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Stabilizing the return to normal behavior
in an epidemic
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Predicting the interplay between infectious disease and behavior has been an intractable
problem because behavioral response is so varied. We introduce a general framework for
feedback between incidence and behavior for an infectious disease. By identifying stable
equilibria, we provide policy end-states that are self-managing and self-maintaining. We prove
mathematically the existence of two new endemic equilibria depending on the vaccination
rate: one in the presence of low vaccination but with reduced societal activity (the “new
normal”), and one with return to normal activity but with vaccination rate below that required
for disease elimination. This framework allows us to anticipate the long-term consequence
of an emerging disease and design a vaccination response that optimizes public health and
limits societal consequences.

Epidemic | Endemic | Behavior | Stability | Equilibria

To understand and control epidemics, models have been developed that
reflect the fundamental properties of infectious disease transmission (1). To

embody biological understanding and develop effective policy these models rely on
abstractions of complicated phenomena: mortality, reinfection, vaccination, loss of
immunity and spatial networks (2). Nevertheless, a substantial barrier to progress
has been that transmission depends on human behavior, which is impossible to
model in detail. To meet this challenge, we must consider all possible responses
with minimal assumptions about the behavioral response to disease.

A hallmark of classical models for emergent epidemic dynamics is a large initial
outbreak with final size larger than the critical herd immunity threshold (3). The
initial emergent epidemic is followed by a period of low prevalence and then outbreaks
of much smaller magnitude. This phenomenon raised concerns about the magnitude
of the initial waves of infection of Ebola in 2014 (4), SARS-CoV-2 in 2020 (5, 6),
and Mpox in 2022 (7, 8), and the potential strain on health systems from such
large initial epidemic waves in the absence of behavioral restrictions. However, in
all three settings, the initial epidemic wave was curtailed by behavioral change that
resulted from a combination of individual behavior to limit risk of exposure and
top-down restrictions.

For example, as shown in Fig. 1, in the first year of the SARS-CoV-2 pandemic,
before the emergence of the first meaningful immune-escape variant (Alpha in
November 2020), many local regions saw a second wave of the original wild-type
virus that was equal to, or larger than, the magnitude of the initial emergent
epidemic. This implies that behavioral changes, whether individual behavioral
or legislated closures, may have limited the size of the first wave, which left a
sufficiently large susceptible population that a second wave began when behavior
and contact patterns returned towards pre-SARS-CoV-2 levels. The collective
experience of these recent global emergence events suggests that disease modeling
frameworks that do not account for behavioral change are insufficient to predict
the dynamics of the emergence of pathogens exhibiting sufficient morbidity and
mortality that will drive behavioral change.

Behavioral modeling can take many forms depending on whether the behavior
patterns of interest are exogenous or endogenous to the disease. Exogenous effects
on spread of disease include seasonality or long-established societal patterns of
behavior. These are distinguished by a lack of dependence on the state of the
disease (number of susceptible, infected, or recovered people) and can be modeled
as external covariates; e.g. transmission rate as a function of relative humidity
(9) or contact rates as a function of time of year (10). In contrast, endogenous
effects (i.e. feedbacks) are dependent on the state of the system (e.g. incidence),
including individual choices to modify behavior or policy changes that influence
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behavior in response to incidence or mortality. Traditional
compartmental models omit such feedbacks and are unable
to reproduce the breadth of phenomena illustrated in Fig. 1.

Exogenous variables have been used retrospectively to
account for observed behavioral phenomena coincident with
epidemic dynamics. For example, modern technology such
as cell phone based mobility data has enabled exogenous
modeling of behavior (11–13). Modeling behavior as a
function of exogenous variables permits only retrospective
evaluation of the interaction between behavior and transmis-
sion. Policy decisions need to anticipate future changes in
behavior and thus require a framework that can account for
future behavioral change.

In this article we show that the addition of a population
level behavioral feedback (between incidence and transmission
rate) to the classical SIR model, under a surprisingly weak
set of assumptions, implies the existence of three possible
equilibrium states: (1) for high vaccination rates, disease
eradication, (2) for a medium range of vaccination, an
endemic equilibrium with return to normal activity, (3) for
low vaccination rates, a “new normal” equilibrium with
reduced societal activity. We will also show that the
SIR model with activity term can have a wider range of
stereotypical behavior, which includes qualitative dynamics
during emergence consistent with those shown in Fig. 1.

We show how a wide range of possible endogenous
behavioral responses (e.g. distancing, masking, hygiene)
can be introduced in a compartmental modeling framework
(eg. susceptible, infectious, and recovered, or SIR (14)) in a
completely general way. Rather than specify a particular
model of behavioral response, we choose reasonable and
intuitive properties as assumptions to constrain the form
of the behavioral response.
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Fig. 1. SARS-CoV-2 deaths exhibited multiple increasing waves
in some US states prior to documented immune escape. Left:
SARS-CoV-2 deaths for 54 US states and territories over the period from Feb. 1,
2020 to Oct. 1, 2020 smoothed with a 56-day moving average and normalized by the
peak deaths. Note the large gap in peaks between June and July; the traces cluster
into two groups: Peak before June (yellow) and peak after July (purple). Right:
Aggregating these two clusters (solid line is the cluster mean and shaded area
shows one standard deviation), we see that the yellow cluster exhibits a large initial
peak with either no second wave or a smaller second wave (during this time period),
whereas the purple cluster exhibits two increasing waves. The dynamic exhibited
by the purple cluster cannot be captured with a simple compartmental model and
is difficult to explain with spatial dynamics, motivating us to introduce a framework
for modeling behavior as a possible explanation. Analysis based on the JHU CSSE
COVID-19 Data (15) available at https://github.com/CSSEGISandData/COVID-19.

There has been significant work analyzing models with
feedback between incidence and vaccination behavior (willing-
ness or hesitancy) (16, 17). Bauch and Earn (16) showed the
existence of stable equilibrium vaccination demand that can
explain the challenge of attaining universal coverage. There
has comparatively little work modeling feedback between

incidence and activity (18, 19) as applied to behavioral
interventions to limit transmission. Current methods typically
rely on choosing a particular model for the feedback (20–27).
The key advance here is that we avoid the problematic issue
of model specification, so the conclusions we reach are widely
applicable, including novel emergence scenarios in unknown
behavioral contexts.

Consider a standard disease modeling framework (1, 14)
for a single well-mixed population that includes vaccination
and loss of immunity. We reflect the endogenous/exogenous
dichotomy by decomposing the transmission rate, β, into
a product of exogenous and endogenous components. The
endogenous response is represented with a single variable, a,
(the instantaneous activity of individuals averaged over the
population) that quantifies the instantaneous rate of effective
behavioral interactions. Rather than specify an exact model
for the activity dynamics, we assume that the rate of change
of activity is determined by an unspecified reactivity function.
Without specifying the reactivity function, we base our results
on the following three assumptions:

A1. Reactivity: Change of activity depends on the current
level of activity and incidence of infection.

A2. Resilience: When incidence of infection is zero, activity
will return to a baseline level.

A3. Boundedness: Activity does not exceed the baseline
level.

Reactivity reflects the assumption that the population
chooses its aggregate activity level based on information
available; specifically the currently observed activity level and
knowledge of disease incidence. This means that the reactivity
function, F , is a function of activity, a, and disease incidence,
c, or F (a, c), and does not depend on other variables. Thus,
reactivity does not reflect exogenous influences.

We define a baseline activity level as the level of activity
that the population would go to if the disease were removed
and the activity was allowed to stabilize.

Resilience is here defined as the ability of the activity to
spring back to the previous condition when distorting forces
are removed. In this case, new infections are a distorting force,
so resilience is the assumption that when disease incidence
is zero the activity averaged over the population will return
towards the baseline level. We also assume that, when there
is no incidence, the baseline activity level is stationary.

Boundedness asserts that the baseline activity level of the
population that exists in the absence of infection is also the
maximum activity level. We assign this maximum level to
be 1 in arbitrary units, so that the activity level a is always
between 0 and 1.

Using only these assumptions, we show that the disease
equilibria and stability are determined almost entirely by
the vaccination rate, v, regardless of the behavioral model.
We illustrate that accounting for an endogenous behavioral
feedback gives rise to a novel equilibrium en route to the
classical vaccine-based elimination threshold. The existence
of this novel equilibrium can be used as a way-point to guide
policy to achieve a return to normal behavior coincident with
disease control.

2 — Berry et al.
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1. Results

Starting from the reactivity assumption (A1), we first devel-
oped a framework for incorporating any reactive behavioral
dynamics into the compartmental disease modeling paradigm
(see Methods). The state of the modeled disease at any
given time can be characterized by three variables (Fig 2):
the percentage of the population that is susceptible, s, the
percentage infected, i, and the activity relative to the baseline,
a. The novelty here is that the reactivity function, F , which
determines the feedback between activity and infection rate,
is left completely unspecified. This means our results will
apply very broadly to any behavioral response that satisfies
our basic assumptions.

Fig. 2. Universal equilibria of resilient behavioral responses with
high (left) and low (right) vaccination. The state space (gray shading)
of the SIR model with endogenous behavioral feedback plotted on the susceptible
(s), infected (i), and activity (a, where a = 1 represents the baseline activity level)
axes. The susceptible and infected population sizes are instantaneously constant
along the purple and yellow surfaces, respectively. An equilibrium must occur along
the blue line that shows the intersection of the purple surface with the front of the
domain (the i = 0 plane) or along the red curve that shows the intersection of these
surfaces. When vaccine rates, v, are greater than the critical threshold, T1 (see left
panel), the only equilibrium is disease-free (blue) and resilience will drive the activity
to baseline which is the top of the blue line. When vaccination rates drop below the
T1 (right panel), the baseline endemic equilibrium (green dot) is created, along with
at least one new normal endemic equilibrium which can be anywhere along the red
curve.

First, for any model with reactivity (Assumption A1), we
find a universal vaccination threshold, T1, that is independent
of the feedback between activity and incidence. When the
vaccination rate is above this threshold any equilibrium must
be disease-free. Fig. 2 illustrates the surfaces where the
infected population (yellow) and the susceptible population
(purple) are not changing; an equilibrium can only happen
at the intersection of these two surfaces, or where the purple
surface intersects the i = 0 plane (disease-free). When
the vaccination rate is greater than T1 the only equilibrium
is disease-free (Fig. 2a, and Supporting Information figure
Fig. S.1a).

Second, by assuming resilience (Assumption A2), we prove
that when the vaccination rate is above T1 the disease-free
equilibrium is stable in the face of baseline activity (Fig. S.1a).
Resilience assumes that when incidence is zero (disease-free)
and activity is below baseline, then activity will increase.
While this seems intuitive it does not imply stability by
itself. Stability requires that even if we perturb the disease-
free equilibrium by introducing a small number of infections,
the system must return to the disease-free equilibrium. In
Theorem 3 (Supporting Information), we prove that the
disease-free equilibrium is in fact stable, as long as the
vaccination rate is above T1.

Assuming both reactivity (A1 ) and resilience (A2 ), when
the vaccination rate drops below the universal threshold T1,

the disease-free equilibrium becomes unstable, and endemic
equilibria become possible (Fig. 2b). One novel equilibrium,
which we call the baseline endemic equilibrium, is stable even
when activity is at baseline (a = 1). For a baseline endemic
equilibrium to exist, we only require that normal activity be
stationary for this incidence level, meaning that F (1, c) = 0.
Not every reactivity function, F , will have a baseline endemic
equilibrium, and we give several examples in Section 2 of
reactivity functions that show the range of possibilities. If
the baseline endemic equilibrium does exist, the infection
rate at equilibrium depends on the vaccination rate, but is
independent of the behavioral model.

While not as desirable as a disease-free equilibrium, an
endemic equilibrium with baseline activity (a = 1) may
still be preferred to permanently modifying behavior, so
it is important to determine its stability. Recall that a
bounded behavioral response limits the average activity, a,
to be at most the baseline level, a = 1, by imposing A1.
In Theorem 4 (Supporting Information), we show that for
any bounded behavioral response, there will be a second
vaccination threshold, T2, which determines the stability of
the baseline endemic equilibrium. The T2 threshold is given
by (Supporting Information),

T2 = T1 − ξF R0(ρ/γ + 1) [1]

where ξF is a constant that depends on the properties of the
reactivity function, F , near the baseline endemic equilibrium,
R0 is the average number of infections after contact in a
fully susceptible population or basic reproduction number,
and ρ and γ are rates (see Supporting Information). The
ξF constant will often be positive, and in these cases the T2
vaccination threshold will be lower than the T1 threshold. In
these cases, when the vaccination rate is higher than T2 but
less than T1, the baseline endemic endemic will be stable. For
some reactivity functions, the constant ξF can be negative or
zero, and for these reactivity functions the baseline endemic
equilibrium will not be stable for any vaccination rate. Once
the reactivity function, F , is specified, T2 can be computed
explicitly and we show how to compute T2 along with several
examples in the Supporting Information. This shows that
even when the classical threshold for effective vaccination
cannot be achieved, there can still be a substantial benefit
at a lower vaccination rate. As long as the vaccination rate
exceeds the new T2 threshold, the baseline activity level will
be stable (see examples Fig. 3).

When the vaccination rate is below both the T1 and
T2 thresholds (e.g. early stages of a novel disease before
a vaccination, v = 0) both the disease-free equilibrium
and the baseline endemic are unstable and there is no
stable equilibrium with baseline activity. In Theorem 6
(Supporting Information) we prove that there is at least
one new equilibrium (Fig. 2b), which we term a “new normal”
endemic equilibrium. Unlike the disease-free and baseline
endemic equilibrium, the incidence rate at the new normal
endemic equilibrium depends on the form of the behavioral
feedback and implies long-term behavioral changes with
activity level below baseline. When vaccination is below both
thresholds, the stability of the new normal endemic cannot
be determined universally, and it may have a complicated
dependence on the details of the behavioral feedback and
exhibit periodic cycles or chaos.

Berry et al. — October 20, 2023 — 3
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2. Examples

We emphasize that our results apply to any reactivity function,
F , that satisfies A1 - A3. To illustrate our results we introduce
three basic examples of reactivity functions.

Flinear(a, c) = w1(1 − a) − w2c [2]
Fquadratic(a, c) = (1 − a)(w1 − w2c) [3]

Fbilinear(a, c) = (1 − a)(w1 − w2c/a) [4]

These functions all satisfy resilience and boundedness for
any w1, w2 > 0 and we illustrate them in the top row of Fig. 3
for w1 = 0.1 and w2 = 10. The first two functions (2, 3) are
important because they are the leading order approximation
of any reactivity function. Note that the function Fquadratic
is quadratic in a since c = aBsi and similarly Fbilinear is
bilinear in a and i. In the Supporting Information we show
that the simplest model, Flinear, does not have a baseline
endemic equilibrium because T2 = T1. Both Fquadratic and
Fbilinear have T2 < T1, so for vaccination rates between these
thresholds the baseline endemic is stable.
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Fig. 3. Vaccination may increase or decrease infection rate
depending on the form of the behavioral response. Relationship
between activity, incidence, and vaccination rate for three example reactivity
functions (columns). In the top row we illustrate zones of increasing (brown) and
decreasing (purple) activity as a function of incidence; white indicates regions where
activity is stationary (at least instantaneously). In the middle row the equilibrium
activity is shown as a function of vaccination rate with colors indicating the disease-
free, baseline endemic, and new normal regimes. The bottom row indicates the
equilibrium incidence as a function of vaccination; stable equilibria are shown as
solid lines and unstable equilibria as dashed lines. Note that when vaccination is less
than T2 (the new normal), increased vaccination may lead to either higher (bottom
right) or lower (bottom left) infection rates depending on the reactivity function.

The primary difference between the three example reactiv-
ity functions is how quickly the equilibrium level of activity
falls off as vaccination rate decreases (Fig. 3). For Flinear
the activity versus vaccination curve is concave down, and
this moderate response results in a new normal infection rate
that increases rapidly as vaccination rate decreases (Fig. 3).
For Fquadratic equilibrium activity increases linearly with
vaccination rate. This model has the interesting feature
that a decrease in vaccination rate leads to a decrease
in activity that maintains a constant level of infection in
the new normal endemic. Finally, Fbilinear has the most

robust behavioral response, with a concave up increase in
activity as vaccination rate increases. This response results in
infection rate increasing as vaccination rates increase. Thus,
when initially introducing a vaccination to a population
the infection rate may initially increase until the critical
vaccination rate threshold T2 is reached and the baseline
endemic is stabilized. This will especially be the case for a
new vaccination that is being gradually rolled out, since a
slow change in the vaccination rate can help keep the system
near equilibrium as the new normal shifts.
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Fig. 4. Introducing resilient activity accounts for a wide range
of epidemic dynamics. Examples of the dynamics of the reactivity function
Fbilinear with high vaccination (top left, v > T1), moderate vaccination (top right,
v between T2 and T1), and low vaccination (bottom left, v < T2). Finally (bottom
right) we simulate 300 days without any vaccination followed by a linear ramp up in
vaccination between days 300 and 600 to a fixed moderate vaccination rate after
day 600. Susceptible population, s (solid blue), activity level, a (dotted blue), and
the phase transition level R−1

0 (dashed black) are scaled to the left axis while the
infected population, i (solid red) is scaled to the right axis. (See equation Eq. (17)
in the Supporting Information for details and Fig. S.3 for more examples.)

Finally, we note a fascinating feature of Fbilinear. If
we consider the fraction of the population that remains
susceptible to infection as approximately constant and set
1 − a as ‘distancing’, then we recover a form equivalent to
the Lotka-Volterra predator-prey model where infections, i,
play the role of prey and distancing, 1 − a, plays the role
of the predator (Supporting Information equation Eq. (12)).
Oscillations are present at the beginning of the epidemic,
when the susceptible population is large and almost constant.
The oscillations are not damped, but they have a very slow
decay due to the slow decrease in the susceptibles. Finally, the
model exhibits a phase transition when the the susceptible
population drops below 1

R0
, at which point the predator-

prey oscillations cease and the system reverts to a more
typical epidemic trajectory allowing the system to come to
equilibrium. These oscillations depend on the vaccination
rate (Fig. 4, Fig. S.3). This illustrates how behavioral
feedback can lead to a wide range of epidemic dynamics
including oscillations that are independent of any external
(e.g. seasonal) forcing.

3. Discussion

The collective experience of recent global emergence events
suggests that the conventional disease modeling framework
is insufficient to predict the dynamics of the emergence of
pathogens with severity or mortality that will drive behavioral
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change. Notably, the standard SIR-model overestimates the
expected magnitude of an initial outbreak (in the absence of
knowledge about future individual or legislated behavioral
change) and consequently underestimates the expected time
to and magnitude of subsequent waves. Here we describe the
dynamics and equilibria of a novel SIR-type model with a
general formulation of behavioral feedbacks.

In the first year of the SARS-CoV-2 pandemic, before
the emergence of the first meaningful immune-escape variant
(Alpha in November 2020), many places (see Fig. 1) saw a
second wave of the original wild-type virus that was equal to,
or larger than, the magnitude of the initial emergent epidemic.
Behavioral change in response to the initial wave may have left
a sufficiently large susceptible population to permit a second,
larger wave when behavior and contact patterns returned
towards pre-SARS-CoV-2 levels. We find that behavioral
feedbacks that reduce contact rates in response to increasing
infection incidence can produce these novel dynamics in the
transient period of emergence. These behavioral feedbacks
also generate novel endemic equilibria characterized by either
persistent behavior restriction or a return to pre-emergence
behavior levels if vaccination is introduced and sufficiently
high.

We have shown that for a broad range of behavioral
feedbacks between the incidence of infection and activity that
contributes to transmission (e.g. contact rates or hygiene)
there exist two novel equilibria in addition to the classic
vaccine-based herd immunity threshold. While coordinated
behavioral interventions may be sufficient to drive incidence
to 0, e.g. as was seen for SARS-CoV-1 in 2004 (28), and
Ebola outbreaks (29) prior to the incorporation of vaccination
in outbreak response (30), such interventions alone cannot
stabilize the disease-free equilibrium if behavior exhibits
resilience. In the absence of vaccination there are no stable
equilibria that have a return to normal activity. SARS-
CoV-1 is the rare example of a pathogen that emerged
and was eradicated in the absence of a vaccine; however,
reintroduction from an animal reservoir remains possible (31)
and the relaxation of the behavioral interventions (28) render
the current disease-free state unstable (32).

The newly identified regime with vaccination between
T2 and T1 has substantial policy implications for emerging
infections and eradication. In the absence of vaccines, non-
pharmaceutical interventions remain an important part of
pandemic response for emerging infections and can be onerous.
The SARS-CoV-2 pandemic led to dramatic economic (33)
and educational (34, 35) consequences. Planning for a safe
return to pre-emergence activity can minimize these off-target
effects. While eradication may still be a goal, vaccination at
a level T2 lower than the classic herd immunity threshold T1
permits a return to pre-emergence activity while maintaining
a stable, non-zero incidence. Furthermore, attaining T1 may
be challenging, particularly in the face of vaccine hesitancy,
vaccine administration logistics, or uncertainty about the
rate of loss of immunity. The existence of T2 suggests
a midpoint goal for vaccination rate that can be used to
motivate vaccination efforts.

The existence of the vaccination regime between T2 and T1
may further be useful in policies for endemic infections. The
only benefits to vaccination in the standard SIR modeling
framework without behavioral feedbacks are reductions in

morbidity and mortality. This new model implies additional
societal change, in the form of the increased activity, that
may be stabilized at or above a lower vaccination threshold
T2. Whether this represents a societal benefit or not will be
highly epidemic specific. For example, vaccination rates above
T2 may allow for relaxation of pre-screening requirements
and the costs inherent in such programs. Alternatively, one
could imagine an increase in risky behaviors, e.g. decreased
mask usage as vaccination increases. The positive correlation
between vaccination rate and equilibrium incidence under the
Fbilinear function could lead to population level assessment
of vaccine failure driven by the behavioral response. Any
specific predictions of such phenomena is speculative without
a mechanistic understanding of the explicit nature of the
feedbacks. For example Funk et al. (26) considered
that information, and thus behavioral response, may only
be available locally rather than globally and Weitz et al.
(20) considered that behavioral response may react to the
incidence of mortality rather than infection. The general
extension of the standard modeling framework for infectious
diseases that we have proposed offers a pathway to guide
more specific mechanistic investigations.

The description of these new equilibria represents a
novel advance for infectious disease and vaccination policy
development. A stable equilibrium provides a policy target
where the system is self-managing and self-maintaining.
The existence of such a stable target allows optimal policy
strategies to be formulated to reach that point. Policy
formulation without such an explicit goal requires iterative
trial-and-error which may incur economic or societal costs
that can undermine support for the process. Such adaptive
control strategies built upon iterative learning have a long
history (36–38) and are useful tools complemented by our
results showing that there are multiple advantageous stable
equilibria (disease-free or endemic) allowing a return to
normal behavior. In the face of uncertainty about the
feasibility of elimination, the endemic state with return to
normal behavior provides a valuable new policy target to
motivate action and guide policy development.

Materials and Methods

We will demonstrate the power of of our approach on the most basic
infectious disease model. Thus, we start with the Susceptible, S,
Infected, I, Recovered, R, (SIR) model for a well-mixed population
given by,

Ṡ = −βSI/N + ρR − vS

İ = βSI/N − γI [5]

Ṙ = γI − ρR + vS

N = S + I + R.

with transmission rate β, average duration of illness 1/γ, and
a conserved population N . The parameter, v, represents the
vaccination rate, which moves population from susceptible, S, to
recovered, R. Conversely, the parameter, ρ, represents loss of
immunity, which moves population from recovered, R, back to
susceptible, S. Note that this model for vaccination implicitly
includes booster immunizations, since loss of immunity will
eventually move the previously vaccinated population back into the
susceptible class and the model assumes that they may eventually
be re-vaccinated or “boosted”. The specific interpretations of the
terms and parameters in Eq. (5) is provided only for aiding in
intuition. For example, instead of reinfection the source of new
susceptible population may be births (on a longer time scale),
or there may be other methods of removing people from the
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susceptible population besides vaccination. The model and analysis
presented here may be adaptable to such interpretations since our
focus will be on the interaction of behavior and transmission.

The key to a frequency-based transmission model such as Eq. (5)
is the nonlinear (S multiplies I) term for case incidence,

βSI/N

which quantifies the incidence rate of the disease. Following (39),
we can break down the transmission rate, β, into a product of the
rate of effective contact, a, and the probability of transmission
given an effective contact, B, so that,

β = aB. [6]
The activity rate, a, represents an effective rate that can include
changes in behavior such as distancing or masking. To see this, it
is worthwhile to note the formal descriptions of a and B from (39):
a represents the rate of contacts that are of an appropriate type
for transmission to be possible if one of the hosts is infectious, and
B represents the probability that contact between an infectious
and a susceptible host does in fact lead to transmission. Using
these definitions, this framework allows for activity change that
both reduces the rate of all contacts (e.g. distancing) or the rate
of effective contacts (e.g. masking).

Substituting Eq. (6) into the formula for case incidence, C, we
define,

C ≡ aBSI/N. [7]
In this product S is the susceptible population who are having
effective interactions with people at rate a. The probability of each
interaction happening with an infected person is I/N , and B is the
conditional probability that such an interaction with an infected
person gives rise to infection. By separating β into its component
factors, we see that it is much more reasonable to assume that
B is constant (or at least that it changes on a longer time scale),
whereas a behavioral response could be quite rapid and makes it
likely that the rate of effective contact, a, could change on fast
time scales. Notice that when a = 1 we have β = B so we refer to
a = 1 as the baseline level of activity.

We are now ready to quantify the various assumptions (A1-
A3) that we will consider for the behavioral dynamics. First,
Reactivity (Assumption A1) says that the rate of change of the
activity parameter is a continuous function, F , that only depends
on the current activity, a, and case incidence rate, c, which is the
rate of new infections, c ≡ C/N (here C is raw incidence and c is
the incidence as a percentage of the total population). In other
words, reactivity allows any behavioral dynamics of the form,
(A1 : Reactivity) ȧ = F (a, c), [8]

and we call F the reactivity function. The fact that there cannot
be a ‘negative’ infection incidence implies that a ≥ 0. When a = 0
the rate of change of activity cannot be negative. Thus, in addition
to the form Eq. (8), reactivity also includes the assumption that
F (0, c) ≥ 0.

We can now quantify Resilience (Assumption A2), which states
that when incidence is zero activity will increase. Here we come
to one of the significant advantages of not specifying a model for
activity. Recall that the baseline activity level is defined to be the
level of activity that would be reached if the disease were removed
and a long time were allowed for the activity to stabilize. Since the
reactivity function, F , is not specified, we can always choose units
for a such that the baseline activity level is a = 1 by incorporating
the change of units into the definition of the reactivity function.

When a = 1, transmissibility during contacts reflects the baseline
contagiousness of the disease. All we are assuming here is that
there is some baseline value for activity, and then choosing units
which re-scale that value to one. Thus, without loss of generality,
resilience can be quantified as,

(A2 : Resilience) F (a, 0) > 0 when a < 1 and F (1, 0) = 0, [9]

which implies that when activity is below baseline activity (a < 1)
and incidence is zero (c = 0) activity will increase (ȧ = F (a, 0) >
0). We also need to assume that F (1, 0) = 0 to insure that
baseline activity is stationary when there is no incidence. The
condition Eq. (9) is all that is required when we are also assuming
boundedness (A3), but for technical reasons when the behavior

is not bounded we will also assume F (a, 0) < 0 when a > 1.
Note that we have assumed we are working in units where a = 1
corresponds to baseline activity, so a < 1 means any level of activity
that is below baseline and a > 1 means activity is above baseline.
Moreover, F (a, 0) > 0 means that, when there is no incidence, the
rate of change of activity is positive, so activity is increasing, and
this captures the assumption of resilience. Resilience also includes
the assumption that baseline activity (a = 1) is stationary when
there is zero incidence (c = 0); this assumption is captured by the
equation F (1, 0) = 0 in Eq. (9).

Lastly, Boundedness (Assumption A3) says that the baseline
activity level (averaged over the whole population) is the highest
level possible, meaning that a ≤ 1. This means that when a = 1
we must have
(A3 : Boundedness) F (1, c) ≤ 0 [10]
otherwise the activity would increase beyond the boundedness
limit of a = 1.

Thus, we consider the following infection model that incor-
porates vaccination, loss of immunity, and arbitrary behavioral
dynamics,

Ṡ = −aBSI/N + ρR − vS

İ = aBSI/N − γI

Ṙ = γI − ρR + vS [11]

ȧ = F (a, aBSI/N2)
N = S + I + R

In order to remove the algebraic equation N = S +I +R we rewrite
the model in terms of population fractions. Setting s = S/N ,
i = I/N , and r = R/N we have s + i + r = 1 and ṡ + i̇ + ṙ = 0.
Moreover, we can remove the equation for the recovered population
fraction, r, by setting r = 1−s−i in the remaining equations. Thus,
the following equations govern the fractions of the population,

ṡ = −aBsi + ρ(1 − s − i) − vs

i̇ = aBsi − γi [12]
ȧ = F (a, aBsi).

In these units, the basic reproduction number is R0 ≡ B/γ, which
defines the expected number of secondary infections due to the
initial infection in a completely naive population.
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S. Supporting Information: Stabilizing the return to
normal behavior in an epidemic

S.1. Theorems and Proofs. We first show that the disease dynamics
are contained in the region shown in Fig. 2 and can never leave.
Under the assumptions A1-A3, there is a region, Ω, (Fig. 2), such
that if the system starts within Ω, then the system will remain
inside Ω at all future times (Lemma 1 below). This property
ensures that no populations become negative and that the activity
variable a stays within its prescribed range 0 ≤ a ≤ 1. Thus, all
long-term behavior will be determined by dynamical attractors
which could be equilibria, cycles, or even chaos (40), which must
lie entirely within Ω.

Lemma 1. Under the dynamics of Eq. (12), the set

Ω = {(s, i, a) ∈ [0, 1]3 : s + i ≤ 1}

is invariant when F is resilient Eq. (9) and bounded Eq. (10).

Proof. Note that when a = 0 we have F (0, 0) ≥ 0 by Eq. (9)
(resilience), and when a = 1 we have F (1, Bsi) ≤ 0 by Eq. (10)
(boundedness). So the a component is always pointing into Ω and
we need only consider the (s, i) variables. When i = 0 we have
i̇ = 0 and when ṡ = 0 we have ṡ = ρ(1 − i) ≥ 0, so along each of
these boundaries the vector field is pointing into the set Ω. Finally,
we check the boundary s + i = 1, where ṡ = aBs(1 − s) − vs and
i̇ = aBs(1 − s) + γ(1 − s) so that (ṡ, i̇) · (1, 1) = −γ + (γ − v)s < 0
meaning that the vector field is always pointing into the set (since
(1,1) is the outward pointing normal vector to the boundary s+i = 1
and the inner product of the vector field with this outward pointing
normal is negative).

The lemma shows that for any reactive behavioral response
function, F , which is resilient and bounded, the dynamics of the
disease will always preserve some natural constraints that we
expect. For example, the variables s, i, and r represent fractions
of the population and so they should always be between zero and
one and they should always sum to one. If we view the variables s
and i as lying in a plane, these constraints imply that they must
always lie in a triangle as shown in Fig. S.1. If we now add the
activity variable in the vertical dimension (coming out of the plane
of the paper in Fig. S.1), we see that we have a solid shape with
horizontal triangular cross sections as shown in Fig. 2.

Another natural limitation is that the activity variable, a,
cannot be negative, since that would imply that members of the
infected population are moving directly back into the susceptible
population. The model does allow loss of immunity and re-infection
through the ρ parameter, but as an axiom we do not permit
‘negative’ infections. It would also be possible to allow immediate
re-infection by using a term proportional to the recovered and
infected populations, however, for simplicity we assume here that
recovery imputes at least a temporary immunity, and the length
of time of this immunity is controlled by ρ. Altogether, taking the
solid shape with triangular horizontal cross-sections and restricting
the height to be between zero and one we have the gray solid shape
shown in Fig. 2 which we call the domain, Ω, of the dynamics.

The way we constructed the domain in Fig. 2, the dynamics
of the disease should be constrained to that region for all time,
however, a poorly specified dynamical model could allow the
dynamics to ‘escape’ the domain, violating our axioms. So our first
result is Lemma 1, which shows that for any resilient and bounded
activity function, the state cannot escape and is confined to the
domain in Fig. 2 forever. This result, although a bit cumbersome to
check, simply requires showing that along each surface of the solid
shape all the arrows of the dynamics are always pointing inwards.
Notice that our key assumptions of resilience and boundedness
concern the boundaries of the domain. For example, resilience says
that F (a, 0) > 0, meaning that it only constrains what happens
when the rate of incidence, c = aBsi, is zero, which is only true
when either i = 0 or s = 0 or a = 0, and these are the front
square surface, left square surface, and bottom triangular surface
of the domain respectively. Resilience says that along each of these
three surfaces, the vertical component of the arrows that define
the dynamics are pointing upwards, towards increasing activity.
Boundedness says that F (1, c) ≤ 0, and activity is only equal to 1

Berry et al. — October 20, 2023 — 7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2023. ; https://doi.org/10.1101/2023.03.13.23287222doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287222
http://creativecommons.org/licenses/by-nc-nd/4.0/


869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

0 1

0

1

0 1

0

1

0 1

0

1

Fig. S.1. Equilibria and dynamics projected on the suscepti-
ble/infected plane. Here we show three horizontal slices (fixed activity slices)
from the domain, Ω, shown in Fig. 2. The top left and top right slices show the top
of the domain (a = 1) with high and moderate vaccination rates respectively. The
bottom slice is from the middle of the domain when the vaccination rate is very low
and only the new normal endemic is stable. Note that the flow arrows, curves, and
intersections shown in these cross sections depend on the disease parameters but
are independent of the behavioral dynamics (except for the activity level, a, of the
new normal endemic shown in the bottom panel).

along the top triangular surface of the domain. So boundedness
implies that along this top surface the vertical component of the
arrows that define the dynamics must not point up (they can point
down or horizontally or be zero).

Our main result on equilibria is stated next, and will be derived
in stages.

Theorem 2. Consider the reactive dynamics Eq. (12) for any
twice differentiable F : [0, 1]2 → R that is both resilient and
bounded. Then,

• There is only one disease-free equilibrium, and it has baseline
activity (a = 1).

• When the vaccination rate is high enough, namely,

v > T1 ≡ ρ(R0 − 1)

the disease-free equilibrium is the only equilibrium in Ω and
it is locally asymptotically stable.

• When v < T1 the disease-free equilibrium is unstable and
there exists a unique baseline endemic equilibrium (a = 1)
and at least one new normal endemic equilibrium (a < 1).

• The baseline endemic equilibrium is stable when,

v > T2 ≡ ρ(R0 − 1) + ξF R0(ρ/γ + 1)

where ξF is a constant that depends on F .
• If the vaccination rate is below T2 then the only stable

equilibria are new normal endemic equilibria (a < 1) and at
least one new normal endemic equilibrium must exist.

Theorem 2 follows immediately from Theorems 3-6 below. For
the T2 threshold, we do not have an explicit formula for the constant
ξF , however we will show that it is given by ξF = Fa(1,0)

Fac(1,c) for
some c ∈ (0, γi), and we will show that Fa(1, 0) < 0 so when
Fac(1, c) > 0 we have T2 < T1. It is also possible to have T2 ≥ T1
and in these cases the baseline endemic is never stable. In practice,
it is straightforward to find the second vaccination threshold by
solving the equation Fa

(
1,

ρ(R0−1)−T2
R0(ρ/γ+1)

)
= 0 for T2. For examples

that show how to find T2 see Section S.2.
To motivate the basic dichotomy for equilibria in terms of

infection rate (disease-free vs. endemic), note that setting di/dt = 0
immediately implies that either i = 0 or aBs − γ = 0. The former

case is the disease-free equilibrium, and, in the latter case, one can
show that the fraction of the infected population will be,

i =
(a − 1)R0ρ + ρ(R0 − 1) − v

aR0(γ + ρ)
. [13]

This cannot be negative, and since a ≤ 1 the first term in the
numerator is negative or zero, so we immediately see that when
the vaccination rate is greater than ρ(R0 − 1) there cannot be
any equilibria of the form Eq. (13). At this point we have only
made Assumption A1, and we already have a universal vaccination
threshold which we call,

T1 ≡ ρ(R0 − 1). [14]

When the vaccination rate is above T1, the only possible equilibrium
is the disease-free equilibrium, and this holds for any reactivity
function F .

In order to analyze the stability of equilibria, we will frequently
make use of the Jacobian matrix of partial derivatives of the right
hand side of Eq. (12) which is,(

−aBi − v − ρ −aBs − ρ −Bsi
aBi aBs − γ Bsi

aBiFc aBsFc Fa + BsiFc

)
where Fa and Fc are shorthand for partial derivatives and are
evaluated at (a, aBsi) in the Jacobian.

Theorem 3 (Disease-Free Equilibrium). For any reactive dy-
namics of the form Eq. (12), every disease-free equilibrium has
s = ρ

ρ+v
and the equilibrium activity level solves F (a, 0) = 0.

When the vaccination rate, v, is below the universal threshold,
T1 ≡ ρ(R0 − 1) all disease-free equilibria are unstable.

If we also assume that the behavior is resilient, there is only
one disease-free equilibrium. It has baseline activity (a = 1), and
is stable when the vaccination rate is greater than T1.

Proof. Setting the equations in Eq. (12) equal to zero and
substituting i = 0 for a disease-free equilibrium we immediately
find that B = b = 0 and s = ρ

ρ+v
and F (a, 0) = 0. The Jacobian

of the right hand side of Eq. (12) at this equilibrium is, −v − ρ − Bρ
v+ρ

− ρ 0
0 Bρ

v+ρ
− γ 0

0 Fc(a, 0) Bρ
ρ+v

Fa(a, 0)


and the eigenvalues are λ1 = −v − ρ, λ2 = Bρ

ρ+v
− γ, and λ3 =

Fa(a, 0). When v < T1 we have λ2 > 0 which implies that the
equilibrium is unstable. Since this Jacobian applies to any disease-
free equilibrium, this means that a vaccination rate below T1
implies that any disease-free equilibrium will be unstable.

If we assume the behavioral dynamics are resilient, we have
immediately that F (1, 0) = 0 so that there is a disease-free
equilibrium with baseline activity, a = 1. Moreover, resilience
says that F (a, 0) > 0 whenever a < 1, so there is only one disease-
free equilibrium, and it has baseline activity. To analyze the
stability of this disease-free equilibrium, note that F (1, 0) = 0
implies

λ3 = Fa(1, 0) = lim
δ→0+

F (1, 0) − F (1 − δ, 0)
δ

= lim
δ→0+

−F (1 − δ, 0)
δ

≤ 0

where the final inequality follows from the fact that F (1 − δ, 0) > 0
by resilience. So when Fa(1, 0) < 0 and v > T1, all the eigenvalues
of the Jacobian are negative and the disease-free equilibrium is
asymptotically stable. The cases of v = T1 and Fa(1, 0) = 0 are
special cases known as non-hyperbolic equilibria, and stability in
these cases have to be determined separately from the general
stability analysis. Since it is unlikely that the vaccination rate
would be exactly equal to T1, we will leave that case aside (which
is why we assume v is strictly less than T1 in the statement of the
result). However, to avoid additional assumptions on F , we must
also consider the non-hyperbolic case when Fa(1, 0) = 0.

While the stability of non-hyperbolic equilibria is typically
difficult to analyze, in the case of a bounded behavioral model
we can prove that the disease-free equilibrium is still stable even
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when Fa(1, 0) = 0 (as long as v > T1). To show this, we will use a
technical notion of stability known as Lyapunov stability, which
says that for any small region around the equilibrium, we can
find an even smaller region such that if you start in the smaller
region you will never leave the first region. We will prove this
by finding ϵ0 > 0 such that for any ϵ ∈ (0, ϵ0) we can find an
invariant open set inside the ϵ-ball that contains the equilibrium.
The basic intuition is that because the system has two negative
eigenvalues, when we get close enough to the equilibrium, the first
two components of the vector field will be pointing into a cylinder
surrounding the equilibrium. Moreover, because of resilience, the
vector field must be pointing upwards on the bottom of the cylinder
(as long as the cylinder is taken sufficiently small), and assuming
boundedness the dynamics cannot leave the top of cylinder. Thus,
the cylinder will be invariant under the dynamics.

Fix ϵ > 0, then for each a ∈ (1 − ϵ, 1) we have F (a, 0) > 0
by resilience, and since F is continuous there must exist some δa

such that F (a, c) > 0 for all c < δa and we can choose δa to be
a continuous function of a. Let δ = maxa∈[1−ϵ,ϵ]{min{ϵ − (1 −
a), δa}}, which exists since it is a continuous function on a compact
set, and let ā be the largest value of a with δa = δ. We can now
define a cylindrical region O = {(s, i, a) : ||(s, i) − (ρ/(ρ + v), 0)|| <
δ/ max{1, B}, |a − 1| < 1 − ā}. To see that O is invariant, note
that the bottom of the cylinder is the set with a = ā and δā = δ,
so F (ā, c) > 0 for all c < δ and ||(sρ/(ρ + v), i)|| < δ/B so we
have c = aBsi ≤ B||(s, i) − (, 0)| < δ (since a, s, ρ/(ρ + v) ≤ 1 and
i < δ/B) so each point on the bottom of the cylinder is within
the radius where ȧ > 0, so the vector field is pointing up into the
cylinder. Note that a similar argument can be made for the top
of the cylinder using the fact that resilience includes F (a, 0) < 0
when a > 1, or simply using boundedness in which case the top of
the cylinder is just a = 1.

Next we need to show that the vector field along the walls of
the cylinder is pointing into the cylinder, and this will require
taking ϵ > 0 sufficiently small. We first use Taylor’s theorem to
argue that sufficiently close the equilibrium the vector field looks
close to its linearization namely, writing Eq. (12) as ẋ = f(x)
where x = (s, i, a)⊤ and calling the equilibrium x0 = (s, i, a)⊤ =
(ρ/(ρ + v), 0, 1)⊤ we have, f(x0) = 0 so Taylor’s theorem says,

f(x) = Df(x0)(x − x0) + R(x)||x − x0||

where R(x) → 0 as x → x0. Now take the vector x − x0 which
points away from the equilibrium and orthogonally decompose it
as x − x0 = v + va, where va is the component in the a-direction
and v is the projection of x − x0 into the (s, i)-plane. Taking the
inner product v we have

v · f(x) = v⊤Df(x0)(x − x0) + v · R(x)||x − x0||

and in the non-hyperbolic case

Df(x0)(x − x0) = Df(x0)v + Df(x0)va = Df(x0)v,

so writing v̂ = v/||v|| we have,∣∣∣ v̂ · f(x)
||x − x0||

− v̂⊤Df(x0)v̂
||v||

||x − x0||

∣∣∣ ≤ ||R(x)||.

Now note that along the walls of the cylinder O we have ||v||/||x −
x0|| < δ

ϵB
< 1

B
(since δ < ϵ), so choose ϵ0 > 0 sufficiently small so

that for all ||x − x0|| < ϵ we have ||R(x)|| < − max{λ1, λ2}. Then
||R(x)|| ≤ |v̂⊤Df(x0)v̂| (since the latter is the Raleigh quotient for
Df(x0) orthogonal to (0, 0, 1)⊤ and λ1, λ2 < 0 are its eigenvalues
in that subspace) and it follows that v̂·f(x)

||x−x0|| < 0 (since ||R(x)|| is
sufficiently small that it must have the same sign as v̂⊤Df(x0)v̂).
Notice that v̂ is the orthogonal projection into the (s, i)-plane of
the vector pointing away from the equilibrium (and is thus normal
to the cylinder wall pointing outwards). Thus the vector field f(x)
must be pointing into the cylinder O, since its inner product with
v̂ is negative.

So we conclude that for resilient behavior with Fa(1, 0) < 0 the
disease-free equilibrium is asymptotically stable, and even when
Fa(1, 0) = 0 the disease-free equilibrium is Lyapunov stable.

Thus we have seen that the disease-free equilibrium requires
stabilizing baseline activity (a = 1), and for resilient behavioral

dynamics a sufficient condition is a high enough vaccination rate,
v > T1.

Next we turn to equilibria that have nonzero disease levels.
Assume there is an equilibrium (s, i, a) of Eq. (12) with i > 0.
Solving for the equilibrium yields

s =
γ

aB
, i =

(a − 1)Bρ + γ[(R0 − 1)ρ − v]
aB(γ + ρ)

. [15]

Notice that since a ≤ 1, having a vaccination rate v > ρ(R0 − 1)
implies that i < 0, so no endemic equilibrium exists. Recall that
this parameter range is exactly where the disease-free equilibrium
is stable (Theorem 2).

On the other hand, if v < ρ(R0 − 1), then for every value of a
satisfying F (a, c) = 0 an endemic equilibrium (s, i, a) exists. In
other words, these endemic equilibria are created as the vaccination
rate v drops through the stability threshold T1 = ρ(R0 − 1).

Theorem 4 (Baseline Endemic Equilibrium). For any F the
model Eq. (12) has at most two equilibria with baseline activity
(a = 1) in Ω, namely, the disease-free equilibrium from Theorem
3, and an endemic equilibrium with s = R−1

0 and i = ρ(R0−1)−v
R0(ρ+γ) .

This second equilibrium is called the baseline endemic equilibrium,
it exists when F (1, γi) = 0, and it is only in Ω when v < ρ(R0 − 1)
(meaning the disease-free equilibrium is unstable). When F is
Bounded (satisfies Eq. (10)), this endemic equilibrium is stable if
and only if Fa(1, γi) ≤ 0. Moreover, there exists c ∈ (0, γi) such
that the stability condition is,

v ≥ ρ(R0 − 1) +
Fa(1, 0)
Fac(1, c)

(ρ/γ + 1)R0

and the equilibrium is locally asymptotically stable if the inequality
is strict.

Proof. Setting a = 1 the equation i̇ = 0 immediately reveals that
either i = 0 (the disease-free equilibrium) or s = γ/B = R−1

0 .
Setting ṡ = 0 we find i = ρ(R0−1)−v

R0(ρ+γ) and the instantaneous case
rate is C/N = Bsi = γi. Now, by Eq. (10), for any δ > 0 we
have, F (1, γi + δ) ≤ 0 and F (1, γi − δ) ≤ 0, and since we are at
equilibrium we have F (1, γi) = 0 which implies

Fc(1, γi) = lim
δ→0+

F (1, γi + δ) − F (1, γi)
δ

= lim
δ→0+

F (1, γi + δ)
δ

≤ 0

Fc(1, γi) = lim
δ→0+

F (1, γi) − F (1, γi − δ)
δ

= lim
δ→0+

−F (1, γi − δ)
δ

≥ 0

so we have Fc(1, γi) = 0. This fact simplifies the Jacobian at the
equilibrium which becomes(

−Bi − v − ρ −γ − ρ γi
Bi 0 −γi
0 0 Fa(1, γi)

)
with characteristic equation

0 = (Fa(1, γi) − λ)(λ2 + λ(v + ρ + Bi) + Bi(γ + ρ))
= (Fa(1, γi) − λ)×(

λ2 + λ

(
v + ρ +

ρB − ργ − γv

ρ + γ

)
+ ρB − ργ − γv

)
Thus, λ = Fa(1, γi) is an eigenvalue and the remaining two
eigenvalues are

λ = −(v + ρ + Bi)/2 ±
√

(v + ρ + Bi)2/4 − Bi(γ + ρ)

= −
1
2

(
v + ρ +

ρB − ργ − γv

ρ + γ

)
±√

1
4

(
v + ρ +

ρB − ργ − γv

ρ + γ

)2
− (ρB − ργ − γv) [16]

since all these variables and parameters are positive, from the first
expression for λ we have

Re
(√

(v + ρ + Bi)2/4 − Bi(γ + ρ)
)

< (v + ρ + Bi)/2
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so that the real part of both of these eigenvalues are negative.
Thus when Fa(1, γi) > 0 this equilibrium is unstable and when
Fa(1, γi) < 0 it is stable. Now by the mean value theorem, there
exists c ∈ (0, γi) such that,

Fa(1, γi) = Fa(1, 0) + Fac(1, c)γi < 0

and plugging in for i and solving for the vaccination rate we find
v > ρ(R0 − 1) + Fa(1,0)

Fac(1,c) (ρ/γ + 1)R0.

Recall that Fa(1, 0) ≤ 0, so assuming Fac(1, c) > 0, Theorem
4 establishes the existence of a lower vaccination threshold for
stabilizing the baseline endemic equilibrium. Now we turn to the
existence of a new normal (a ̸= 1) endemic (i ̸= 0) equilibrium.

Notice that in the proof of Theorem 4 there is the possibility
of complex eigenvalues meaning that the dynamics near the
baseline endemic equilibrium would behave like a damped harmonic
oscillator. However, this oscillatory behavior is entirely due to the
SIR dynamics, and does not arise from the behavioral dynamics.
Behavioral oscillations are also possible, but will depend on the
specific form of the F function that defines the behavioral dynamics.
Moreover, behavioral oscillations will only arise from the new
normal endemic equilibria addressed in Theorem 6 below. Before
considering new normal endemic equilibria, we first characterize
the possible oscillations of the baseline endemic equilibrium.

Corollary 5. The dynamics near the baseline endemic equilibrium
from Theorem 4 will be oscillatory when B is in the range

2
(

1 −
√

γ

ρ + γ

)
(ρ + γ)2

ρ
−ρ < B < 2

(
1 +
√

γ

ρ + γ

)
(ρ + γ)2

ρ
−ρ

and the vaccination rate is sufficiently low, namely

v ≤ −
(

B + ρ + 2γ
(ρ + γ)2

ρ2

)
+ 2

(ρ + γ)2

ρ2

√
Bρ2/(ρ + γ) + γ2.

The damping rate and frequency of the oscillation near the
equilibrium are given by,

Re(λ) = −
1
2

(
ρ

ρ + γ

)
(B + v + ρ)

Im(λ) =

√
ρB − ργ − γv −

1
4

(
ρ

ρ + γ

)2
(B + v + ρ)2

(where λ is the complex eigenvalue from the proof of Theorem 4)
and the damping ratio of the oscillation near the equilibrium is,

ζ ≡
|Re(λ)|√

Re(λ)2 + Im(λ)2
=
(

ρ

ρ + γ

) (B + v + ρ)
2
√

ρB − ργ − γv
.

The proof of Corollary 5 follows directly from the formulae for
the eigenvalues in Theorem 4 by elementary (albeit cumbersome)
algebra and is omitted.

Theorem 6 (“New Normal” Endemic Equilibria). Assume that
v < ρ(R0 − 1) (which implies that the disease-free equilibrium is
unstable) and that the baseline endemic equilibrium is unstable.
For any F that is Resilient and Bounded (meaning F satisfies
Eq. (9) and Eq. (10)) the dynamics of Eq. (12) have at least
one new normal endemic equilibrium in Ω with a ≠ 1 and i ̸= 0.
Conversely, when v ≥ ρ(R0 − 1) there are no new normal endemic
equilibria in Ω.

Proof. Since we are assuming i ̸= 0 and a ̸= 1, setting i̇ = 0 we
find s = γ

aB
and plugging this into 0 = ṡ we find i = ρ(aR0−1)−v

(ρ+γ)aR0
.

Thus, at any equilibrium we can write

0 = ȧ = F (a, aBsi) = F (a, γi) = F

(
a, γ

ρ(aR0 − 1) − v

(ρ + γ)aR0

)
so we define a curve Γ : [0, 1] → R2 given by
Γ(a) =

(
a, γ

ρ(aR0−1)−v
(ρ+γ)aR0

)⊤
. The endpoints of the curve are(

1, γ
ρ(R0−1)−v

(ρ+γ)R0

)⊤
and (0, −∞)⊤, so as a → 0 the curve leaves

[0, 1]2 and hits the boundary when a = R−1
0 (v/ρ + 1). Thus,

the interval of a-values for which the curve is in Ω is a ∈
[R−1

0 (v/ρ + 1), 1]. Note that if ρ(R0 − 1) < v then the left hand
endpoint is greater than 1, so the curve never enters [0, 1]2 and
there are no new normal equilibria. Otherwise, at the left endpoint,
we have s = ρ

v+ρ
and i = 0, so we have ȧ = F (R−1

0 (v/ρ+1), 0) > 0
by Resilience. At the other endpoint, we have the baseline endemic
equilibrium with a = 1 and i = ρ(R0−1)−v

(ρ+γ)R0
and ȧ = F (a, γi) = 0.

Moreover,
d

da
F ◦ Γ(a) =

d

da
F

(
a, γ

ρ(aR0 − 1) − v

(ρ + γ)aR0

)
= Fa(a, γi) + Fc(a, γi)γ

di

da

and, since F is bounded, at the baseline equilibrium we have,
d

da
F ◦ Γ(1) = Fa(1, γi)

since Fc(1, γi) = 0 as shown in Theorem 4. Recall from Theorem
4 that the baseline equilibrium is stable when Fa(1, γi) < 0 and
unstable when Fa(1, γi) > 0. Thus, when the baseline equilibrium
is unstable, we have Fa(1, γi) > 0, so d

da
F ◦ Γ(1) > 0, so for all

â < 1 sufficiently close to 1 we will have F ◦ Γ(â) < 0. Now by
the intermediate value theorem, there must be an a∗ between
R−1

0 (v/ρ + 1) and â such that F ◦ Γ(a∗) = 0 and this is a new
normal equilibrium.

S.2. Analysis of Examples. In this section we show how to apply the
Theorems above to analyze reactivity functions using the examples
from Section 2.

Example 1: Linear Response
The first reactivity function we consider is the linear model

Eq. (2) given by

Flinear(a, c) = w0 − w1a − w2c

note that 0 = F (1, 0) = w0 − w1, so w0 = w1 and we can rewrite
this model as,

Flinear(a, c) = w1(1 − a) − w2c

where w1, w2 > 0 so that when a < 1 we have Flinear(a, 0) = w1(1−
a) > 0 so Flinear satisfies resilience, and Flinear(1, c) = −w2c ≤ 0
so Flinear satisfies boundedness. At any endemic equilibrium we
have aBs = γ so the incidence is give by

c = aBsi = γi = γ

( (aR0 − 1)ρ − v

aR0(γ + ρ)

)
where we used an alternate form of Eq. (13) for i at equilibrium.
Substituting this into Flinear and setting equal to zero to find the
equilibrium we have,

0 = w1(1 − a) − w2

(
γ

( (aR0 − 1)ρ − v

aR0(γ + ρ)

))
so

v = (aR0 − 1)ρ − (a − a2)
w1

w2
R0(ρ/γ + 1)

Notice that for Flinear there is a quadratic relationship between
vaccination and activity at equilibrium, as illustrated in Fig. 3a.
However, Flinear does not necessarily have a baseline endemic
equilibrium since setting Flinear(1, c) = −w2c = 0 implies the only
solution is c = 0, which is the disease-free equilibrium. Note that
if we set w2 = 0 then every c solves Flinear(1, c) = 0 so there are
many baseline endemic equilibria, and the stability condition is
Fa(1, γi) = −w1

Example 2: Quadratic Response
The second reactivity function we consider is the quadratic

model Eq. (3), given by

Fquadratic(a, c) = (1 − a)(w1 − w2c)

where w1, w2 > 0. If we substitute c = aBsi we see that this
model is quadratic in activity, a. Notice that when a < 1 we have
Fquadratic(a, 0) = w1(1 − a) > 0 so Fquadratic satisfies resilience,

10 — Berry et al.
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and Fquadratic(1, c) = 0 ≤ 0 so Fquadratic satisfies boundedness.
At any endemic equilibrium we have aBs = γ so the incidence is
give by

c = aBsi = γi = γ

( (aR0 − 1)ρ − v

aR0(γ + ρ)

)
where we used an alternate form of Eq. (13) for i at equilibrium.
Substituting this into Fquadratic and setting equal to zero to find
the equilibrium we have,

0 = (1 − a)
(

w1 − w2γ

( (aR0 − 1)ρ − v

aR0(γ + ρ)

))
so either a = 1 (the baseline activity) or we have a new normal
endemic equilibrium at

v = (aR0 − 1)ρ − aR0(ρ/γ + 1)
w1

w2
.

Notice that for Fquadratic there is a linear relationship between
vaccination and activity as illustrated in Fig. 3a. To solve for the
second vaccination threshold, T2, we set, Fa(1, γi) = 0, and solve
for the vaccination rate, v. For Fquadratic we have,

∂

∂a
Fquadratic(a, c) = w2c − w1

so that ∂
∂a

Fquadratic = 0 implies

w1

w2
= c = γi = γ

( (R0 − 1)ρ − v

R0(γ + ρ)

)
and solving for v gives the second vaccination threshold,

T2 = ρ(R0 − 1) −
w1

w2
R0(ρ/γ + 1)

Example 3: Bilinear Response
The third reactivity function we consider is the bilinear function

Eq. (4), given by

Fbilinear(a, c) = (1 − a)(w1 − w2c/a)

where w1 > 0 and w2 > 0. It is easy to see that Fbilinear satisfies
resilience and boundedness. If we rewrite this model in terms of
activity and infection rate we have,

Fbilinear(a, aBsi) = (1 − a)(w1 − w2Bsi)

so that this model is bilinear in activity and infection rate (rather
than incidence). To solve for the equilibrium, we compute,

0 = Fbilinear(a, γi) = (1 − a)
(

w1 − w2γ

( (aR0 − 1)ρ − v

a2R0(γ + ρ)

))
so we have an baseline solution, a = 1, and a new normal solution,

v = (aR0 − 1)ρ − a2R0(ρ/γ + 1)
w1

w2
.

To find the second vaccination threshold we set

0 = Fa(1, iγ) = w2γi − w1 = w2γ

( (R0 − 1)ρ − v

R0(γ + ρ)

)
− w1

and solve for v to find,

T2 = ρ(R0 − 1) −
w1

w2
R0(ρ/γ + 1)

The connection of w1
w2

with the threshold T2 suggests that this
ratio (and its reciprocal w2

w1
) determine the strength of the response.

In Fig. S.2 we show that when w2
w1

is small (top row, yellow
curves) the behavioral response is weak and dynamics approaches
that of a classical SIRS model. Moreover, when w2

w1
is large,

the behavioral response is more robust and can even lead to an
increasing series of waves. We should note while the bilinear
response can create an arbitrarily long series waves with almost
equal peaks (as shown in the next section) this particular response
function requires v > 0 to obtain increasing waves. It may be
worth considering that a small v > 0 could be used to model a
subset of the population that become infected and recover without
ever becoming infectious, and thus never entering the i class.

Such a small percentage of cases could potentially arise from very
mild infections or through extremely rigid isolation that removes
the possibility of infecting others entirely. Of course, if one is
interested in capturing the increasing waves observed in Fig. 1,
one could also consider other response functions and we have
empirically observed increasing waves without vaccination using
more complicated response functions.
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Fig. S.2. Top: Time series of infectious population size with various levels of
avoidance strength (w2/w1) colored in a gradient from weak (yellow) to strong
(purple). Infectious population size is shown in terms of percentage of population
(left) and in terms of percentage of the peak infections over the time window (right),
mirroring Fig. 1 from the manuscript. Bottom: In the bilinear response, peak
infections decay quickly with increasing avoidance strength (left), while the height
of the second increases as a percentage of the first peak height until it eventually
exceeds the first peak (right) which is not observed in the classical SIRS model.

S.3. Connection to Predator-Prey Models. If we combine the reac-
tivity function Fbilinear from Eq. (4) with the framework Eq. (12)
we have the example model,

ṡ = −aBsi + ρ(1 − s − i) − vs

i̇ = aBsi − γi [17]
ȧ = (1 − a)(w1 − w2Bsi).

In order to understand the early epidemic dynamics of this model,
consider s ≈ 1 as approximately constant and set d = 1 − a so that
Eq. (17) can be approximately reduced to,

i̇ = ((Bs − γ) − Bsd)i [18]

ḋ = (w2Bsi − w1)d.

which is exactly the Lotka-Volterra predator-prey model. Perhaps
counter-intuitively, in this analogy the infections play the role of
prey and ‘distancing’, d, plays the role of the predator.

Regardless of the analogy, the interesting feature of this model
is that it produces oscillations with frequency

√
w1γ(R0s − 1).

This approximation is valid when these activity driven oscillations
are fast enough that s is approximately constant over the course
of an oscillation. Each oscillation reduces s slightly, and over time
the frequency decreases. Eventually, when s < R−1

0 , we have
R0s − 1 < 0 which changes the stability of the equilibrium inside
the periodic orbit of Eq. (18) from a center to a source. Thus,
s = R−1

0 represents a phase transition threshold for this model.
In Fig. 4 we illustrate the range of dynamics that this simple

reactivity function can exhibit. In this example the infectiousness
period is 6 days, loss of immunity is 300 days, the infectiousness
parameter is B = 0.5, the reactivity function parameters are
w1 = 0.01 and w2 = 100. In the high vaccination case (Fig. 4a),
the system passes through the phase transition quickly and the
dynamics resemble a classical epidemic. Similarly, when the
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vaccination rate is moderate (Fig. 4b) the system quickly relaxes
to the baseline endemic equilibrium. In the low vaccination case
(Fig. 4c) the oscillations continue for an extremely long time (in
fact they are very slowly decreasing in amplitude but would still
be visible after 100 years). In Fig. S.3 we show that by increasing
the reactivity to w1 = 0.035, the high and moderate vaccination
dynamics can initially exhibit predator-prey type oscillations until
the susceptible population is reduced to the phase transition level,
1/R0, at which point the oscillations become classically damped.
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Fig. S.3. Increased reactivity leads to oscillations even with high
and moderate vaccination. Repeating the simulations from the top row of
Fig. 4 but increasing the value of the w1 parameter to w1 = 0.035.

12 — Berry et al.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2023. ; https://doi.org/10.1101/2023.03.13.23287222doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287222
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Results
	Examples
	Discussion
	Materials and Methods
	Supporting Information: Stabilizing the return to normal behavior in an epidemic 
	Theorems and Proofs
	Analysis of Examples
	Connection to Predator-Prey Models



