration window -200 to 500 ms) and applied Eq. (1)197

at each sample. The result forms the temporal mutual information function (TMIF) and reflects how the198

brain processes speech over time (De Clercq et al., 2023; Zan et al., 2020). For an in-depth explanation199

of the Gaussian copula MI method, we refer to Ince et al. (2017). For a more practical explanation of200

the TMIF in the context of neural envelope tracking, see De Clercq et al. (2023).201

We calculated the single-channel TMIF and the multivariate TMIF, analog to a (linear) encoding and202

decoding model, respectively. The single-channel TMIF calculates the TMIF for each channel individ-203

ually, providing both temporal (i.e., peak latency and peak magnitude) and spatial (i.e., topography)204

information on speech processing. Alternatively, the multivariate TMIF determines the multivariate re-205

lationship between multiple EEG channels combined and the speech envelope. This latter method is206

statistically more powerful as it takes interactions between EEG channels into account. However, it207
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is restricted to temporal interpretations only. For the multivariate TMIF, we used a channel selection208

including fronto-central and parieto-occipital channels that contribute to speech processing (Lesenfants209

et al., 2019). Our channel selection is visualized in Supplementary Fig. 1.210

Permutation testing211

Neural tracking (MI in bits, in this case) is a relative metric and should be compared to a null-distribution212

to quantify the meaningfulness of the derived values (De Clercq et al., 2023). We created stationary noise213

that matched the spectrum of the envelope per frequency band individually. Next, we calculated the214

MI between the noise envelope and the EEG per participant and repeated this process 1000 times. The215

significance level was then determined as the 95th percentile of permutations per participant (resulting216

in a single significance level per participant).217

No significant differences were found in the significance level between IWA and controls for any fre-218

quency band, as determined by Wilcoxon rank sum tests. Supplementary Fig. 2 displays the significance219

levels of the multivariate TMIF for all frequency bands categorized by group. As no significant differ-220

ences in the significance level were found between groups, we used a single significance level (i.e., the221

95th percentile of permutations across all participants) to interpret the multivariate TMIFs in the Results222

section.223

2.5 Statistics224

Group comparisons225

We compared neural envelope tracking for IWA with the control group for broadband as well as for226

delta, theta, alpha, beta and gamma frequency ranges. For the single-channel TMIF, we performed non-227

parametric spatio-temporal cluster-based permutation tests (Maris and Oostenveld, 2007), indicating228

clusters in the TMIF over time and space with the largest group difference at threshold p<0.05. For the229

multivariate TMIF, we performed non-parametric temporal cluster-based permutation tests (Maris and230

Oostenveld, 2007), indicating clusters of samples with the largest group difference at threshold p<0.05.231

Support Vector Machine Classification232

We investigated whether EEG-based envelope tracking outcomes can be used for detecting aphasia. To233

this end, we used a Support Vector Machine (SVM) to classify held-out participants as control or aphasic234

using the Scikit-Learn (v. 0.24.2) library in Python (Pedregosa et al., 2011). The multivariate TMIFs235

for all five individual frequency bands (delta to gamma) were used as input to the model. Additionally,236

we added age of the participant, as it influences neural envelope tracking (Decruy et al., 2019). We237

chose a radial basis function kernel SVM and performed a nested cross-validation approach. In the inner238

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.14.23287194doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.14.23287194
http://creativecommons.org/licenses/by-nc-nd/4.0/


cross-validation, the C-hyperparameter and pruning (i.e., length of the TMIFs) were optimized (accuracy-239

based) and tested in a validation set using 5-fold cross-validation. The trained model was then tested on240

the test set, for which we used a leave-one-subject-out cross-validation approach.241

The performance of the SVM classifier was evaluated by computing the receiver operating characteristic242

(ROC) curve and calculating the area under the curve (AUC). We further reported the overall accuracy,243

the F1-score, the sensitivity and the specificity of the classifier.244

Feature contribution. To obtain a proxy for the relevant contribution of each frequency band, we245

left out a single band and re-fitted the SVM. We repeated this process for all five frequency bands and246

reported the corresponding performance drop (AUC, accuracy, F1-score).247

Recording time248

Classification. From a practical perspective, we were interested in how much data the neural envelope249

tracking technique requires to detect aphasia accurately and obtain stable, reliable results. We iteratively250

cropped the EEG recording and the envelope in steps of 2 minutes (using the first 1 minute, first 3251

minutes, 5, 7. . . up to the entire 25 minutes of recording time) and calculated the TMIF per frequency252

band per time duration. Next, we investigated the amount of minutes required for the SVM to reach its253

classification potential. As described above, we trained and tested our SVM per time duration in the254

same fashion as the entire duration. Performance (AUC, accuracy, F1-score) was plotted as a function of255

recording time. We determined the knee point, i.e., the point at which the performance benefit starts to256

saturate, using the "kneed" python package (Satopaa et al., 2011). The knee point of this curve reflects257

the point at which the increase in model performance may no longer be worth the corresponding effort.258

Within-subjects stability. Second, we investigated the data required to obtain stable, reliable259

results. We determined the within- and between-subjects stability per time duration. For the within-260

subjects stability, we individually correlated (Pearson) the TMIF per time duration (i.e., first minute,261

first 3, 5, ...) with the TMIF of the entire recording per subject. This resulted in a single correlation262

coefficient for each participant, frequency band and time duration. Next, all correlations were plotted as263

a function of recording time, and we determined the knee point of the curve on the average across all264

frequency bands. As such, we gained insight into the amount of data required for a participant’s TMIF265

to become stable (i.e., when there is not much change in an individual’s TMIF).266

Between-subjects stability. For the between-subjects stability, we calculated each participant’s267

mean MI of the TMIF (integration window 0-400 ms) per time duration (1, 3, 5,... minutes) and the268

entire recording. This resulted in a single datapoint per participant, frequency band and time duration269

(i.e., mean MI for a certain duration length x mean MI entire duration). Subsequently, we calculated the270

correlation coefficient (Pearson’s R) between the mean MI for certain time duration and frequency band271

with the entire recording over participants on the group level, resulting in a single correlation coefficient272
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per time duration and frequency band. We plotted the correlations as a function of recording time and273

determined the knee point of the curve on the average across all frequency bands. With this analysis, we274

investigated the amount of data required for a participant’s relative (i.e., compared to other participants)275

strength of tracking to become stable (i.e., from which point on a participant’s relative neural tracking276

compared to other participants is no longer expected to change).277

Split-half reliability278

Finally, we report a traditional split-half reliability metric with non-overlapping parts of the recording.279

We split the EEG recording into two equal parts, i.e., the first 12.5 minutes and the second 12.5 minutes,280

and computed the TMIFs for each half and each frequency band individually. Next, we computed the281

mean MI value of the TMIF (0-400 ms) for the first and the second half of the recording per participant282

individually. Subsequently, we calculated the correlation coefficient (Pearson’s R) between the first and283

second half of the recording over participants on the group level (Pearson’s R) for IWA and controls284

separately.285

Data availability statement286

We shared our neural tracking outcomes (i.e., the TMIFs) on the Open Science Framework: https:287

//osf.io/nkmfa/. Note that our ethical approval does not permit public archiving of raw neuroimaging288

data, but raw EEG data can be made available upon request and if the GDPR-related conditions are289

met.290

3 Results291

3.1 Distinguishing individuals with aphasia from healthy controls292

We investigated whether neural envelope tracking is altered in IWA compared to healthy controls. First,293

we studied the effect in the broadband frequency range (0.5-49 Hz). For the single-channel MI analysis,294

providing both temporal and spatial information, we found decreased neural envelope tracking for IWA295

compared to healthy controls (Fig. 1A). A spatio-temporal cluster-based permutation test identified a296

cluster comprising a large group of fronto-central, parietal and posterior channels (N = 43 channels) from297

0.11 s to 0.3 s (p=0.004), centered around the second peak. The multivariate MI analysis, which combines298

information from multiple channels, confirmed these results: a temporal cluster-based permutation test299

identified a cluster between 0.11 s to 0.26 s in which IWA displayed a decreased response (p = 0.005)300

(Fig. 1B).301
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Figure 1. Broadband analysis. A. The average single-channel TMIF for the control and the aphasia
group separately, with topoplots at the first and second peak (0.05 and 0.17 s). The spatio-temporal
cluster-based permutation test investigated the difference between the control and aphasia group (control
- aphasia) and identified a cluster (below threshold p<0.05) with the largest group difference, centered
around the second peak. Brain latencies belonging to the cluster are marked in a shaded gray area, the
channels belonging to the cluster are indicated with a black dot on the topoplot. B. The group average
TMIF, for both groups separately. The shaded, colored areas indicate the 95% confidence interval. The
shaded gray area indicates the cluster with largest group difference (threshold p<0.05), identified using
a temporal cluster-based permutation test. ** = p<0.01
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We further investigated the neural response in narrow frequency bands. We focused on the multivariate302

TMIF as it is a statistically more robust method compared to the single-channel TMIF, and we used303

those features as input to our SVM classifier in the subsequent section. The single-channel TMIFs for all304

frequency bands are provided in the Supplementary materials. We generally observed decreased neural305

envelope tracking for IWA compared to healthy controls (Fig. 2). Temporal cluster-based permutation306

tests identified clusters below threshold p<0.05 for delta (0.1 to 0.30s, p=0.003), theta (0.04 to 0.27s,307

p=0.005) and gamma (0.01 to 0.1s, p = 0.004) band. No clusters exceeding the p<0.05 threshold were308

detected for the alpha and beta bands. These results are confirmed in the single-channel MI analysis,309

where spatio-temporal cluster-based permutation tests identified clusters for delta, theta and gamma310

band for a large group of fronto-central, parietal and posterior channels (visualizations and statistics311

provided in the Supplementary materials).312
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Figure 2. Frequency-specific analysis. Group average TMIF’s visualized per frequency band, with
colored shaded areas indicating the 95% confidence interval. Shaded, gray areas indicate clusters with
largest group difference (below threshold p<0.05) identified using temporal cluster-based permutation
tests. ** = p<0.01

3.2 Support Vector Machine classification313

Next, we investigated whether we could detect aphasia based on neural envelope tracking measures in314

the individual frequency bands. To this end, we used an SVM to classify participants as belonging to315

the aphasia or the healthy control group via leave-one-out cross-validation. We used the TMIFs in our316

five frequency bands of interest and age as input features to the model. The SVM successfully classified317

participants belonging to either group with an accuracy of 83.67%, an F1-score of 83.58% and an AUC of318

88.05%. The SVM had a sensitivity of 88.89% and a specificity of 77.27% for aphasia. Fig. 3A displays319
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the ROC curve.320
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Figure 3. Result of the SVM classifier. A. Receiver operating characteristic curve (ROC). B.
Relative feature importances. Drop in performance is visualized after leaving out the corresponding
feature (i.e., frequency band).

To obtain a measure of relative frequency band contribution, we iteratively left out a frequency band321

and trained the SVM with the remaining features. For each left-out frequency band, we calculated the322

performance drop. As assessed with accuracy and F1-score metrics, theta, followed by delta, gamma,323

alpha and beta caused the largest drop in performance (see Fig. 3B). When estimated with AUC, the324

accuracy was still the highest for theta, followed by gamma, delta, alpha and beta. This confirmed our325

group comparison analyses: delta, theta and gamma band are the most relevant, discriminating features.326

3.3 Recording length327

We further investigated how much data the neural envelope tracking technique requires for robust and328

stable results (Fig. 4). With only one minute of recording time, the SVM obtained classification accuracy329

close to chance-level (55%). Yet, from 5 minutes on, the SVM reached an accuracy of 81.63%, and330

performance fluctuated between 81.63% and 85.71% for the remaining part of the recording. In practice,331

this corresponds to one less or one additional correctly classified participant with respect to the full332

recording (Fig. 3A). The knee point of the curve was identified at 5 minutes of recording length. From333

9 minutes on, the SVM converged to an AUC of 80%. However, compared to the entire recording length334

(AUC=88.05%), its full potential is reached from 13 minutes on (AUC robustly crossed 85%, with a335

maximum of 89.73% at 15 minutes). The F1-score mostly overlapped with the accuracy and never336

differed more than 0.44% . The SVM performance is plotted as a function of recording length, displayed337

in Fig. 4A.338
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Figure 4. Recording Length. A. Performance (accuracy, F1-score, AUC) of the SVM classifier
plotted as a function of time. B. Within-subjects stability for all five frequency bands and the average
across frequency bands (black line). Shaded areas indicate the standard error. C. Between-subjects
stability for all five frequency bands and the average across frequency bands (black line). The knee point
of all panels is indicated with a vertical dotted line (based on the average for panels B and C).

The within-and between-subjects stability is plotted as a function of recording time in Fig. 4B and 4C.339

Highest within- and between-subjects correlations were observed for the low-frequency bands, namely340

delta and theta. Taking the average of all frequency bands, we identified the curve’s knee point at 7341

minutes of recording length (see black dotted lines). The within-subjects stability (Fig. 1 4B) had an342

average correlation of R=0.73, and the between-subjects stability (Fig. 4C) had an average correlation343

of R=0.79 at the knee point of the curve.344

3.4 Reliability of neural envelope tracking345

Finally, we calculated the split-half reliability of neural envelope tracking. Table 1 provides the corre-346

lations and statistics. We generally found higher correlations in the lower frequency bands (delta and347

theta). Correlations were comparable between IWA and the control group; the 95% confidence intervals348

overlapped for each frequency band, and post-hoc Fisher z-tests, performed using the ’cocor’ package349

in Rstudio (Diedenhofen and Musch, 2015), revealed no difference in correlation strength between both350

groups.

Table 1. Split-half reliability.

delta theta alpha beta gamma
IWA C IWA C IWA C IWA C IWA C

Pearson’s R 0.85 0.91 0.96 0.92 0.75 0.88 0.61 0.62 0.62 0.73

CI [0.68 ; 0.93] [0.78 ; 0.96] [0.91 ; 0.98] [0.82 ; 0.96] [0.52 ; 0.88] [0.72 ; 0.95] [0.31 ; 0.81] [0.27 ; 0.83] [0.31 ; 0.81] [0.43 ; 0.88]

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.02 0.007 0.002

Fisher’s z (p-value) z=0.85 (1) z=-0.94 (1) z=1.24 (1) z=0.04 (1) z=0.66 (1)

CI=95% confidence interval; C=Control group. Fisher z-test comparing controls - IWA. All p-values are corrected for
multiple comparisons.

351
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4 Discussion352

We conducted an in-depth study on neural envelope tracking of natural speech in post-stroke aphasia.353

First, we found that IWA display decreased neural envelope tracking compared to heatlhy controls for354

a broadband frequency range. Second, frequency-specific analyses indicated that group differences are355

most prominent in the delta, theta and gamma frequency ranges. Third, the suitability of neural envelope356

tracking measures as a biomarker for post-stroke aphasia was demonstrated using an SVM classifier which357

yielded high accuracy (84%, AUC 88%). Finally, we showed that an assessment based on neural envelope358

tracking could be obtained in a time-efficient (5 minutes of EEG recording) and highly reliable manner.359

4.1 Individuals with aphasia display decreased neural envelope tracking360

Broadband frequency analysis361

Neural envelope tracking at broadband is decreased in IWA compared to healthy controls. The single-362

channel TMIF analysis revealed a cluster at neural response latencies centered around the second peak363

in the TMIF comprising a large group of fronto-central, temporal and parieto-occipital channels (see364

Fig. 1A). The multivariate TMIF confirmed this result: a temporal cluster comprising brain latencies365

surrounding the second peak in the TMIF (Fig. 1B) was identified. A recent neural tracking study showed366

that the second peak emerges when speech is comprehensible and diminishes when it is not understood. By367

contrast, the first peak displayed a prominent response when speech was incomprehensible (Verschueren368

et al., 2022). Thus, the second peak we observed here is most likely related to speech understanding,369

while the first peak is likely more implicated in acoustically processing the signal. Therefore, it is not370

surprising that in IWA, where language understanding is impaired, the second peak in the TMIF is371

decreased compared to healthy controls.372

Frequency-specific analysis373

We further investigated neural envelope tracking in narrow frequency bands. Our findings revealed a374

decrease in tracking for IWA compared to healthy controls in the low-frequency bands (delta and theta,375

see Fig. 2A and 2B), which are crucial for speech understanding (Vanthornhout et al., 2018). The delta376

band encodes sentences, phrases and words (Kaufeld et al., 2020; Keitel et al., 2018), while theta band377

tracks the syllable rate of the stimulus (Etard and Reichenbach, 2019; Lizarazu et al., 2019). Neural378

tracking in the low-frequency bands drops when these linguistic units become incomprehensible (Kaufeld379

et al., 2020; Keitel et al., 2018; Xu et al., 2022). Atypical neural tracking of the low-frequency temporal380

envelope has been reported in several clinical populations, including individuals with primary progressive381

aphasia (Dial et al., 2021) and dyslexia (Di Liberto and Lalor, 2017; Lizarazu et al., 2021; Mandke et al.,382

2022). In the case of dyslexia, which is characterized by phonological processing difficulties, alterations in383
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low-frequency envelope tracking are believed to reflect an atypical sampling mechanism that affects faster384

modulations at the phoneme and grapheme level (Mandke et al., 2022). These findings in healthy and385

clinical populations demonstrate the potential of neural tracking measures of the low-frequency envelope386

as a biomarker for language impairments.387

Fewer studies investigated the role of high-frequency neural envelope tracking. Some studies suggest388

a role for alpha and beta in attention and auditory-motor coupling (Wöstmann et al., 2017; Fujioka389

et al., 2015), and for the gamma band in encoding phonetic features (Hyafil et al., 2015; Giraud and390

Poeppel, 2012; Gross et al., 2013). Our study found no group differences in the alpha and beta bands.391

However, individuals with aphasia displayed decreased neural envelope tracking in the gamma band. The392

neural response in the gamma band was characterized by an early response peak (Fig. 2) and a group393

difference present in the right hemisphere (see Supplementary Fig. 7). This early response latency in the394

gamma band aligns with the idea of a linear phase property, where the neural response delay in higher395

frequency bands is shorter (Zou et al., 2021). A somewhat similar neural response pattern characterized396

by an early response latency and a right hemisphere bias in the high gamma band (>70 Hz) was also397

reported by Kulasingham et al. (2020). The gamma band has been of particular interest in dyslexia398

research, with several studies reporting alterations in gamma band activity. However, most studies have399

focused on phase-locking and phase coherence in response to amplitude-modulated noise (for a review,400

see (Lizarazu et al., 2021)), while few have investigated gamma band neural envelope tracking during401

natural speech processing (Mandke et al., 2022). To gain a better understanding of (low-)gamma band402

neural envelope tracking of natural speech, which we have shown to demonstrate robust group differences403

and contribute significantly to detecting aphasia (as depicted in Fig. 3B), future research should aim to404

further investigate its implications for speech understanding and language impairments.405

In line with the idea that individual frequency bands are involved in different speech processes, ex-406

ploratory analysis revealed low to moderate positive and negative correlations between neural tracking407

in individual frequency bands (see Supplementary Table 1). This suggests that a participant with high408

neural tracking in one frequency band may not necessarily display high neural tracking in other frequency409

bands. In contrast, a broadband frequency analysis shows high redundancy compared to the delta band410

(R=0.79 for IWA, R=0.92 for controls), which can be attributed to the fact that most power in the EEG411

and the envelope is concentrated in the lowest frequencies. This highlights the relevance of conduct-412

ing frequency-specific analyses. We believe that the use of frequency-specific features to train the SVM413

favored good classification results, as discussed in the next section. Future research should investigate414

whether the neural response to these frequency bands may capture specific language deficits.415
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4.2 High accuracy detection of post-stroke aphasia416

We assessed the suitability of the neural tracking technique to detect post-stroke aphasia using an SVM417

classifier with the TMIFs computed in the individual frequency bands as input to the model. The SVM418

robustly detected aphasia, with an accuracy of 83.67%, an F1-score of 83.58% and an AUC of 88.05%.419

The ROC curve, plotting the true positive as a function of false positive aphasia classification, is depicted420

in Fig. 3A. The relative contribution of individual frequency bands for detecting aphasia at the individual421

level confirmed our group comparison results: delta, theta and gamma band neural tracking were most422

predictive for capturing aphasia (see Fig. 3B).423

These performance outcomes of the SVM can be interpreted against behavioral assessment. As de-424

scribed in the Methods section, 7 out of 27 IWA (i.e., 26%) did not score below the cut-off threshold on425

either of the two diagnostic language tests for aphasia administered during the study El Hachioui et al.426

(2017); Van Ewijk et al. (2020). Nevertheless, these subjects had extended language deficit documen-427

tation and followed speech-language therapy at the time of participation. Although a more extensive428

screening for aphasia could have identified a language deficit, this finding highlights the challenge of de-429

tecting aphasia in the chronic phase following a stroke. While further investigation is required, the higher430

detection accuracy of the EEG-based neural tracking classification suggests that it may be more sensitive431

than behavioral screening tests for capturing subtle language problems in individuals with aphasia.432

Nonetheless, comparing the SVM classification accuracy to behavioral assessment is rather difficult,433

as the underlying tested language skills are different. Standardized aphasia tests use isolated sounds,434

phonemes, words or short sentences, questioning the ecological validity of such tasks (Hamilton and Huth,435

2018). Consequently, research reports a discrepancy between common test outcomes and everyday life436

speech assessments (Lesser and Algar, 1995; Kim et al., 2022; Stark et al., 2021; Wallace and Kimelman,437

2013), and cognitive problems can bias the test result (Fonseca et al., 2019; Rohde et al., 2018). While438

there exist behavioral natural speech assessments (Armstrong, 2000), they are only limitedly applied in439

practice due to the high workload (time-intensive) and a lack of knowledge of natural speech analyses440

(Bryant et al., 2019; Stark et al., 2021). Novel automatic speech recognition and natural language441

processing techniques (Dalton et al., 2022; Jamal et al., 2017; Le et al., 2018) may provide a solution in442

the future. The neural tracking technique directly addresses the limitation of low ecological validity from443

which behavioral tests suffer.444

4.3 Assessing time-efficiency, stability and reliability445

We investigated how much data neural envelope tracking requires to detect aphasia accurately and yield446

reliable results. We assessed SVM classification performance as a function of recording time, as shown447

in Fig. 4A. Our findings indicate that high-accuracy detection can be achieved with just 5 minutes448

of recording time (accuracy of 81.63%). However, extending the recording duration to 13 minutes can449
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provide additional benefits in terms of the AUC, with a robust increase above 85%, and a maximum AUC450

of 89.73% achieved at 15 minutes. In summary, our results demonstrate that neural envelope tracking451

can effectively detect aphasia in a time-efficient manner, consistent with prior recommendations that452

language assessments in aphasia should not exceed 15 minutes to avoid fatigue and cognitive/attentional453

challenges (El Hachioui et al., 2014). Our findings have important implications for potential clinical454

applications of neural envelope tracking in aphasia.455

We further investigated the amount of data necessary for our frequency band features to achieve456

stability. Our within- and between-subjects stability analysis revealed that 7 minutes recording length is457

sufficient for the TMIF of individual subjects and at the group-level to resemble the TMIF from the entire458

recording (see Fig. 4B and 4C). These findings were consistent within both groups, with 7 minutes being459

the minimum recording length required (as illustrated in Supplementary Fig. 8). Notably, we observed460

that lower frequency bands (delta and theta) converge more rapidly compared to higher frequency bands.461

Within 3-5 minutes, stability correlations for these bands were relatively high, robustly crossing R=0.80.462

In contrast, higher frequency bands require a longer time to converge and exhibit a more linear slope463

compared to the delta and theta bands. These less stable results and longer minimal recording length464

for the higher frequency bands can be attributed to their lower signal-to-noise ratio.465

To summarize, our results indicate that 5-7 minutes of recording time are sufficient for assessing neu-466

ral envelope tracking at low-frequency ranges, which reflect higher-level linguistic processes and speech467

understanding. However, a more comprehensive evaluation that includes higher frequency bands, which468

can provide minor additional benefits, requires a slightly longer recording duration (>13 minutes). These469

findings are consistent with previous research in healthy participants, which suggests that low-frequency470

neural tracking requires approximately 3-10 minutes of recording time for robust outcomes (Desai et al.,471

2023; Di Liberto and Lalor, 2017; Mesik and Wojtczak, 2022). Our study contributes an innovative472

approach by defining the minimal recording length required to detect language impairments at the in-473

dividual level and suggests that the recording duration for future studies in individuals with language474

impairments may depend on the specific research question being addressed.475

Previous studies on aphasia using ERPs have suggested the potential of this approach for clinical diag-476

nosis, but without reporting on its reliability (Cocquyt et al., 2020). However, evaluating the reliability477

of test results is crucial to determine the usefulness of capturing individual language impairments. In478

this study, we assessed the reliability of neural envelope tracking using split-half reliability metrics. The479

results demonstrate strong correlations between both halves, particularly in the delta and theta bands480

(Table 1). Our findings are consistent with previous research reporting a correlation of R=0.89 for delta481

and R=0.82 for theta across two stories in a cohort with language impairments caused by a neurode-482

generative disorder (Dial et al., 2021). Yet, reliability measures in our study were generally lower for483

higher frequency bands. As mentioned earlier, these bands require more data to converge and have a484

17

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 17, 2023. ; https://doi.org/10.1101/2023.03.14.23287194doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.14.23287194
http://creativecommons.org/licenses/by-nc-nd/4.0/


lower signal-to-noise ratio. It is worth noting that our reliability measure may be affected by fatigue.485

Thus, future studies should examine the generalizability of the results across stories and speakers at486

different sessions (i.e., test-retest) to further investigate the reliability of neural tracking for applications487

in aphasia.488

4.4 Limitations and future directions489

Our study demonstrates that neural envelope tracking is a reliable and accurate method for detecting490

language impairments in aphasia. However, our current approach does not provide information on the491

specific language profile of the patient (i.e., which underlying language component, e.g., auditory, pho-492

netic, semantic,... is affected). Investigating these deficits would require a larger sample size with a493

more uniform spread of aphasia severity levels. In future research, we suggest exploring whether neural494

tracking in specific frequency bands can cluster different language profiles in aphasia. In addition, recent495

studies investigated the neural response to speech representations beyond the temporal envelope. For496

example, it has been shown that linguistic speech representations at phoneme and word level can improve497

the model’s fit to the EEG (Di Liberto et al., 2015; Gillis et al., 2021) and can provide complementary498

information on speech processing (Verschueren et al., 2022; Gillis, Kries et al., 2023). Future research499

should (1) examine whether incorporating these linguistic speech representations can enhance aphasia500

detection and inform on specific language deficits and (2) assess the reliability and robustness of these501

features, which is currently lacking in the literature.502

Several other open questions must be addressed before neural tracking can be applied in clinical settings.503

Firstly, neural tracking must be applied to IWA in the acute stage after stroke. This work considered504

the chronic stage only since it is characterized by a more stable language profile (Johnson et al., 2019).505

Secondly, the present study distinguished IWA and healthy controls only. If neural tracking is to be506

used for screening aphasia in the acute stage post-stroke, a clear dissociation between stroke patients507

with and without aphasia is crucial. However, such dissociation is generally not considered in behavioral508

screening tests despite being used in the clinic on a daily basis (Rohde et al., 2018). Lastly, this study509

used language stimuli in the receptive domain only. Recent studies have suggested that the same analysis510

can also be applied to the expressive domain, i.e., speech production (Perez et al., 2022), which could511

open new perspectives to studying expressive language problems in IWA.512

Conclusion513

This study investigated neural envelope tracking of natural speech in patients with chronic post-stroke514

aphasia. The findings showed that individuals with aphasia exhibited reduced brain responses in the515

delta, theta, and gamma bands, likely reflecting decreased processing of higher-level auditory and linguis-516

tic units. The study also demonstrated the efficacy of neural tracking in capturing language impairments517
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at the individual level in a highly reliable and time-efficient manner, which suggests its promising clinical518

potential as an assessment tool. Despite these positive results, several open questions remain that need519

to be addressed before neural tracking can be used in clinical settings. For instance, it remains un-520

clear whether neural tracking can accurately capture specific language problems, and its effectiveness in521

assessing patients in the acute stage post-stroke requires future investigation. Nevertheless, our work rep-522

resents a significant step towards more automatic and ecologically valid assessments of language problems523

in aphasia.524
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Supplementary material541

Channel Selection542

Supplementary Fig. 1. Channel selection.
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Significance level of neural envelope tracking543
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Supplementary Fig. 2. Significance level of neural tracking. Boxes represent the 95th percentile
of permutations per subject and per frequency band. There was no significant difference between groups
for any frequency band.
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Single-channel TMIF analysis544

Delta band545

The single-channel TMIF analysis revealed decreased delta band envelope tracking for IWA compared546

to healthy controls. A spatio-temporal cluster-based permutation test identified a cluster (p=0.005)547

comprising a large group of bilateral fronto-central, parietal and posterior channels (N = 46 channels)548

and brain latencies from 0.09 s to 0.5 s. The results are depicted in Fig. 3.549
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Supplementary Fig. 3. Delta band analysis. The average single-channel TMIF in delta band for the
control and the aphasia group separately, with topoplots at indicated brain latencies. The spatio-temporal
cluster-based permutation test investigated the difference between the control and aphasia group (control
- aphasia) and identified a cluster (below threshold p<0.05) with the largest group difference. Brain
latencies belonging to the cluster are marked in a shaded gray area, the channels belonging to the cluster
are indicated with a black dot on the topoplot.** = p<0.01
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Theta band550

For the theta band, the single-channel TMIF analysis revealed decreased envelope tracking for IWA551

compared to healthy controls. A spatio-temporal cluster-based permutation test identified a cluster552

(p=0.005) comprising a large group of bilateral fronto-central, parietal and posterior channels (N = 40553

channels) and brain latencies from 0.09 s to 0.31 s. Fig. 4 visualizes the result.554
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Supplementary Fig. 4. Theta band analysis. The average single-channel TMIF in theta band for
the control and the aphasia group separately, with topoplots at indicated brain latencies. The spatio-
temporal cluster-based permutation test investigated the difference between the control and aphasia group
(control - aphasia) and identified a cluster (below threshold p<0.05) with the largest group difference.
Brain latencies belonging to the cluster are marked in a shaded gray area, the channels belonging to the
cluster are indicated with a black dot on the topoplot.** = p<0.01
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Alpha band555

In the alpha band, a spatio-temporal cluster-based permutation test found no clusters exceeding p<0.05556

threshold level. The group results are displayed in Fig. 5.557
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Supplementary Fig. 5. Alpha band analysis. The average single-channel TMIF in alpha band for
the control and the aphasia group separately, with topoplots at indicated brain latencies. The spatio-
temporal cluster-based permutation test investigated the difference between the control and aphasia group
(control - aphasia), but did not find a group difference with p-value below threshold level 0.05.
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Beta band558

In the beta band, a spatio-temporal cluster-based permutation test found no clusters exceeding p<0.05559

threshold level. The group results are displayed in Fig. 6.560
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Supplementary Fig. 6. Beta band analysis. The average single-channel TMIF in beta band for the
control and the aphasia group separately, with topoplots at indicated brain latencies. The spatio-temporal
cluster-based permutation test investigated the difference between the control and aphasia group (control
- aphasia), but did not find a group difference with p-value below threshold level 0.05.
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Gamma band561

Finally, IWA displayed decreased neural envelope tracking in the gamma band. A spatio-temporal cluster-562

based permutation test identified a cluster (p=0.03) comprising parietal and posterior channels (N = 12563

channels), primarily in the right hemisphere, and brain latencies from 0.01 s to 0.11 s. Fig. 7 visualizes564

the result.565
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Supplementary Fig. 7. Gamma band analysis. The average single-channel TMIF in gamma band
for the control and the aphasia group separately, with topoplots at indicated brain latencies. The spatio-
temporal cluster-based permutation test investigated the difference between the control and aphasia group
(control - aphasia) and identified a cluster (below threshold p<0.05) with the largest group difference.
Brain latencies belonging to the cluster are marked in a shaded gray area, the channels belonging to the
cluster are indicated with a black dot on the topoplot.* = p<0.05
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Group-specific stability analysis566
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Supplementary Fig. 8. Stability measures grouped. Within- and between-subjects stability anal-
ysis performed for each group separately. Black dotted line indicates the average across frequencies.
Shaded areas indicate the standard error of the correlations. The knee point of all panels is indicated
with a vertical dotted line (based on the average across frequencies)
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Correlation matrix frequency bands567

Supplementary Table 1. Correlation matrix neural envelope tracking

IWA Controls
broad delta theta alpha beta gamma broad delta theta alpha beta gamma

broad 1 1

delta 0.79 1 0.92 1

theta 0.15 0.01 1 0.09 0.02 1

alpha 0.15 0.07 0.71 1 0.27 0.15 0.52 1

beta 0.15 0.20 0.62 0.61 1 0.48 0.57 0.32 0.44 1

gamma 0.19 0.22 -0.01 0.01 0.23 1 0.12 0.18 -0.18 -0.22 0.26 1

Exploratory analysis investigating the collinearity between frequency bands. The table displays the Pearson correlations
for the mean MI (integration window 0-400 ms).
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