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Abstract: With the majority of CD8+ T cells residing and functioning in tissue, not blood, 

developing noninvasive methods for in vivo quantification of their biodistribution and kinetics in 

humans offers the means for studying their key role in adaptive immune response and memory. 

This study is the first report on using positron emission tomography (PET) dynamic imaging and 

compartmental kinetic modeling for in vivo measurement of whole-body biodistribution of CD8+ 

T cells in human subjects. For this, a 89Zr-labeled minibody with high affinity for human CD8 

(89Zr-Df-Crefmirlimab) was used with total-body PET in healthy subjects (N=3) and in COVID-

19 convalescent patients (N=5). The high detection sensitivity, total-body coverage, and the use 

of dynamic scans enabled the study of kinetics simultaneously in spleen, bone marrow, liver, lungs, 

thymus, lymph nodes, and tonsils, at reduced radiation doses compared to prior studies. Analysis 

and modeling of the kinetics was consistent with T cell trafficking effects expected from 

immunobiology of lymphoid organs, suggesting early uptake in spleen and bone marrow followed 

by redistribution and delayed increasing uptake in lymph nodes, tonsils, and thymus. Tissue-to-

blood ratios from the first 7 h of CD8-targeted imaging showed significantly higher values in the 

bone marrow of COVID-19 patients compared to controls, with an increasing trend between 2 and 

6 months post-infection, consistent with net influx rates obtained by kinetic modeling and flow 

cytometry analysis of peripheral blood samples. These results provide the platform for using 

dynamic PET scans and kinetic modelling to study total-body immunological response and 

memory. 
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Main Text: 

INTRODUCTION 

Understanding the adaptive immune response to viral infections and subsequent immunological 

memory is critical for development of vaccines and therapeutic options. Studying the immune 

response in humans has been conventionally focused on peripheral blood assays, particularly in 

longitudinal studies, due to complexity and invasive nature of tissue sampling approaches. 

However, the majority of immune cells involved in the adaptive immune response and 

immunological memory reside and function in tissue, particularly in lymphoid organs such as bone 

marrow, spleen, tonsils, and lymph nodes (1,2). CD8+ T cells are one of the key players in cell-

mediated immune response against viral infections and there has been a growing interest in 

studying the critical role of CD8+ T cell trafficking and preferential residence of CD8+ memory T 

cells in certain niches, such as bone marrow, in immunological memory (3,4,5,6). 

The recent pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) emphasized the need to better understand the role of adaptive immunity in viral infections and 

there has been particular interest in the role of T cell response to the coronavirus disease 2019 

(COVID-19) (7,8). Immunological memory to SARS-CoV-2 infection has been extensively 

characterized in blood (9,10,11,12). In particular, SARS-CoV-2 specific CD8+ memory T cell 

response appears to persist for at least 8 months in blood, with a declining trend observed between 

1-8 months post infection (9,10). Furthermore, examination of SARS-CoV-2 seropositive organ 

donors has shown SARS-CoV-2–specific CD8+ T cell memory in bone marrow, spleen, lung, and 

lymph nodes for up to 6 months after infection (13). 

A non-invasive method capable of quantifying T cell density and trafficking rates in tissue at a 

systems level for the whole body could enable longitudinal studies in patients with viral infections 

and in the healthy populations, leading to better understanding of the adaptive immune response 

and immunological memory. The case for developing such a method for researching COVID-19 

infection would include the acute and recovery phases, pre-existing immunity (14), asymptomatic 

response (15), and herd immunity (16). These could be extended to studies of susceptibility to 

COVID-19 in association with age (17), genetic factors (18), gender (19), children (20), and 

obesity (21). Being able to non-invasively study T cell involvement in peripheral effects (22), long 

COVID (23), vaccine efficacy (24), and therapeutic interventions (25) would also suggest 

potentially fruitful areas for whole-body COVID-19 research.  

As a proof of concept for staging such a transformative research strategy, a highly sensitive 

quantitative in vivo imaging methodology targeting human CD8+ cells is described, with a 

particular interest towards studying the immunobiology of CD8+ T cells as the major population 

of human CD8+ cells. For this, the recently developed imaging probe 89Zr-Df-Crefmirlimab also 

known as 89Zr-Df-IAB22M2C, is used with positron emission tomography (PET). IAB22M2C is 

a biologically inert 80-kDa minibody with high affinity to human CD8 and has accelerated serum 

clearance compared to full-sized antibodies, making it particularly favorable for in vivo imaging. 

IAB22M2C conjugated to the chelator desferrioxamine (Df) and radiolabeled with Zirconium-89 

(89Zr) has been successfully used in a number of preclinical and clinical trials with a focus on 

cancer immunotherapy applications (26,27). With a long radioactive half-life of 78.4 hours, 89Zr 

allows the tracer’s biodistribution to be followed for several days post injection (p.i.). However, 

because of its long half-life, radiation dose concerns have prevented wider application of 89Zr-

immunoPET in non-life-threatening disease and healthy populations. The advent of total-body 
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PET scanners covering all or much of the body (28), which offer a radiation detection sensitivity 

increase of 1‒2 orders of magnitude compared to conventional PET scanners (29), enables high 

signal-to-noise ratio imaging of 89Zr-based radiotracers at substantially lower injected doses in 

addition to capturing kinetics across all the organs and tissues of interest. This enables complete 

characterization of the pharmacokinetics of these immunological PET tracers across a wide range 

of applications (28,30). Total-body PET is currently the only available technology that allows 

noninvasive in vivo measurements of T cell distribution and kinetics inside all tissues in human 

subjects, with acceptable radiation dose burden.  

In this work, low (< 20 MBq) doses of 89Zr-Df-Crefmirlimab tracer were used with the 194-cm-

long uEXPLORER total-body PET scanner to study the biodistribution and kinetics of CD8+ cells 

in COVID-19 convalescent patients and in healthy controls.  

RESULTS 

Eight subjects were enrolled, including five COVID-19 convalescent patients and three healthy 

controls. The demographics of the study participants are included in Table 1. All subjects had 

received at least one dose of a COVID-19 mRNA vaccine prior to their first imaging session, 

except for one healthy subject (Sub08) who had not received any vaccination prior or during the 

imaging study. The participants varied in vaccination timeline with respect to their imaging 

sessions and one patient (Sub01) contracted COVID-19 prior to vaccination. COVID-19 patients 

were possibly exposed to different variants of the virus with infection timelines ranging from 

January 2021 to March 2022 and varied in terms of infection symptoms and past medical history 

(Table S1). The last two enrolled patients (Sub04 and Sub05) had the mildest symptoms, with 

exposure timelines during or after the Omicron variant surge in California. 

The mean injected radiotracer activity was 18.8 MBq (0.51 mCi), with a range of 15.4–21.8 MBq 

(0.42–0.59 mCi). The mean injected minibody mass was 1.50 mg, with a range of 1.33–1.77 mg. 

The injections and PET imaging were well tolerated, with no adverse reactions to the infusion. No 

adverse effects and no clinically significant changes in vital signs were observed during the study. 

Two COVID-19 patients did not have dynamic scans and the dynamic scan of one control subject 

was terminated early at 65 min due to patient motion and discomfort. 

 

 

 

 

 

 

 

 

 

 

Blood Clearance of the Radiotracer 

The whole-blood clearance was best described by a triexponential model, with an initial half-life 

of 5.1±2.2 min (range, 2.6–8.1 min), an intermediate half-life of 55.9±28.0 min (range, 29.3–

120.0), and a terminal elimination half-life of 22.1±11.8 h (range, 13.4–50.4 h). One COVID-19 

 

 

Demographic COVID-19  Control 

Total participants (n) 5 3 

Age range (y)  27–51 25–59 

Sex (n)   

 Male 0 2 

 Female 5 1 

BMI range (kg/m2) 20–43 21–31 

Table 1. Demographics of study participants 
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subject (Sub02) showed significantly longer terminal half-life compared to all other subjects (Fig. 

S1).  

Total-Body Biodistribution of the Radiotracer 

Standardized uptake value (SUV) images of the baseline scans of COVID-19 convalescent patients 

and healthy controls at three imaging timepoints showed high uptake in lymphoid organs of all 

subjects (Fig. 1), with the highest uptake observed in the spleen of all subjects, followed by bone 

marrow, liver, tonsils, and lymph nodes. Bone marrow uptake was particularly prominent in the 

vertebrae, sacrum, ilium, ribs, sternum, clavicle, and scapulae of all subjects and showed variable 

extended lengths in humeral and femoral shafts. Peripheral lymph nodes showed marked uptake 

in all subjects as early as 30‒90-min p.i. and peaked at the 48-h timepoint. Prominent uptake was 

observed in head and neck lymph nodes of all subjects and a subset of subjects also showed uptake 

in their axillary, pelvic, mediastinal, as well as upper and lower limb lymph nodes. Consistent with 

the expected hepatobiliary clearance of the radiotracer, gallbladder was visualized during the 

dynamic scans of all subjects, except for the two COVID-19 subjects who did not have dynamic 

scans, one of which (Sub03) had a history of cholecystectomy. Excluding Sub03, gallbladder was 

still visualized in 9 out of 11 scans performed at each of the 6-h and 48-h timepoints. Furthermore, 

subjects showed activity in their bowel during the 48-h time-course of the study, with the largest 

activity observed in the colon and rectum. Cross sectional analysis suggested the activity was in 

the large bowel lumen, supported by changes in the location of the activity over the 48 h. The small 

bowel also contained low levels of activity; however, it was not possible to confirm whether the 

activity was in the lumen or in the Peyer’s patches of the small bowel wall. Muscle, cerebrum, and 

cerebellum uptakes were low in all subjects, with SUVmean values below 0.2, 0.7, and 0.8, 

respectively, at all timepoints. Lymphoid tissues in the nasal and pharyngeal area had visible 

uptake in all subjects with similar range of values. Comparing the baseline images of the COVID-

19 patients to the images from their 4-month follow-up scans (Fig. 2) showed that despite the 

observed differences and heterogeneity among the study participants, irrespective of their study 

group, the follow-up scans of each patient exhibit striking similarities to their baseline scans 

particularly in bone marrow. 
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Fig. 1. Maximum intensity projection (MIP) of decay-corrected SUV images of the baseline 

scans. The baseline scans of COVID-19 convalescent patients and healthy control subjects are 

compared at three imaging timepoints. Sub01 and Sub03 skipped dynamic imaging. 
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Fig. 2. MIP of decay-corrected SUV images of the 4-month follow-up scans. The follow-up 

scans of the COVID-19 convalescent patients are shown at three imaging timepoints. Sub01 and 

Sub03 skipped dynamic imaging. 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 20, 2023. ; https://doi.org/10.1101/2023.03.14.23287121doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.14.23287121
http://creativecommons.org/licenses/by-nd/4.0/


 

7 

 

Kinetics During the 48-h of Imaging 

The time activity curves (TACs) from all investigated organs of interest showed consistent trends 

in tracer kinetics in all subjects (Fig. 3). Different regions of bone marrow showed an increasing 

trend during the 90-min of the dynamic scans in all subjects, with a plateauing rate of uptake 

towards 90 min. Spleen TACs also showed a plateauing increasing trend during the 90-min of the 

dynamic scans, except in two COVID-19 subjects (Sub02 and Sub04), in which the TACs showed 

a decrease after peaking at around ~1-h. Lymph nodes visualized with high contrast at 6-h and 48-

h timepoints, could mostly be visualized also on the 30-90 min images with SUVpeak values in 

the range of 0.2‒5.2. Between the 6-h to 48-h timepoints, all subjects showed a decrease of SUV 

in spleen, bone marrow, and lungs and parallel increase of SUV in lymph nodes and tonsils, which 

was quantified by percentage change in SUV at the 48-h timepoint relative to the 6-h timepoint in 

all investigated organs-of-interest (Fig. S3). Comparing the percentage change in SUV during the 

last 42 h showed similar trends in all organs-of-interest in all subjects, with no significant 

difference between the COVID-19 and the control group. Liver uptake showed relatively smaller 

changes during the last 42-h, with an increasing trend in three subjects.  
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Fig. 3. Decay-corrected TACs of different organs of interest. (A) The TACs representing the 

delivery, retention, and clearance of the tracer over the 48-h time course of the study are shown 

for bone marrow (cervical, thoracic, and lumbar vertebrae, sacrum, and ilium), spleen, liver, lymph 

nodes, tonsils, lungs, nasal cavity, and the left ventricle (LV) blood pool, in addition to (B) 

zoomed-in plots on the first 90-mins after tracer administration for all subjects. Control and 

COVID-19 subjects are in shades of red and blue, respectively. The lymph node TACs show an 

example lymph node selected from the occipital region of each subject (PET/CT images shown in 

Fig. S2). The occipital region was selected as a common area where all subjects showed 

quantifiable uptake and the TACs were not affected by spill-over from adjacent lymph nodes or 

blood vessels.  
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Tissue-to-blood ratio (TBR) curves plotted as a function of time for different regions of bone 

marrow and liver showed a separation between the COVID-19 and the control group during the 

90-min dynamic scans up to the 7-h timepoint, with higher values observed in the COVID-19 

group (Fig. S4). Sacrum and ilium bone marrow showed the largest differences between the two 

groups. Comparing the TBRs of all subjects at 30‒90 min and 6‒7 h timepoints (Fig. 4) showed 

significant differences between the COVID-19 and the control group at the 6‒7 h timepoint in 

liver, different bone marrow regions, and tonsils (p=0.036). Moreover, TBRs of all bone marrow 

regions, spleen, and tonsils were 2‒3 times higher in one COVID-19 subject (Sub02) than all other 

patients during the first 7 h. No significant difference was observed in spleen, lungs, or nasal cavity 

between the two groups. 

 

Fig. 4. TBRs of different organs-of-interest. TBRs are compared between COVID-19 and 

control subjects in lymph nodes, tonsils, spleen, bone marrow, liver, lungs, and nasal cavity (A) 

during the 30‒90 min of the dynamic scans and (B) at the 6‒7 h timepoint. 

Comparing the percentage changes of TBR at 4-month follow-up scans relative to the baseline 

scans of the COVID-19 patients (Fig. 5) did not show consistent trends in most organs-of-interest, 

except for the bone marrow, in which a consistent trend towards increased TBR was observed in 
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all bone marrow regions of the COVID-19 subjects during the first 7 h of imaging. While this 

increasing trend in bone marrow TBRs ranged from 2‒42% at the 6-h timepoint in 4 out of 5 

COVID-19 subjects, in one COVID-19 subject (Sub05), the follow-up scans did not show 

substantial changes in the bone marrow regions, with only 0‒5% changes compared to the baseline 

scan.  

 

 

Fig. 5. Longitudinal changes of TBRs in different organs-of-interest of COVID-19 

convalescent patients. Percentage changes of TBR at 4-month follow-up scans of the COVID-19 

patients relative to their baseline scans is shown in lymph nodes, tonsils, spleen, bone marrow, 

liver, lungs, and nasal cavity at (A) 30‒90 min, and (B) 6‒7 h. 

Kinetic Modeling Approaches for 89Zr-Df-Crefmirlimab 

Conventional PET kinetic modeling approaches based on one-tissue and two-tissue compartmental 

models with Akaike information criterion (AIC) model selection successfully fitted the TACs in 

lungs, spleen, bone marrow, tonsils, and selected occipital lymph nodes (Fig. S5 and Table S2). In 

all cases, all available timepoints were used for model fitting and using the earlier timepoints alone 

was not sufficient to accurately model the TACs at later timepoints. Visual inspection of the AIC-

preferred model fits in all organs-of-interest suggested low residual errors in fitting all imaging 

timepoints (Fig. S6 and Fig. S7), except for the lymph nodes, in which TACs were more affected 

by statistical noise due to small number of voxels included in the analysis. Normalized sensitivity 

plots (Fig. S8) showed increasing sensitivity of all model microparameters up to the 48-h 

timepoint, except for 𝑣𝑏 and 𝐾1, which reached their maximum sensitivity at earlier timepoints in 

some cases. Correlations observed between microparameters of the 2T model (Table S3) were 

mostly expected and similar to those commonly observed in conventional PET kinetic modeling. 

Simulations of the TAC noise model in all organs-of-interest showed low biases in all 

microparameter estimations (Table S4), suggesting small effects from statistical noise and high 

confidence in microparameter estimation at organ-level; with the exception of lungs that showed 

increased errors compared to other organs. In all investigated organs, the slope of the Patlak plot 

changed from 90-min to 48-h and since only two datapoints were available at later timepoints, it 

was not possible to determine the equilibrium time (Fig. S9).  
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In lungs, AIC favored the 2T model over 1T3P model in all subjects, however, the AIC values 

were close between 2T4P and 2T5P models in many cases (Fig. S5). All three models could fit the 

early 90-min data points, but the fitting errors were larger for the late timepoint data with the 1T3P 

model (Fig. S6 and Fig. S7). Air fraction correction was not applied to the results, as using the 

low-dose CT images resulted in overestimation of air fraction values, particularly in high-BMI 

subjects. With no air fraction correction, no significant difference was observed between the 

control and COVID-19 groups and only one COVID-19 patient (Sub02) showed increased 𝐾𝑖 

values.  

In spleen, AIC largely favored the 2T5P model in all subjects (Fig. S5). 2T4P and 1T3P models 

could not fit the later timepoints and increasing the weighting factors of the late timepoints resulted 

in inaccurate fits on the first 90-min data (Fig. S10). 𝐾1 and 𝑘2 were highly correlated (>98%) with 

𝑣𝑏 and increase in 𝐾1 up to its upper bound was compensated by a decrease in 𝑣𝑏. Therefore, 𝑣𝑏 

was set to 0.4 during the fitting in all cases. The fitted model suggested that the concentration of 

the bound tracer in the second compartment increases up to 12‒24 h p.i. and starts to drop thereafter 

(Fig. S11). No significant difference was observed between the two groups. 

In bone marrow, AIC favored the 2T5P model in all subjects (Fig. S5). The 2T4P model could fit 

the data from all timepoints, but with higher AIC values, whereas the 1T3P model could not fit the 

48-h timepoint. The microparameter estimates for the 2T5P model were similar in sacrum and 

ilium. 2T5P model 𝐾𝑖 values were higher in bone marrow of COVID-19 patients compared to the 

controls (p=0.1) (Fig. 6). Similar to spleen, the fitted 2T5P model suggested increasing 

concentration of the bound tracer up to 12‒24 h p.i. and a decrease thereafter.  

In tonsils, AIC favored the 1T3P model and in lymph nodes, AIC favored the 2T4P and 1T3P 

models interchangeably (Fig. S5). In many cases, the 2T model microparameters were zero or 

resulted in inconsistent estimates, therefore, 1T3P model was selected for the lymph nodes as well.  

s

 

Fig. 6. Net influx rate of the 2T5P model. Net influx rate (𝑲𝒊) obtained by 2T5P model fits on 

lungs, spleen, and sacrum and ilium bone marrow are compared in all subjects with dynamic scans. 
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Uptake in Thymus 

Thymus uptake was observed only at the 48-h timepoint in two subjects (Fig. 7), including one 

COVID-19 convalescent patient (in both baseline and follow-up scans) and one control subject, 

with SUVmean values of 4.0 and 4.7, respectively. The COVID-19 and control subject were both 

below 35 years old and had the lowest BMIs among all subjects, with BMIs of 20 and 21 kg/m2, 

respectively. Thymus fatty degeneration scoring based on low-dose CT images in all subjects (Fig. 

S12) showed solid thymic gland with Score 3 in the COVID-19 subject and half fatty and half soft-

tissue attenuation with Score 2 in the control subjects. Two other under-30 y/o subjects in the study 

(Sub02 and Sub04) also showed solid thymic glands with Score 3. Both subjects were in the 

COVID-19 group and had higher BMIs compared the two subjects that showed thymus uptake in 

their PET images. 

 

Fig. 7. PET/CT image slices of thymus uptake. Selected transverse PET/CT image slices of one 

control subject and one COVID-19 patient (at baseline and follow-up scan) showing thymus 

uptake at 48-h timepoint of imaging. 

 

Peripheral Blood Assays 

CD8+ and CD4 T+ cell immunophenotyping results (Fig. 8 and Fig. S13, respectively) showed an 

increase in percentage of CD8+ T cells and a decrease in percentage of CD4+ T cells in COVID-

19 convalescent patients compared to the controls (p=0.036). Moreover, an increased frequency 

of activated CD8+ T cells was observed in COVID-19 convalescent patients, both in CD38+HLA-
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DR+ cells and CD56+ cells (p=0.036). No difference was observed in frequency of PD-1+ cells 

between the two groups. 

 

 

Fig. 8. Peripheral blood CD8+ T cell phenotyping. (A) Percentage of CD8+ T cells within the 

live CD3+ population, (B) percentage of activated CD8+ T cells characterized by CD38 and HLA-

DR co-expression and (C) CD56 expression, and (D) percentage of exhausted CD8+ T cells 

characterized by PD-1 expression are compared in all subjects. 

 

Comparing the percentage of memory subsets of CD8+ and CD4+ T cells in all subjects (Fig. S14). 

showed a trend towards higher frequency of CD8+ effector memory T cells in the COVID-19 

convalescent individuals compared to the controls. Percentage of mucosa-associated invariant T 

(MAIT) cells, regulatory T (Treg ) cells, natural killer (NK) cells, and B cells compared between 

the two groups (Fig. S15) showed a trend towards higher percentage of MAIT cells in COVID-19 

convalescent patients (p=0.072) and no significant difference was observed between the two 

groups with other cell types. 

Total percentage of CD8+ and CD4+ memory T cells responding in any way (CD107a, IFNγ, IL2, 

MIP-1β, or TNFα) to SARS-CoV-2 spike and nucleocapsid proteins compared in all subjects (Fig. 

S16) showed trends toward higher magnitude CD8+ and CD4+ responses to both spike and 

nucleocapsid in COVID-19 convalescent participants compared to the controls, which was 

significant for the spike-specific CD4+ responses (p=0.036), but no significant differences were 

observed between the baseline and 4-month follow up scans. Furthermore, CD4+ responses were 

of higher magnitude than CD8+ responses. Individual responses in CD8+ and CD4+ memory T 

cells (Fig. S17 and Fig. S18, respectively) showed potential trends towards increasing spike-

specific CD8+ T cell degranulation response (CD107a+), higher frequencies of spike-specific CD4+ 

IL2+ T cells, and higher frequencies of spike-specific CD4+ IFNγ+ T cells in COVID-19 

convalescent patients (p=0.036). Lastly, SARS-CoV-2 specific CD8+ and CD4+ responses were 

mainly dual and monofunctional (Fig. S19 and Fig. S20, respectively) and CD4+ T cell responses 
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were slightly more polyfunctional than CD8+ responses. Only a slight increase in polyfunctionality 

could be observed for nucleocapsid-specific CD8+ T cells in COVID-19 convalescent participants 

at the 4-month timepoint.  

DISCUSSION 

We present the first results on the biodistribution and kinetics of a CD8-targeted radiotracer in 

healthy control subjects and in subjects following a viral infection. The biodistribution and general 

trends were in good agreement with previous oncologic human studies using 89Zr-Df-Crefmirlimab 

(26,27). Although there was a 6-fold reduction in injected radiation dose compared to previous 

Phase I human studies, significant image quality improvements, both in terms of noise reduction 

and higher contrast in small structures, were observed in the total-body PET scans compared to 

the previous human PET scans (26,27). Notably, a large number of high-contrast lymph nodes 

were visualized in all subjects and the tracer kinetics in any given organ followed consistent trends 

in all subjects. Considering the low positron fraction of 89Zr, the remarkable image quality obtained 

in this study demonstrated feasibility of high-quality dynamic imaging with 89Zr-labeled 

immunological tracers across the whole body, at doses that permit longitudinal imaging in healthy 

subjects and any disease state. 

This study revealed significant differences in the bone marrow CD8 concentrations of COVID-19 

convalescent patients compared to controls, with increased TBRs in the first 7-h of the study and 

increased net influx rates (2T5P 𝐾𝑖) observed in the bone marrow of COVID-19 patients. Such 

changes were not evident in the commonly used SUV images, because the measured SUV cannot 

account for the time-varying tracer concentration in the blood and tissue compartments, nor the 

effects of cell trafficking. This study demonstrates the role of dynamic imaging and kinetic 

modelling in providing quantitative biomarkers. While SUV TACs from the first 90 min showed 

higher values in sacrum and ilium bone marrow of the COVID-19 patients compared to controls, 

SUV TACs overlapped between the two groups for other bone marrow regions, particularly at later 

timepoints where the two additional COVID-19 subjects with no dynamic scans were included. 

Plotting TBRs as a function of time however showed more distinct differences between the two 

groups in all bone marrow regions up to the 7-h timepoint. The tissue-to-blood ratio curves from 

the three control subjects showed very similar values particularly in sacrum and ilium; while within 

the COVID-19 group, one subject (Sub02), who got infected with COVID-19 twice, showed 

consistently significant higher values in all bone marrow regions compared to all subjects. Other 

COVID-19 patients showed a separate cluster of results, but still higher than the controls. Tumor-

to-blood ratio has been previously shown to be a surrogate for the net metabolic rate of other 

radiotracers such as 18F-fluorodeoxyglucose in tumors (31). Comparing TBRs among different 

subjects at a specific timepoint, while equilibrium has not been reached, requires extra care, as 

TBR changes as a function of time and is affected by blood clearance rates. Plotting TBR as a 

function of normalized time in Patlak plots accounts for variations in blood clearance. The 

similarity of the TBR plots (Fig. 3) to Patlak plots (Fig. S9) during the first 7 h is consistent with 

similar initial and intermediate blood clearance rates (Fig. S1) among all subjects. Patlak plots also 

reflect the differences in terminal blood clearances and show improved separation between the two 

groups at later timepoints. Furthermore, TBRs from the 6-h timepoint were highly correlated with 

net influx rates (𝐾𝑖) obtained from 2T5P fits on the complete 48-h TACs (ρ>0.99 in bone marrow 

and spleen and ρ>0.93 in lungs), suggesting that they can be used as surrogates for 𝐾𝑖. The 

mitigated separation between the two groups at later timepoints in the Patlak plots may be 

attributed to increased cell trafficking effects that are not accounted for. Future studies should 
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investigate correlation of early-timepoint TBRs with model macro-parameters, best describing the 

CD8 tissue density in absence of cell trafficking effects. 

In addition to higher CD8 TBRs values observed in bone marrow of COVID-19 convalescent 

patients compared to controls, flow cytometry results also showed higher percentage of CD8+ T 

cells, higher percentage of activated CD8+ T cells, and higher percentage of CD8+ memory T cells 

in peripheral blood of COVID-19 convalescent patients compared to controls. Furthermore, the 

two longitudinal scans performed on COVID-19 patients showed consistently increasing trends in 

the bone marrow of all subjects between 2- and 6-months post-infection. While the magnitude of 

these longitudinal changes varied among different patients, low degree of heterogeneity was 

observed in different bone marrow regions of each patient. The peripheral blood flow cytometry 

data on the other hand only showed a non-significant population-based increase in the median of 

the 4-month follow-up scans compared to the baseline scans. Although a high degree of 

heterogeneity can be expected among human subjects, the large variations observed within each 

group may also be partly due to the limited precision of the flow cytometry methods, which usually 

require larger cohort of subjects for making statistically meaningful conclusions. Such limitations 

suggests that flow cytometry methods may be inadequate for studying small longitudinal changes 

in individual subjects. These large variations can be also observed in the reported results from 

previous studies using peripheral blood of COVID-19 patients, in which a general trend towards 

declining SARS-CoV-2 specific CD8+ memory T cell response is observed from statistical 

analysis on peripheral blood of two large cohort of patients between 1‒8 months post infection, 

but inconsistent findings are observed in longitudinal measurements in individual subjects (9,10). 

The small number of participants in this pilot study makes it difficult to conclude whether the 

observed trends in increased percentages of CD8+ T cells in the peripheral blood of COVID-19 

patients at the 4-month follow up scans are due to the heterogeneity of COVID-19 patients, or 

clinical differences among the subjects of this study with those of previous studies, or due to 

methodological variations. Furthermore, while vaccination timeline is expected to affect the spike-

specific responses, some inconsistencies can be observed in SARS-CoV-2 specific responses, such 

as the high spike-specific and nucleocapsid-specific responses in the unvaccinated control subject 

(Sub08), which could be due to cross-reactivity with seasonal Coronaviruses or possible 

subclinical infection or exposure. Nevertheless, image-based results show no significant difference 

in bone marrow of the unvaccinated subject compared to other control subjects, but higher TBRs, 

in similar range to COVID-19 subjects, can be observed in the spleen of the unvaccinated subject, 

which needs further investigation.  

Kinetic modeling based on conventional PET compartmental models showed reproducible results 

at organ-level, which were in good agreement with immunobiology of the investigated organs and 

the expected T cell trafficking effects were reflected in the kinetic model selection results. 

Although the conventionally used one-tissue and two-tissue compartmental models do not include 

separate pathways for the trafficking of radiolabeled cells and therefore, they are not expected to 

accurately represent the kinetics of the 89Zr-Df-Crefmirlimab in lymphoid tissue, in the absence of 

cell trafficking, the main mechanism of uptake can be simplified and approximated by the 2T4P 

model, in which upon entrance of the free 89Zr-labelled minibody tracer into tissue, the tracer binds 

to the CD8 receptors and gets irreversibly internalized within the cell. In the presence of cell 

trafficking, which is non-negligible over the 0‒48-h timeframe in lymphoid organs, all rate 

constants of tracer exchange between the model compartments will include components from 

trafficking and the model will require a non-zero 𝑘4 to represent the trafficking of radiolabeled 
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CD8+ T cells out of the tissue. This is reflected in the AIC model selection results for spleen, bone 

marrow, and lungs. The 2T5P model, which includes a non-zero 𝑘4, is largely favored in spleen, 

where a large population of naïve recirculating CD8+ T cells are expected and the migration of 

radiolabeled CD8+ T cells out of spleen may prominently contribute to the 𝑘4. A similar effect can 

be observed in bone marrow, but to a lesser extent. In the case of healthy lung tissue, relatively 

low concentrations of CD8+ T cells are expected and a large fraction of the CD8+ T cell population 

could be non-circulating tissue-resident T cells. As a result, the difference between the 2T5P and 

2T4P models becomes much smaller, particularly in the healthy subjects where 2T4P is favored, 

which could be attributed to a smaller effect from T cell trafficking in such cases.  

Furthermore, the effects of blood flow and permeability of the blood vessels to the 80-kDa 

minibody molecules in different types of tissue could explain the differences observed in the TACs 

of different organs and their corresponding tissue compartments (Fig. S11). The presence of 

sinusoidal capillaries in spleen and bone marrow, which allow exchange of large molecules 

between blood and the surrounding tissue, in addition to the high blood flow in these two CD8-

rich organs results in fast entrance of the free tracer into the tissue followed by a slower process of 

binding within the tissue in the second tissue compartment. While a continuous exchange of 

labeled CD8+ cells between tissue and blood is present in parallel, the high permeability and blood 

flow could result in saturation of binding sites in these two organs as reported in a previous dose 

escalation study when a 1.5 mg minibody mass dose is used (27). The following decrease in the 

concentration of the second tissue compartment (Fig. S11) can therefore be attributed to the flux 

of radiolabeled CD8+ T cells out of the tissue. In the case of lungs, lower permeability, lower blood 

flow, and lower concentrations of CD8+ T cells can be expected than spleen or bone marrow, and 

as a result, a large fraction of the initial signal in the lungs is due to tissue blood fraction and low 

levels of free tracer entering the tissue, followed by slow binding and clearance. In the case of 

lymph nodes and tonsils, where high concentrations of binding sites are expected but tracer 

delivery to the tissue may be slower due to significantly lower blood flow compared to spleen, 

bone marrow, and lungs, AIC favors the 1T3P model in which the low amounts of free tracer 

slowly entering the tissue bind relatively quickly to the highly available binding sites in the tissue. 

However, the increase of uptake in lymph nodes and tonsils over time may also be largely 

attributed to migration of radiolabeled T cells to these tissues, which cannot be separated from the 

free tracer uptake in the current model. It should be noted that the whole-blood compartment itself 

contains CD8+ cells and as these cells get radiolabeled with the tracer and are in continuous 

exchange with the radiolabeled CD8+ cells in different lymphoid organs, the concentration of 

radiolabeled CD8+ cells in whole-blood changes as a function of time. Future studies should 

investigate these changes in the whole-blood compartment as a function of time and incorporate 

them either directly in the compartmental model or indirectly with correction factors, in order to 

separate the free tracer uptake kinetics from cell trafficking kinetics. In the case of lymph nodes in 

particular, a second distinct uptake pathway may also be present through afferent lymphatic 

vessels, which needs further detailed investigation. Previous studies on the anatomy of the 

lymphoid compartment within lymph nodes have described a 70-kDa size-exclusion limit 

restricting access of heavy-weight-molecules to lymph node T cell zones through lymph (32). 

However, there has been ongoing research on identifying special routes of transport for high-

molecular-weight molecules into the conduit system of the lymph nodes (33).  

Normalized sensitivity plots suggest that 48 h of imaging is required for estimating the model 

microparameters and might be sufficient. However, more intermediate imaging timepoints are 
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required to study this in detail. The Patlak plots further illustrate this need, where even in the case 

of the healthy lung tissue in which AIC favors the 2T4P model, the equilibrium time seems to be 

larger than 7-h and cannot be determined from the current dataset. Furthermore, although 

simulations of the TAC noise model show very promising results, particularly in spleen and bone 

marrow with low bias values in the range of ±1% for most microparameters, it is still possible that 

the noise model was underestimated for the later timepoints, since only two datapoints were 

available for fitting and the model fits might have been affected by overfitting. This can also be 

investigated in future studies with more intermediate imaging timepoints. 

While the kinetics of the radiotracer are substantially different in the liver compared to bone 

marrow and conventionally, liver is not considered a lymphoid organ, TBR curves in the liver also 

show higher values in the COVID-19 subjects compared to the controls and substantially higher 

values for Sub02. This could be due to the presence of subsets of CD8+ T cells in the liver, the 

population of which may be affected during viral infection. However, due to the hepatobiliary 

clearance of the radiotracer and dual blood supply of liver, further studies are required to accurately 

model the kinetics of the tracer in the liver and quantify the cell trafficking effects. Furthermore, 

TBR curves in the lungs show overlapping curves between the two groups, which may be expected 

since as all COVID-19 patients in the study had relatively mild infection, with no hospitalization 

and no findings on lung involvement. However, no certain conclusions can be made as air fraction 

correction was not applied to the data due to low-quality of CT acquisitions. The systematic 

significant differences observed in all tissue concentrations of one COVID-19 patient (Sub02), 

which is not evident in the peripheral blood results, need further investigation with respect to their 

clinical record and history of two COVID-19 infections, including an asymptomatic infection after 

one vaccination dose and a second infection after 3 months with significant illness and respiratory 

symptoms. 

The thymus uptake observed in the two lowest-BMI subjects, both under 30 y/o, is consistent with 

previous reports on increased fatty degeneration in thymus with aging and high BMI (34). While 

fatty degeneration scoring based on CT images shows predominant soft-tissue attenuation in two 

higher-BMI subjects under 30 y/o, with Score 3, no thymus uptake is observed in their 

corresponding PET images. Furthermore, observing the thymus uptake only at the 48-h timepoint 

suggests very low permeability or blood flow, but also could be related to previous preclinical 

findings suggestive of a blood–thymus barrier restricting access of high molecular weight particles 

from blood to T cells in thymus (35,36). Additionally, while most CD4+ and CD8+ T cells in 

thymus are recently generated naïve T cells, preclinical studies in rodents, lamb, and pigs suggest 

that a small fraction of thymic mature T cells are immigrants from periphery (37) and therefore, 

migration of these mature CD8+ T cells, previously labeled with the radiotracer, back to thymus 

could further explain the thymus uptake only at the 48-h timepoint. 

This pilot study had some limitations, particularly with a small number of participants. CD8 

targeted imaging with 89Zr-Df-Crefmirlimab is in general limited to targeting all CD8+ cell types 

‒ with no specificity to CD8+ T cells or their subsets ‒ and can include effects from changes both 

in CD8 expression and CD8+ cell population. Furthermore, it cannot distinguish between the 

relatively small percentage of antigen-specific CD8+ T cells, which are directly affected by the 

viral infection and its recovery process, and the vast majority of CD8+ T cells that do not recognize 

the antigen, but which may have been non-specifically activated due to the host inflammatory 

response through bystander activation. Future developments of kinetic models best describing the 

kinetics of 89Zr-Df-Crefmirlimab should include separate cell trafficking pathways in the model 
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and should be accompanied by longitudinal blood sample collection. Separate studies would be 

required to quantify the probabilities of 89Zr dissociation from the minibody, observing 89Zr-

labelled metabolites of the tracer, unbinding of the minibody from CD8 receptors, and exocytosis 

of an internalized minibody tracer in different tissues.  

Lastly, dynamic immunoPET imaging is currently the only available non-invasive technology that 

can provide in vivo insight into whole-body CD8+ T cell distribution and trafficking in human 

subjects, and although based on a very small group of subjects, appears to offer higher sensitivity 

than the peripheral blood assays for studying CD8+ T cell physiology in individual subjects. The 

specificity of this and other immunoPET tracers under development, combined with the high 

detection sensitivity of total-body PET now provides a new platform for non-invasively and 

longitudinally studying the immune response and memory in all organs of the body in individual 

subjects in processes that challenge or stimulate the cell-mediated immune system. This includes, 

but is not limited to, cancer, infectious disease, autoimmune disease, and transplant patients and 

can be used for prognosis, as well as therapeutic and vaccine developments. 

MATERIALS AND METHODS 

A pilot total-body PET imaging study with 89Zr-Df-Crefmirlimab was performed. The protocol 

was approved by the Institutional Review Board and all participants provided written informed 

consent.  

Study Design 

The study consisted of two groups, including patients recovering from COVID-19 and healthy 

control subjects. The COVID-19 convalescent patients had a previous mild or moderate 

symptomatic infection and were not hospitalized. They all had positive identification of SARS-

CoV-2 nucleic acids by a polymerase chain reaction (PCR) assay or SARS-CoV-2 nucleocapsid 

protein antigen identification at the time of diagnosis. The exclusion criteria for COVID-19 

patients were subjects with serious comorbidities, history of splenic disorders or splenectomy, or 

use of medications that may impact T cells. Healthy controls gave no history of cancer or 

autoimmune disease within the last 5 years, no history of immune modulating therapy, no viral 

infection currently or within the 4 weeks prior to the study, and no history of COVID-19 infection, 

which was confirmed by negative detection of IgG antibodies against the nucleocapsid protein of 

SARS-CoV-2 in subjects vaccinated against COVID-19 and negative detection of IgG antibodies 

to the spike protein (S1/S2) of SARS-CoV-2 in unvaccinated subjects. A negative SARS-CoV-2 

nucleic acids finding by a PCR assay was required prior to the first imaging visit for all subjects 

in both groups. 

Radiotracer Formulation and Administration 

Crefmirlimab-berdoxam was radiolabeled with 89Zr at either Optimal Tracers, CA, USA or 

Memorial Sloan Kettering Cancer Center, NY, USA. Each patient dose contained a ~1.5 mg mass 

dose of Crefmirlimab-berdoxam anti-CD8 minibody (ImaginAb, Inc., USA). The radiochemical 

purity determined by instant thin-layer chromatography was more than 95% in all cases. An ~18.5 

MBq (0.5 mCi) dose of 89Zr-Df-Crefmirlimab was infused intravenously over 5‒10 min using a 

syringe pump, followed by clearance with 30 cc of normal saline. Estimated effective radiation 

dose was 12 mSv. No pre-medications were administered, and vital signs were recorded pre-

infusion, post-infusion, and at the end of imaging.  
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PET/CT Imaging 

Subjects had total-body PET/CT scans on the uEXPLORER scanner (United Imaging Healthcare, 

Shanghai, China) at three timepoints, including a 90-min PET dynamic scan starting immediately 

prior to the infusion, followed by two 60-min PET scans at 6 h and 48 h p.i. A low-dose CT scan 

(dose modulated, max 50 average mAs, 140 kVp, 10 mSv estimated effective radiation dose) was 

acquired prior to the first PET scan of each subject and ultra-low-dose CT scans (dose modulated, 

max 6 average mAs, 140 kVp, 1 mSv estimated effective radiation dose) were acquired prior to 

the later timepoint PET scans. The COVID-19 convalescent patients were first scanned within 8 

weeks from onset of their symptoms and returned after 4±1 months for a second set of PET/CT 

scans. 

PET images were reconstructed using the vendor’s image reconstruction software, which used an 

iterative time-of-flight ordered-subset expectation maximization (OS-EM) algorithm, with a 

reconstruction field-of-view of 60 cm and 4 iterations (20 subsets). A first set of images were 

reconstructed at a high spatial resolution, using a 512 × 512 matrix with 1.172 mm isotropic voxels 

and point spread function (PSF) modelling, using 60 min of the listmode data from each timepoint 

(30-90 min from the dynamic scans) and were used for visualization and localization of the 

volumes of interest (VOIs), particularly for smaller structures such as lymph nodes and vertebrae. 

A second set of images were reconstructed at a lower spatial resolution, using a 256 × 256 matrix 

with 2.344-mm isotropic voxels and no PSF modelling, which were used for data analysis in all 

organs. The dynamic datasets were reconstructed using the latter setting and 6 × 60 s, 16 × 30 s, 2 

× 60 s, 12 × 120 s, and 10 × 300 s frames were generated. All corrections recommended by the 

manufacturer were applied and no post-reconstruction smoothing filters were used. 

Image Analysis 

PET/CT images from 60-min reconstructions of all timepoints were first visualized in AMIDE 

medical image analysis software (38). A qualitative assessment of the tracer distribution was 

performed at each time point and ~100 spherical VOIs were drawn on each image over spleen, 

bone marrow (vertebrae, sacrum, and ilium), liver, lungs, thymus (when visible in PET), LV blood 

pool, right ventricle (RV) blood pool, head and neck lymph nodes, palatine tonsils, cerebrum, 

cerebellum, and nasal cavity mucosa. For large organs, several small VOIs were placed on the 

organ, excluding regions that may have been affected by motion and regions in proximity of blood 

vessels as much as possible. The coordinates and dimensions of the VOIs were transferred to 

MATLAB R2021b (The MathWorks, Inc., Natick, MA, USA) and image analysis was performed 

using an in-house developed code package. A segmented organ map was created for each dataset 

by first, calculating the mean and standard deviation of PET voxel values covered by the initial set 

of small VOIs for each organ; and subsequently, increasing the VOI diameters and assigning an 

organ index to the voxels with PET values within the mean ± standard deviation of the organ and 

CT values within a predefined Hounsfield unit range specific to the organ. The SUV ‒ defined as 

the ratio of image-derived activity concentration (decay corrected to the injection time) to the 

administered dose divided by the body weight ‒ was expressed as SUVmean for all organs, 

calculated from the mean of all voxels assigned to the organ; except for the lymph nodes, for which 

SUVpeak was calculated for each lymph node individually. SUVpeak was defined as the mean 

value the eight hottest voxels within the VOI, equivalent of ~0.1 mL volume. Air fraction 

correction in the lungs was investigated, using the co-registered CT image values. Thymus fatty 

degeneration was evaluated in all subjects using the low-dose CT images, with four-point scores: 
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Score 0 representing complete fatty replacement of the thymus and Score 3 representing a solid 

thymic gland with predominantly soft-tissue attenuation (34). The TAC of image-derived LV 

blood pool activity concentration was plotted for each dataset and fitted with a tri-exponential 

function to derive the whole-blood clearance rate. 

Kinetic Modelling  

TBR was calculated from the ratio of the tissue activity concentration in each organ (𝐶𝑇) to the 

whole-blood activity concentration (𝐶𝑝) at any given time. It should be noted that the subscript 𝑝 

in 𝐶𝑝 conventionally represents the plasma activity concentration, whereas in this study image-

derived whole-blood activity concentration from the LV blood pool was used for all organs, except 

for the lungs, for which the RV blood pool was used. Patlak graphs (39) were generated by plotting 

the TBR vs. normalized time defined as ∫ 𝐶𝑝𝑑𝜏
𝑡

𝜏=0
/𝐶𝑝, in which tri-exponential fitted whole-blood 

TACs were used for integration. Three conventional compartmental tracer kinetic models were 

fitted on each TAC to investigate feasibility of 89Zr-immuno PET kinetic modeling and to assess 

its reliability in representing the underlaying biology in different organs. This included the one-

tissue compartmental model with three fitting microparameters (1T3P) of (𝑣𝑏 , 𝐾1, 𝑘2), two-tissue 

compartmental model with four fitting microparameters (2T4P) of (𝑣𝑏 , 𝐾1, 𝑘2, 𝑘3), and two-tissue 

compartmental model with five fitting microparameters (2T5P) of (𝑣𝑏 , 𝐾1, 𝑘2, 𝑘3, 𝑘4) (Fig. S21). 

Model fitting was performed in all cases using all available datapoints up to 49-h p.i.. The 

Levenberg-Marquardt algorithm was used for nonlinear least squares fitting, using nonuniform 

weighting factors defined for each time frame based on the frame duration and decay factor. Due 

to higher uncertainties in the two late-timepoints at 6-h and 48-h p.i. ‒ particularly due to 

significantly higher statistical noise in the input function measurement as a result of blood 

clearance ‒ and availability of just a single data point at each late timepoint, the weighting factors 

were reduced by a factor of 10 for the two late timepoints. The AIC with a correction for small 

sample sizes was used as an estimate of the prediction error to choose the model best fitting the 

data. In case of the 2T model, 𝐾𝑖 was calculated as a macroparameter representing the net influx 

rate of the tracer, defined as 𝐾𝑖 =  𝐾1𝑘3 (𝑘2 + 𝑘3)⁄ . To determine whether model parameters can 

be accurately estimated in presence of noise, practical identifiability analysis was performed in 

lungs, spleen, bone marrow (sacrum and ilium selected as regions less prone to motion), tonsils, 

and selected occipital lymph nodes, including calculation of normalized sensitivity curves, 

correlation matrix, bias, standard deviation, and root mean square error (RMSE) of the 

microparameters, as previously described (40). The scaling factor used for modeling the TAC 

noise was calculated for each subject separately by comparing the measured TAC to the modeled 

TAC, and 100 TACs were simulated with the noise model in each case to calculate the bias and 

standard deviation of the microparameter estimates. 

Peripheral Blood Assays 

Prior to the radiotracer infusion, a ~20 mL whole-blood sample was drawn intravenously from 

each subject into vacutainer tubes containing ethylenediaminetetraacetic acid (EDTA). Peripheral 

blood mononuclear cells (PBMC) were isolated from whole blood by Ficoll-Hypaque (Cytiva, 

Marlborough, MA, USA) density gradient centrifugation and red blood cell lysis was performed 

using ACK lysis buffer (Gibco/ThermoFisher Scientific, Waltham, MA, USA). PBMC were 

viably cryopreserved in fetal calf serum (FCS) with 10% dimethyl sulfoxide (DMSO), stored at -

140° C in liquid nitrogen (LN2).  
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At the conclusion of the study, PBMC were thawed and rested overnight in R15 (RPMI-1640 

supplemented with 15% FCS, 100 U/mL penicillin, 100 mg/mL streptomycin, and 2 mM L-

glutamine) at 37oC, 5% CO2. Immunophenotyping was performed by first staining the PBMC for 

dead cells using a fixable amine-reactive viability dye, followed by an extracellular stain using the 

fluorescently conjugated monoclonal antibodies listed in Table S5 in the presence of brilliant stain 

buffer (BD Bioscience) to reduce aggregate formation. Cells were then fixed in 1% formaldehyde 

and flow cytometry was performed within 24 h. CD8+ and CD4+ T cells identified from viable 

CD3+ cells were further delineated based on CD45RA and CCR7 expression into memory subsets: 

central memory (TCM), effector memory (TEM), terminally differentiated effector memory 

(TEMRA), or naïve T cells (Fig. S22). T cell activation was investigated based on CD56 

expression and co-expression of HLA-DR and CD38, and T cell exhaustion was assessed by PD-

1 expression (Fig. S23). Treg cells (CD4+, CD25+, CD127-) and MAIT cells (CD161+, Vα7.2+) were 

gated, and lastly, NK cells were gated based on CD56 and CD16 expression and B cells were gated 

based on CD19 (Fig. S24).  

PBMC were also assessed for responsiveness to SARS-CoV-2 peptides by intracellular cytokine 

staining, as previously described (41,42), using the flow cytometry panel described in Table S6. 

After overnight resting, PBMC were incubated in R15 in the presence of stimulation cocktail, 

including CD107a-PE-Cy5 (to measure the degranulation response), unlabeled CD28 and CD49d 

costimulatory antibodies, and the protein transport inhibitors, brefeldin A (MilliporeSigma, St. 

Louis, MO, USA) and Golgi Stop (monensin, BD Biosciences, Franklin Lakes, NJ, USA) Cells 

were stimulated with SARS-CoV2 peptide pools (15mers overlapping by 11) spanning the spike 

and nucleocapsid proteins (JPT Peptides, Berlin, DE) at a concentration of 3.5 μg/mL for 5 hours 

at 37°C, 5% CO2. DMSO (peptide carrier) served as a negative control and staphylococcal 

enterotoxin B (SEB; 5 μg/mL) served as a positive control. Following stimulation, cells were 

stained for viability and extracellular markers. They were then fixed in 4% formaldehyde, 

permeabilized using BD FACS Perm 2 (BD Biosciences), and intracellular staining was 

performed. Brilliant stain buffer was used during the extracellular and intracellular staining steps 

to minimize aggregate formation. Samples were then fixed in 1% formaldehyde and flow 

cytometry was performed on the next day. Detection of intracellular effector molecules (IFNγ, IL-

2, TNF-α, MIP-1β, and granzyme B) as well as the degranulation (CD107a) response were 

measured in memory CD8+ and CD4+ T cells (Fig. S25). The data were analyzed to look at the 

total response, each of the individual responses, and the polyfunctional response (i.e., production 

of combinations of the analytes above). A previously described statistical algorithm (43), based on 

the total number of collected events (memory CD8+ or CD4+) utilizing a Poisson distribution was 

used to determine if stimulated responses differed significantly from unstimulated samples to 

perform background subtraction. 

In all cases, flow cytometry was performed with a 5-laser, 40-color Aurora spectral cytometer 

(Cytek, Fremont, CA, USA) and the data were analyzed using FlowJo software version 10.8.1 (BD 

Biosciences). Polyfunctionality was mapped in SPICE software version 6.1 (44).  

Statistical Analysis  

Hypothesis testing comparing the two sets of scans from the COVID-19 group to the control group 

were performed on all datasets in GraphPad Prism version 9.5, using a two-tailed unpaired Mann-

Whitney U test. P values <0.05 were set to determine statistical significance. 
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