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Hypertrophic cardiomyopathy (HCM) is an important cause of morbidity and mortality, 
with rare pathogenic variants found in about a third of cases (sarcomere-positive). 
Large-scale genome-wide association studies (GWAS) demonstrate that common 
genetic variation contributes substantially to HCM risk. Here, we derive polygenic 
scores (PGS) from HCM GWAS, and multi-trait analysis of GWAS incorporating 
genetically-correlated traits, and test their performance in the UK Biobank, 100,000 
Genomes Project, and across clinical cohorts. Higher PGS substantially increases 
population risk of HCM, particularly amongst sarcomere-positive carriers where HCM 
penetrance differs 10-fold between those in the highest and lowest PGS quintiles. In 
relatives of HCM patients, PGS stratifies risks of developing HCM and adverse 
outcomes. Finally, PGS strongly predicts risk of adverse outcomes in HCM, with a 4 to 
6-fold increase in death between cases in the highest and lowest PGS quintiles. These 
findings promise broad clinical utility of PGS in the general population, in cases, and 
in families with HCM, enabling tailored screening and surveillance, and stratification 
of risk of adverse outcomes.  
 
 
Hypertrophic cardiomyopathy (HCM) is a primary cardiac disease characterized by 
excessive hypertrophy of the left ventricle with a population prevalence of 0.2%1. While 
many cases follow a benign course, HCM is an important cause of sudden cardiac death in 
young adults, and progressive disease is complicated by arrhythmia, stroke, and heart 
failure2,3.  Although HCM has classically been considered a Mendelian disease, a causal 
rare variant is identified in only a third of cases4,5, with population studies highlighting the 
incomplete penetrance and variable expressivity of such variants6,7. Recent genome-wide 
association studies (GWAS) demonstrated that common variants contribute substantially to 
HCM risk (SNP h2 0.29), identified many contributory loci, and highlighted the complex 
genetic architecture of HCM8-10. Polygenic scores (PGS) summarize the cumulative risk 
arising from common variants and may provide important utility for population risk prediction 
and prognostication9,11. Still, it remains unclear whether PGS can inform risk of HCM and 
clinical outcomes across broad clinical and population settings. The aim of this study is to 
develop and evaluate a PGS for HCM, assessing utility for stratification of both disease risk 
and severity in (1) individuals diagnosed with HCM, (2) relatives of affected individuals who 
would currently be recommended to undergo screening and long-term surveillance, and (3) 
the general population, including individuals carrying disease-associated rare variants such 
as those that might be identified as secondary findings. 

 
Results  
Generation and evaluation of a polygenic risk score for hypertrophic cardiomyopathy in the 
general population 
PGS was generated using the largest published GWAS comprising a total of 5,900 unrelated 
HCM cases and 68,359 controls of European ancestry from 7 cohorts (PGSGWAS), and multi-
trait analysis of GWAS (MTAG) incorporating the HCM GWAS with GWAS of 3 genetically-
correlated cardiac magnetic resonance imaging (CMR) traits (left ventricular [LV] 
concentricity, LV end-systolic volume [LVESV], and LV circumferential strain) in 36,083 
European ancestry participants in the UK Biobank (UKB) (PGSMTAG) (Figure 1)10. In an 
independent cohort of 343,182 unrelated White British ancestry participants in UKB, 
PGSMTAG was associated with risk of HCM (OR per PGSMTAG SD 2.34 [95% CI 2.12 to 2.59, 



P<2x10-16]), provided better predictive performance than PGSGWAS (Table S1), and was 
therefore used for all subsequent analyses unless otherwise stated (Figure S1). The 
distribution of PGS in the UKB population-based cohort is shown in Figure 2A. Among HCM 
cases, 75.1% (95% CI 71.4 to 79.5%) have a PGS above the population mean, while those 
with a PGS greater than one standard deviation above the mean accounted for 46.4% (95% 
CI 41.2 to 51.7%) of cases (Figure 2B). Phenome-wide association study (pheWAS) of 1,839 
clinical diagnoses in the UKB identified PGS associations with hypertension and metabolic 
phenotypes (dyslipidemia, and type 2 diabetes) and an inverse association with heart 
failure9(Figure 2C). Mendelian randomization highlighted causal influence of blood pressure 
and body mass index as previously demonstrated8, and no significant associations with lipid 
and glycaemic traits (Table S2 and S3). 
 Having demonstrated associations between PGS and HCM risk, we evaluated effect 
sizes and considered clinical utility for disease prediction. In the general population, 
individuals with PGS in the highest centile (prevalence 10.9 cases/1000 individuals) had 
substantially higher risks of HCM compared with those in the median (prevalence 0.8 
cases/1000, OR 14.5 [95% CI 9.5 to 22.2], P 3.5x10-35) and lowest centiles (prevalence 0.3 
cases/1000, OR 36.6 [95% CI 18.6 to 72.2], P 2.9x10-25) (Figure 2D and 2E, Figure S2, 
Table S4).  

Exploring the role of polygenic risk on expressivity of an HCM phenotype in 30,663 
White British ancestry UKB participants who underwent CMR, PGSGWAS was associated with 
traits that are classically seen in HCM6: increased cardiac hypertrophy (maximum LV wall 
thickness [maxLVWT]: +0.13mm per PGS SD, P 1.1x10-80; highest vs. lowest PGS centile: 
9.8 vs. 9.1mm, P 9x10-9), increased cardiac contractility (LV ejection fraction [LVEF]: +0.6%, 
P 2.7x10-64; 61.3 vs. 57.7%, P 2.7x10-13), reduced chamber volumes (LV end-diastolic 
volume [LVEDV] [-2.0ml, P 1.2x10-46; 142.1 vs. 154.9ml, P 8.3x10-8];  and LVESV [-1.7ml, P 
6.9x10-80; 55.9 vs. 66.4, P 2.7x10-10]), all of which were biventricular in nature (Figure S3, 
Tables S5 and S6), and persisted when excluding participants with HCM (Table S7). 
 
Evaluating and improving HCM PGS performance in non-White ancestry populations 
PGS derived from one ancestry underperform when applied to different or more diverse 
ancestral populations12-15. We adapted the European PGS by applying LD ancestry-specific 
references16, and evaluated its performance for HCM status in 16,349 UKB participants of 
non-White British ancestry (7,542 South Asian, 7,348 African and 1,459 Chinese ancestry), 
and for CMR quantitative traits in a subset. PGS distributions differed in the different 
ancestry groups (ANOVA P <2x10-16, Tukey adjusted P <2.5x10-8 for between group 
comparisons), with PGS highest in African ancestry (HCM prevalence 0.4%), and lowest in 
South Asian ancestry (HCM prevalence 0.1%) (Figure S4). While PGS captured differences 
between ancestries, within each ancestral group PGS performance was poorer (South Asian 
[9 HCM cases, OR per PGS SD 1.82, P 0.068]; African [27 cases, OR per PGS SD 1.21, P 
0.35]; insufficient Chinese ancestry cases to allow estimation [2 cases]) than in White British 
(OR per PGS SD 2.34, P<2x10-16). 

To improve cross-ancestral polygenic prediction we performed GWAS in an 
unrelated Chinese ancestry cohort of 174 HCM cases and 776 controls recruited from 
Singapore (no individual SNPs reaching genome-wide significance, Figure S5), and 
combined them with the existing European ancestry HCM GWAS to generate a cross-
population PGS16 (PGSChinese). PGSChinese was associated with LV volumetric (LVEDV: 
change per PGS SD -3.6ml, P 0.028) and wall thickness traits (maxLVWT: +0.28mm, P 



0.017; above vs. below mean: 9.5 vs. 8.6mm, P 0.008), which were not present when using 
the European only PGS (Figure S4). 
 
PGS modulates the penetrance of HCM-causing rare variants 
Amongst 318,945 UKB participants with whole-exome sequencing (WES), there were 640 
carriers of pathogenic or likely pathogenic variants in 8 genes encoding components of the 
cardiac sarcomere (MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL3, and MYL2) 
(“sarcomere-positive”), and a total of 336 HCM cases (43 sarcomere-positive: penetrance 
6.7% [95% CI 4.9 to 8.9%]; 293 sarcomere-negative: prevalence 0.09% [95% CI 0.008 to 
0.001%]). Among the UKB population, there was no difference in mean PGS in sarcomere-
positive and -negative participants (P 0.60) (Figure S6) arguing against any unmeasured 
relationship between rare sarcomeric variants and common variant polygenicity that might 
arise from selective ascertainment. PGS was associated with HCM in both sarcomere-
positive (OR per PGS SD 2.35, P 1.1x10-6) and sarcomere-negative participants (OR per 
PGS SD 2.15, P<2x10-16).  

To investigate the effect of PGS on penetrance of rare HCM-causing pathogenic 
variants, we further evaluated the PGS in the 640 unrelated sarcomere-positive individuals in 
the UKB (Figure 3A). Penetrance by middle-older age (median age 72 [IQR ±13 years]) in 
sarcomere-positive individuals was markedly greater in the highest quintile (HCM 
penetrance 17.2% [95% CI 10.8 to 25.3%]) when compared with the median (5.7% [95% CI 
2.1 to 12.0%]; highest vs. median quintile OR 3.69 [95% CI 1.46 to 10.67], P 0.009) and 
lowest quintiles (2.3% [95% CI 0.5 to 6.6%]; highest vs. lowest quintile OR 9.56 [95% CI 
2.95 to 43.89], P 7.3x10-4) (Figure 3B). In time-to-event analyses, the risk of HCM diagnosis 
(HR 6.54 [95% CI 2.6 to 16.5], P 6.6x10-5) and adverse HCM outcomes (HR 1.56 [95% CI 
1.1 to 2.34], P 0.029) were similarly greater in the highest compared with median quintile 
(Figure 3C, Figure S6).  

We confirmed the modulatory role of PGS on rare variants in 100,000 Genomes 
Project (GeL)17 (Figure 3D), a study that recruited individuals with rare diseases (including 
cardiomyopathies) and their relatives. Since a small proportion of the GeL cohort were 
ascertained based on cardiomyopathy, we cannot use this data to directly quantify 
penetrance, but can nonetheless assess the effect size for PGS in combination with a rare 
variant on disease risk in this cohort. There were 599 sarcomere-positive participants, with 
72 HCM cases (proportion affected 12.0% [95% CI 9.6 to 15.0%]). PGSGeL (generated from 
MTAG summary statistics leaving out the GeL cohort) was associated with prevalent HCM 
(OR per PGSGeL SD 3.53 [95% CI 2.59 to 4.80], P 9.8x10-16, OR per PGSGeL decile 1.60 
[95% CI 1.41 to 1.85]). Sarcomere-positive individuals with high PGSGeL (highest quintile) 
were more than 9 times as likely to have been ascertained as cases compared with the 
median (OR 9.50 [95% CI 3.60 to 32.6], P 4.3x10-5), and 25 times as likely compared with 
the lowest (OR 25.1 [95% CI 7.3 to 160.3], P 1.8x10-5) quintile (Figure 3E). The hazard of 
HCM diagnosis was higher in the highest quintile than at the median (HR 21.8 [95% CI 4.8 to 
98.6], P 0.0002) and lowest (HR 42.8 [95% CI 5.0 to 364.0], P 0.002) quintiles (Figure 3F). 
Finally, of 527 sarcomere-positive individuals without a diagnosis of HCM on recruitment to 
GeL, a total of 7 were diagnosed with HCM on follow-up, 5 of whom had PGSGeL in the 
highest quintile. 

 
Comparing HCM risk in participants with high PGS risk vs. pathogenic rare-variant carriers 
It has been suggested for several diseases that extreme PGS risk confers a similar 
magnitude of increased risk as the presence of Mendelian pathogenic variants (for example, 



familial hypercholesterolemia for coronary artery disease, and BRCA1/2 for breast 
cancer12,18,19).  In the UKB, HCM risk in those at the uppermost PGS extreme, defined as the 
top 0.25% (1 in 400 – a frequency comparable to population estimates of pathogenic HCM 
rare variants6) was substantially greater compared with the median PGS (OR 18.1 [95% CI 
10.0 to 32.9], P 1.6x10-21), though the risk of HCM and severity of imaging traits remained 
greater in sarcomere-positive individuals compared with those with extreme PGS risk alone 
(OR 5.4 [95% CI 2.8 to 11.6], P 2.2x10-8) (Table S8). These findings suggest that while 
genetic HCM risk is highest among carriers of rare pathogenic variants, PGS accounts for an 
important component of risk in sarcomere-negative individuals. 
 
PGS predicts risk of HCM in the relatives of HCM probands 
Understanding the penetrance of HCM in relatives of probands will have important 
implications on clinical practice (e.g. screening, and longitudinal surveillance). We sought to 
assess whether PGS modulates penetrance in relatives of sarcomere-positive HCM cases, 
and stratifies risk in gene negative families, in two cohorts. 

GeL was initially designed to evaluate genetically-unexplained rare disease through 
the recruitment of cases and their relatives, and therefore the cohort has a higher proportion 
of genetically unexplained sarcomere-negative cases than in the clinical setting (pathogenic 
rare variants were identified in 94 of 919 HCM cases). In all, 288 relatives of 193 HCM index 
cases (26 relatives of 14 gene-positive HCM cases) were recruited, of whom 116 had 
prevalent HCM and 6 were diagnosed with HCM during follow-up. PGSGeL was higher in 
probands (P<2x10-16) and affected relatives (P 3.6x10-6) compared with unaffected relatives, 
with no difference between probands and affected relatives (P=0.99). PGS was associated 
with increased risk of HCM (HCM OR per PGSGeL SD 1.74 [95% CI 1.37 to 2.21] P 5.1x10-6; 
Highest vs. Median quintile: OR 4.17 [95% CI 1.78 to 10.5], P 0.0015) (Figure 4A). Of 178 
relatives who did not have a diagnosis of HCM on recruitment, 6 were diagnosed on follow-
up (mean 5.1 years), all with PGS in the highest quintile. 

The Erasmus Medical Centre (EMC) cohort comprises 214 relatives of 184 index 
HCM cases, all carriers of rare pathogenic variants in sarcomere-encoding genes. After 
clinical evaluation, 135 relatives were found to have HCM. Although the PGSEMC (derived 
using HCM MTAG omitting EMC cohort) was not significantly associated with HCM in 
relatives (OR 1.36 per PGSEMC SD [95% CI 0.96 to 1.91], P 0.081) (Figure 4A), it was 
associated with increased maxLVWT (+1.4mm per PGSEMC SD [95% CI 0.6 to 2.1mm], P 
5.0x10-4; highest vs. lowest quintile: +3.5mm [95% CI 1.26 to 6.41], P 0.0035)  and, 
importantly, with increased risk of MACE after study enrollment (HR per PGSEMC SD 1.74 
[95% CI 1.03 to 2.91], P 0.036; highest vs. lowest quintile HR 17.7 [95% CI 0.9 to 347], P 
0.058), prevention of which is the primary motivation for cascade screening and early 
diagnosis (Figure 4B and 4C, Figure S7).  
 
PGS as a risk predictor in individuals with HCM 
Although many individuals with HCM have a relatively benign disease course, several 
clinical risk factors are associated with adverse outcomes including cardiovascular death, 
and risk stratification, especially for preventable sudden death, remains an urgent clinical 
need. We sought to investigate whether PGS was associated with adverse outcomes and 
clinical features of severity in individuals with HCM. In 382 HCM cases in the UKB, a PGS in 
the highest quintile was associated with increased risk of death and adverse cardiovascular 
outcomes after HCM diagnosis (death: HR highest vs. lowest quintile 3.88 [95% CI 1.33 to 
11.29], P 0.013; adverse outomces (HCM composite): HR 3.50 [95% CI 1.74 to 7.03], P 



4.4x10-4) (Figures 5A and 5B, Figure S8). In 683 HCM cases in GeL, cases in the highest 
quintile had a 6-fold increased risk of death after HCM diagnosis (HR 6.30 [95% CI 2.68 to 
14.78], P 1.4x10-6) (Figure 5C, Figure S8). In 101 sarcomere-positive HCM cases from a 
clinical cohort (), higher PGS was associated with a more severe hypertrophic phenotype 
(maxLVWT: per PGS SD +1.6mm [95% CI 0.61 to 2.63], P 0.002; LV mass: per PGS SD 
+13.8g [95% CI 1.5 to 26.2], P 0.03) (Figure S8, Table S9). 

 

Discussion 
In this study, we generate a PGS for HCM and validate it across several independent 
populations, showing associations with categorical disease status, quantitative traits that 
define HCM and describe disease severity, and, most importantly, adverse cardiovascular 
events. We demonstrate broad potential clinical utility for PGS across a range of settings. 
Notably, PGS robustly stratifies penetrance in carriers of rare pathogenic variants in 
sarcomere-encoding genes and identifies those in the general population at highest risk of 
developing HCM, associates with HCM risk in relatives of HCM probands, and acts as a 
novel risk marker for survival and adverse events in individuals with HCM.  
 
Findings from this study emphasize the importance of the polygenic contribution to HCM 
disease risk, classically considered a Mendelian disease caused by rare variants in 
sarcomere-encoding genes4,20. Among individuals with HCM, the recognition of polygenic, 
rather than sarcomeric HCM, will be of diagnostic importance, with potential implications on 
clinical management, reproductive counselling, and family screening21  
 
One of the key challenges in clinical practice remains understanding the variable penetrance 
and expressivity that characterize rare variants in HCM-causing sarcomeric genes2,3. In 
relatives of patients with HCM who have inherited a pathogenic variant, clinical screening 
and life-long surveillance from childhood is recommended, though many will not manifest 
until later life, if at all, and many of those who do manifest will follow a benign course without 
major adverse events. Increasingly, pathogenic variants are being identified in individuals 
with no personal or family history of HCM, as secondary findings through opportunistic 
screening alongside genetic testing for other indications22. We show that PGS has large and 
clinically meaningful effects (estimated to be approximately 10-fold when comparing quintiles 
but larger still at more extremes of distribution) in carriers of rare HCM-causing variants, that 
we expect would translate to effective risk-adjusted strategies for HCM screening and 
surveillance. Furthermore, while current medical treatments are only indicated in individuals 
with established HCM, any future development of therapies in the prevention of cardiac 
hypertrophy in at risk or genetically susceptible individuals could be of particular significance 
in the groups with highest risk of disease penetrance. This is especially true given that both 
rare variants and PGS are measurable before clinical phenotypes of HCM develop.  
 
In relatives of individuals with HCM, PGS risk modulates HCM penetrance in carriers of rare 
variants and stratifies HCM risk in gene negative cases. Relatives with higher PGS were 
more likely to have HCM, adverse outcomes, and increased wall thickness, with similar 
magnitudes of risk in relatives of both gene positive and negative HCM. Directly quantifying 
PGS with genotyping arrays may guide ongoing surveillance strategies in close relatives of 
affected individuals, though further prospective work is required. 
 



Within the general population, although PGS confers a substantially increased risk of HCM 
at the extremes of distribution (OR 15 for the highest centile compared with median), this risk 
was considerably lower than the risk arising from pathogenic rare variants (OR 79). 
However, PGS risk increases on a continuum and potentially affects a larger proportion of 
the population than rare sarcomeric variants (for example, thresholding the highest centile). 
Our population estimates of PGS performance in the UKB are limited by recruitment 
targeting participants of middle age, with survival bias and incomplete ascertainment of 
cases likely to result in underestimation of the true effect of PGS in the general population. 
The applicability of routine and widespread use of PGS for disease screening remains 
uncertain23. As with any population screening approach, targeting PGS screening to 
individuals already at higher risk based on non-genetic factors can have a large impact on 
the numbers needed to test. 
 
Among individuals with HCM, disease expressivity and prognosis is highly variable4,20,24. We 
demonstrate that PGS can stratify risk of serious adverse events in individuals with HCM, 
including a roughly 4 to 6 -fold difference in risk of death when comparing those with PGS in 

the highest and lowest quintiles. Despite the use of current clinical risk predictors of adverse 
outcomes3many individuals do not benefit from interventions aimed at reducing this (e.g. ICD 
implantation25). The addition of PGS to existing clinical risk factors will be an important area 
for future research.  
 
One of the main limitations of this and other PGS is that it has been derived from and 
extensively tested in European ancestry populations only. Despite this, we show that PGS 
stratifies ancestral risk, with the highest PGS found in African ancestry groups where the 
prevalence of unexplained LV hypertrophy is known to be highest26-29. Within each non-
European ancestry group in the UKB performance is reduced compared to European 
ancestry performance, although it still associates with HCM-related cardiac traits in South 
Asian and Chinese populations.  Furthermore, the addition of a small and individually 
underpowered Chinese ancestry-specific GWAS (Chinese) can improve the predictive 
performance of PGS. This lends hope that performing modestly sized ancestry-specific 
GWAS could be sufficient to generate PGS with comparable performance to European 
ancestry populations16. 
 
In conclusion, this study identifies multiple clinical applications for a PGS in HCM, including 
in general population screening, stratifying of rare variant carriers into higher and lower risk 
of penetrant HCM, and as a novel risk predictor of adverse outcomes in individuals with 
HCM. 

 
Online Methods 
GWAS meta-analysis and multi-trait analysis GWAS 
The base data for the HCM PGS is from the largest HCM GWAS, consisting of 5900 cases 
and 68359 unrelated controls, from 7 cohorts (100,000 Genomes Project [GeL], 
BioResource Rare Diseases [BRRD], HCM Registry [HCMR], and clinical cohorts from 
Canada, Italy, Netherlands, and the UK)10. HCM was defined as primary left ventricular 
hypertrophy, in the absence of secondary causes (uncontrolled hypertension, aortic valve 
disease, infiltrative cardiomyopathic processes, and cases arising from complex syndromes), 
using a combination of clinical, imaging and ICD-code definitions. Detailed information on 



cohorts included in the GWAS are provided in the original publication10. Cases and controls 
included in the HCM GWAS were of European ancestry. Leveraging the increased power 
generated from jointly analyzing genetically-correlated traits using the multi-trait analysis of 
GWAS (MTAG) method30, MTAG of HCM was performed using mtag30 with three genetically 
correlated traits (LV concentricity, LV end systolic volume and LV circumferential strain)10. 

 
Polygenic score derivation and evaluation 
Individual SNP weighted scores were generated from the primary discovery GWAS and 
MTAG.  The base GWAS and MTAG summary statistics were filtered to exclude rare and 
uncommon variants (minor allele frequency [MAF] <1%), and ambiguous SNPs that were not 
resolvable by strand flipping. A locus on chromosome 11 surrounding MYBPC3 was found to 
be associated with HCM in only sarcomere-positive HCM, specifically in one cohort (NL) and 
was determined to represent a founder effect10. Variants with P<1x10-5 on chromosome 11 
from 30000000 to 80000000 (GRCh37) were excluded from PGS calculation. 
 We calculated HCM PGS for unrelated (3rd degree or closer), White British 
participants in the UK Biobank (UKB; application number 47602) using variants that passed 
genotyping QC (MAF>1%, genotyping rate >0.99, HWE 1x10-6). Variants overlapping the 
base, target, and LD reference set (1000 Genomes Project Phase 3 European ancestry) 
were included. The individual SNP scores were generated using PRS-CS, a package that 
uses a Bayesian framework to model linkage disequilibrium (LD) using an external LD 
reference set and a continuous shrinkage prior on SNP effect sizes31. The phi constant was 
automatically selected by PRS-CS in an unsupervised approach (PRS-CS auto). Whole 
genome PGS scores for all included UKB individuals and testing cohorts were calculated 
using the –score function in PLINKv1.932.  

PGS was applied and tested within a range of cohorts and clinical settings. Given 
that a key factor in the predictive power of PGS is the power of the base GWAS33, we first 
compared the performance of PGS generated using GWAS (PGSGWAS, 376,730 SNP 
predictors) and MTAG10 (PGSMTAG, 374,113 SNP predictors) summary statistics in 343,182 
unrelated White British ancestry participants in the UKB. Predictive performance of PGS was 
assessed by comparing Nagelkere’s R2, area under the receiver operating characteristic 
(AUROC), and association with HCM (OR per PGS standard deviation). 

Inclusion of participants in both the testing and GWAS datasets results in substantial 
inflation of PGS performance34. To prevent this, where case-control PGS testing was 
performed in a cohort that was included in the main GWAS (for example, GeL), PGS was 
generated using a leave-one-study-out GWAS and MTAG that did not include the cohort. All 
other methods for PGS generation remained the same. In situations where only cases are 
included in the assessment of PGS, the overall MTAG results were used.  
 
Cohorts 
UK Biobank 
UKB is a population-based cohort study from half a million UK participants, with detailed 
clinical, imaging, and genetic data. Participants from UKB that were included in testing were 
unrelated (3rd degree or closer) and of White British ancestry. HCM cases were identified 
from self-report clinical data (hospital admissions and death registry), and CMR imaging (LV 
maximum wall thickness >15mm). Time to clinical event was identified from UKB first 
occurrences data, operation dates, and death dates. Participants in the imaging substudy 
were randomly invited from the overall cohort. Each underwent CMR at 1.5-T. Segmentation 



of the cine images was performed by using a deep learning neural network algorithm and 
have previously been reported6.  
 
100,000 Genomes Project 
The 100,000 Genomes Project (GeL) is a national UK programme that recruited probands 
with rare diseases and cancer from clinical centres, together with family members, and 
performed germline and somatic (for a subset of participants with cancer) whole genome 
sequencing17,35. HCM cases were identified from HPO terms at time of study recruitment, 
and ICD codes from preceding and subsequent clinical episodes. 
 
Erasmus Medical Centre cohort 
To evaluate the role of PGS in modulating penetrance of sarcomeric variants in relatives of 
HCM cases we used a subset of 214 relatives of HCM probands from an ongoing HCM 
registry at the Erasmus Medical Centre (EMC, Rotterdam)36,37. All individuals were carriers 
of pathogenic sarcomeric variants, with the exclusion of homozygous carriers or those 
carrying multiple pathogenic or likely pathogenic variants. 
 
Royal Brompton and Harefield Hospitals cohort 
Unrelated White British HCM cases from the Royal Brompton & Harefield Hospitals 
Cardiovascular Research Biobank38 (RBH) were used to assess the effect of PGS on CMR 
imaging traits. Data from the clinical CMR scan taken at or prior to study recruitment were 
used, and where sequential CMR scans were available, follow-up imaging data was 
recorded to identify changes in imaging traits.  
 
Statistical analysis 
In the UKB, PGS model performance was assessed using Nagelkerke’s R2, adjusting the 
null model for age, age2, sex and first ten principal components. The predictive AUROC was 
determined using a randomly subsetted training (70%) and validation (30%) cohort using R-
package pROC (v1.18.0)39. For association between PGS and HCM status in UKB and GeL, 
logistic regression was performed adjusting for age, age2, sex and first ten principal 
components. In EMC, this was assessed using Wald logistic mixed-effects model using 
GMMAT (v1.3.2) adjusting for fixed-effects of sex, age, age2 and first four principal 
components and incorporating a genetic relatedness matrix (GRM) estimated using GCTA 
(v1.92.2beta)40 as a random effect. For quantitative imaging traits in UKB and RBH, PGS 
association was evaluated using linear regression adjusting for age, age2, sex, first ten 
principal components, SBP and BSA and differences between means in stratified groups 
was performed with ANCOVA testing adjusted for age, age2, sex, BSA, SBP and first ten 
principal components. In EMC, the association of PGS with LV maximum wall thickness was 
assessed using a linear mixed-effects model using coxme (v2.2-17)41, adjusting for sex, age 
at imaging, age at imaging2, imaging modality (CMR vs. TTE), first four principal components 
and the GRM. Time-to-event data in UKB was evaluated using cox-proportional hazards 
model, adjusting for age, age2, sex and first ten principal components using survival (v2.44-
1.1). Hazards assumption for proportionality was assessed, and for outcomes that did not 
include death, competing risk analysis was performed. In EMC, the association between 
PGS and clinical events was assessed using a Cox proportional hazards mixed-effects 
model using R-package coxme (v2.2-17)41 adjusted for sex, first four principal components, 
GRM and presence of MYH7 rare variant genotype status. All survival curves were created 
using survminer (v0.4.9). Although clinical data was complete for most individuals in all 



cohorts, where missing data was present, individuals were excluded from analysis. All 
statistical analysis was performed in R. For multi-ancestry analysis, ancestry as categorical 
variable was included in the regression model. Was included in the regression model.  
 
Rare variant status 
The pathogenicity of rare variants in 8 definitive HCM-causing genes42 (MYBPC3, MYH7, 
TNNT2, TNNI3, TPM1, ACTC1, MYL3, and MYL2) was determined using broadly similar 
approaches across cohorts in line with ACMG guidelines43 (Supplementary Methods). 
Individuals without pathogenic or likely pathogenic variants were identified as gene negative. 
 
Outcomes 
For a diagnosis of HCM in the UKB, HCM cases were identified from self-reporting, ICD 
codes from hospital encounters and the national death register, and CMR imaging 
(maximum LV wall thickness >15mm), in the absence of aortic stenosis (Supplementary 
Methods). For the analysis of imaging traits in HCM cases, we further refined the diagnosis 
by restricting only to individuals with a LV maximum wall thickness of at least 13mm. PGS 
association with a range of HCM-relevant cardiac imaging traits associated with cardiac 
structure (maxLVWT, LVEDV, LVESV, LA volume and fractal dimensions) and function 
(LVEF, and strain measurements) was tested. Longitudinal risk of time to HCM diagnosis 
and for major adverse cardiovascular events was assessed. Clinical and operative outcomes 
were selected based on their relevance to HCM, incorporating self-reported diagnoses, 
hospital admission events, primary care records, death records (Supplementary Methods). 
 Diagnosis of HCM in additional cohorts (EMC, GeL and RBH) and clinical outcomes 
in EMC are reported in Supplementary Methods. 

 
PGS generation and testing in diverse ancestry groups 
PGS generated using European ancestry GWAS have weaker performance when tested in 
more diverse ancestry populations12-15. We first aimed to evaluate PGS performance in 
participants of Afro-Caribbean (n=661), East Asian (n=504) and South Asian (n=489) 
ancestry groups in UKB, by applying ancestry-specific 1000 Genomes Project LD reference 
sets to the European ancestry GWAS and MTAG when generating PGS. Ancestries of UKB 
participants was determined based on self-reported ancestry, followed by visualization of 
principal component plots and manual selection of principal component thresholds. Given 
that PGS are not comparable between differing ancestries due to underlying differing genetic 
architecture, analyses using PGS as a continuous variable were restricted within single 
ancestry groups. For analysis stratifying by quantiles, quantiling was first performed within 
each ancestry before being combined with other ancestries. 

PRS-CSx extends the Bayesian polygenic modeling and prediction methods of PRS-
CS by combining GWAS summary statistics from multiple ancestry groups and has been 
shown to improve cross ancestry prediction16. We aimed to evaluate the performance of 
PGS generated using this approach for the prediction of HCM-associated CMR traits in East 
Asian ancestry participants in the UKB, by combining the European ancestry GWAS with a 
small Chinese ancestry GWAS (Singapore cohort).  
 
Singapore HCM GWAS 
GWAS was performed of 184 cases and 776 controls of Chinese ancestry. Genotyping was 
performed using Infinium OmniExpress-24 kit (Illumina). Imputation was performed on the 



Michigan Imputation Server44 using Minimac4 (version 1.5.7) and East Asian reference 
genomes (1000 Genomes Phase 3 version 545, 1000 Genomes Phase 1 version 345 and 
Genome Asia Pilot46). Post imputation QC was performed at variant (HWE >1x10-7, 
genotyping >0.95, information score >0.5 and MAF >1%) level. Chinese ancestry individuals 
were identified using principal component analysis and one of a pair of 2nd degree or closer 
relatives was retained. GWAS was tested using SNPTEST47 adjusting for age, sex and first 
ten principal components. 
 
Phenome-wide association study and Mendelian randomization 
PheWAS was performed in the UKB to investigate pleiotropic effects of the HCM PGS. ICD-
9 and ICD-10 codes from death records and hospital admission episodes were translated to 
Phecodes (Phecode Map 1.2)48,49. For phenotypes with at least 20 cases, PGS-phenotype 
association was tested using logistic regression adjusted for age, age2, sex and first ten 
principal components as covariates. Significance threshold was adjusted for the total number 
of phenotypes tested (P<2.72x10-5), and data presented with Manhattan plots grouping by 
body system. PheWAS was performed using the PheWAS package50 in R version 4.0.3.  
 To further evaluate directionality of effect for key significant PheWAS associations 
(hypertension, dyslipidemia, type 2 diabetes), two-sample bidirectional Mendelian 
randomization (MR) was performed for relevant quantitative traits (systolic and diastolic 
blood pressure, hypercholesterolemia, glycated hemoglobin, and body mass index). To 
maximize MR power, the exposure trait GWAS with the largest number of significant SNPs 
after harmonization from the IEU GWAS database was used as the instrument (Table S3)51-

54, and was harmonized with the HCM MTAG. MR Steiger directionality test was used to 
evaluate the causal direction between exposure and HCM. Two-sample MR using MR Egger 
regression was performed using the TwoSampleMR55,56 and MRInstruments packages in R 
version 4.0.3. 
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Data and code availability 
Data from UK Biobank can be requested from the UK Biobank Access Management System. 
Data from 100,000 Genomes Project can be accessed following application to join the 
Genomics England Clinical Interpretation Partnership. The PGS generated using GWAS and 
MTAG summary statistics will be made available on the Polygenic Score Catalog 
(www.pgscatalog.org) upon publication following peer-review of the article. GWAS and 



MTAG summary statistics will be made available in the GWAS Catalog 
(www.ebi.ac.uk/gwas) upon publication following peer-review of the associated article10.The 
analyses reported in this article rely on previously published software, as detailed in the 
Methods, and custom code will be made available upon request. 
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Figure 1: Study overview. Bayesian genome-wide PGS were generated from a published 
European-ancestry hypertrophic cardiomyopathy (HCM) GWAS meta-analysis of seven 
case-control studies (comprising 5,900 cases and 68,359 controls; PGSGWAS), and multi-trait 
analysis of GWAS (analyzing HCM with three genetically-correlated quantitative traits 
measured using cardiac MRI [CMR] in 36,083 UKB participants: LV concentricity, LV end 
systolic volume and LV circumferential strain; PGSMTAG)10. The value of PGS to support 
clinical decision making was evaluated across three key settings: in the general population 
(including among carriers of pathogenic rare variants in HCM-causing genes [sarcomere-
positive] that might be returned as secondary findings), in relatives of HCM probands 
currently recommended to undergo cascade screening and surveillance, and in confirmed 
HCM cases under longitudinal follow up. UKB – UK Biobank, GeL – 100,000 Genomes 
Project; EMC – Erasmus Medical Centre, Netherlands; RBH – Royal Brompton Hospital, UK. 
LV – left ventricle/ventricular, LVESV – LV end-systolic volume. 
  



Figure 2: HCM PGS is associated with HCM disease status in the UK Biobank. To 
validate the PGS, we analysed associations with PGS in the UKB population. (A) PGSMTAG 
distribution in 374,845 UKB participants with and without HCM demonstrating higher PGS in 
those with HCM. (B) Cumulative curve of HCM cases ranked across PGS centiles. For 



example, approximately 75% of HCM cases have a PGS above the 50th centile. Dashed 
lines represent median, ±1 PGS SD and ±2 PGS SD. (C) Manhattan plot of HCM PGS 
phenome-wide association study in UKB, showing associations with cardiovascular and 
metabolic phenotypes. ICD-9 and ICD-10 diagnostic codes are mapped to Phecode Map 
version 1.2.  Mapped phenotypes exceeding phenome-wide significance threshold (P 
2.7x10-5, red line) are labelled. Blue line indicates nominal significance (P<0.05). Direction of 
triangle indicates the direction of effect of the PGS association. (D) HCM prevalence and risk 
in UKB across the spectrum of PGS, demonstrating substantially higher HCM prevalence in 
individuals with the highest PGS. (E) Cumulative hazards for lifetime diagnosis of HCM 
stratified by high (highest centile – red) and median (middle quintile – orange) PGS risk in 
UKB. 
  



Figure 3: PGS modulates HCM penetrance in carriers of rare pathogenic variants in 
HCM-associated genes. UKB (A-C) represents a broadly unselected population, as 
participants were not recruited based on genotype of phenotype. GeL (D-F) comprises a mix 
of participants recruited based on cardiomyopathy, and participants recruited with other rare 



diseases, cancer, or as relatives of patients with rare disease.  (A & D) show the PGS 
distribution in 640 sarcomere-positive UKB participants and 599 GeL participants with and 
without HCM, validating that PGS is higher in cases than controls. B (UKB) and E (GeL) 
show the proportion of sarcomere-positive individuals that are diagnosed with HCM, 
stratified by PGS quintile.  C (UKB) and F (GeL) show time to HCM diagnosis in highest, 
median and lowest quintiles, showing that those with higher PGS are at increased risk of 
HCM, and develop disease earlier, which is important for lifetime burden of disease 
morbidities. 
  



Figure 4: PGS associates with HCM risk and adverse outcomes in relatives of HCM 
cases. To evaluate applications of PGS in families undergoing screening and surveillance 
for HCM, we studied relatives of HCM cases in two cohorts, 100,000 Genomes Project [GeL] 
and Erasmus Medical Centre [EMC] cohort. The GeL cohort was predominantly SARC-Neg 
(281 of 288) while the entire EMC cohort was sarcomere-positive (214 relatives). (A) OR for 
HCM among relatives of HCM probands in the two cohorts, stratified by PGSGeL. (B) Violin 
and box and whisker plot of maximum LV wall thickness (maxLVWT) in sarcomere-positive 
relatives stratified by highest (N=40) and lowest (N=38) PGSEMC quintiles. Dashed line 
indicates 13mm cut-off used for guideline diagnosis of HCM in relatives of individuals with 
HCM. (C) Cumulative major adverse cardiovascular events (MACE) among 214 sarcomere 
positive relatives of HCM index patients stratified by PGSEMC above or below the median. 
MACE was defined as a composite of septal reduction therapy, cardiac transplantation, 
aborted cardiac arrest, appropriate defibrillator shock, or sudden cardiac death. To avoid 
inflation of PGS performance resulting from sample overlap, PGS were re-derived from 
GWAS leaving out the cohort that the PGS was being evaluated in (GeL – PGSGeL, EMC – 
PGSEMC). 



 
Figure 5: PGS stratifies risk of death and adverse outcomes in individuals with HCM. 
Cumulative all-cause mortality and adverse HCM outcomes after HCM diagnosis in 382 
HCM cases from the UKB (A and B) and cumulative all-cause mortality in 683 HCM cases 
from GeL (C), stratified by PGS in the highest and lowest quintiles. Adverse HCM outcomes 
includes death, stroke, cardiac arrest, ICD implantation, septal reduction therapy (alcohol-
septal ablation or surgical myectomy), LVAD implantation or cardiac transplantation. 
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