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ABSTRACT 

 

Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could 

increase survival rates and better assessment of metastatic disease could improve patient care. 

As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. 

Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive 

approach to diagnose and monitor disease status. However, it is important to differentiate EV-

associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from 

those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary 

mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for 

highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples 

from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On 

average, 912 EV proteins were identified per 100µL of plasma. EVs containing high levels of 

PDCD6IP, SERPINA12 and RUVBL2 were associated with PDAC compared to the benign diseases 

in both discovery and validation cohorts. EVs with PSMB4, RUVBL2 and ANKAR were associated 

with metastasis, and those with CRP, RALB and CD55 correlated with poor clinical prognosis. 

Finally, we validated a 7-EV protein PDAC
 
signature against a background of benign pancreatic 

diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, 

our study represents the largest proteomics profiling of circulating EVs ever conducted in 

pancreatic cancer and provides a valuable open-source atlas to the scientific community with a 

comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and 

improve the outcomes of patients with PDAC. 
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INTRODUCTION 

 

Pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis of all common tumors, with 

a 5-year survival of 10%
1
. With rising incidence, it is expected that PDAC will become the 

second leading cause of cancer-related deaths by 2030
2
. A critical factor for this dismal 

development is the late diagnosis, with less than 20% of patients presenting with a potentially 

resectable and curable tumor
3-5

. Earlier cancer diagnosis could increase the survival rates by an 

estimated 5-fold, and more reliable and real-time assessment of treatment effects in patients 

with cancer could improve quality of life and reduce healthcare costs
6,7

. Unfortunately, there 

are no credentialed serologic biomarkers with high enough performance to assist in the early 

detection of PDAC. The best-established biomarker for PDAC, carbohydrate antigen 19-9 (CA19-

9), is fraught with poor sensitivity and specificity and is only used for monitoring disease on 

treatment or after surgical resection
8,9

.  

 

Extracellular vesicles (EVs), including exosomes and microvesicles, are nanosized particles 

released by most cell types and can be detected in the circulation
10

. EVs play important roles in 

transmission of oncogenic and inflammatory signals
11

, communications between cells and their 

microenvironment
12

. In addition, exoDNA, exoRNA and protein profiles highly reflect parental 

cells, therefore offering an attractive strategy for diagnosing cancers non-invasively by 

analyzing EVs in the circulation
11,13

. Previous studies employed EVs to discover biomarkers for 

PDAC
13-16

, however those discovery proteomics experiments were carried out using cell lines or 

tumor tissue, which are not representative of the heterogeneity of human PDAC and are unable 
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to recapitulate the systemic responses to cancer
14-16

. In addition, the EV biomarkers discovered 

in those studies have been compared only against healthy controls
14-16

. It is unclear how they 

would perform in subjects with underlying benign diseases of the pancreas, which is highly 

desirable from the clinical standpoint as many patients with PDAC have underlying chronic 

pancreatitis and cysts. 

  

To meet this need, we conducted a large EV proteomics study from peripheral blood across a 

range of patients with pancreatic cancer, benign pancreatic diseases such as chronic 

pancreatitis and intraductal papillary mucinous neoplasm (IPMN), and healthy controls. 

Circulating EV (cEV) proteins detected included those involved in metabolism and immune 

regulation, in addition to proteins involved in protein binding, exocytosis, endocytosis and 

regulation of cellular protein localization that have been identified in previous studies
17,18

. We 

subsequently discovered multiple biomarker candidates for cancer diagnosis and verified 

several of them in an independent cohort of patients with the potential to aid in diagnosing 

pancreatic cancer. In addition, we identified a set of cEV proteins associated with metastasis 

which could provide a valuable resource for future biomarker studies. 

 

RESULTS 

 

Proteomics Characterization of Circulating EVs 

In this study, we sought to identify proteins in extracellular vesicles in the blood that may be 

used as biomarkers for the diagnosis and prognosis of pancreatic cancer. With the approval of 
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our institutional review board, we enrolled a total of 124 patients to the discovery cohort of 

this biomarker study (Methods and Supplementary Table 1).  Subjects in the pancreatic cancer 

group (N=93) had a mean age of 66.5 years (range, 37-91), and 48.4% were female. All subjects 

had biopsy-proven disease. Thirty subjects had early-stage disease (stages I-II) and 63 had 

advanced disease (stages III-IV). Patients with benign pancreatic diseases included chronic 

pancreatitis (N=12) with a mean age of 57.5 years (range 37-78) and with 50% females, whereas 

IPMN included individuals with main duct and side branch IPMNs (N=8) with a mean age of 68.2 

years (range 50-89) and with 87.5% being females. Subjects in the healthy control group (N=11) 

had a mean age of 53.4 years (range, 31-83) with 54.5% females (Supplementary Table 1). 

 

We employed the novel EVtrap method (Extracellular Vesicles Total Recovery And Purification) 

to capture EVs from plasma samples and overcome the traditional laborious techniques for EV 

isolation, which are not scalable for large clinical studies.  As described in recent reports, EVtrap 

is a magnetic bead-based isolation method that enables highly efficient capture of EVs from 

biofluids, confirmed by multiple common EV markers
19-23

 . Previous analyses using electron 

microscopy and nanoparticle tracking also confirmed that the vast majority of particles isolated 

by EVtrap had diameters between 100-200 nm, consistent with exosomes
19

. In addition, EVtrap 

isolates demonstrates higher abundance of CD9, a common exosome marker, as compared to 

isolates from other traditional EV isolation methods such as size exclusion chromatography and 

ultracentrifugation
19

. Over 95% recovery yield can be achieved by EVtrap with less 

contamination from soluble proteins, a significant improvement over current commercially 

available methods as well as ultracentrifugation
19,21,24

. 
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Following EV isolation, samples were digested in-solution and analyzed by liquid 

chromatography-tandem mass spectrometry (nanoLC-MS/MS) on a high-resolution mass 

spectrometer (Q-Exactive HF-X). The workflow for cEVs isolation and enrichment and 

subsequent cEV mass spectrometry analysis is illustrated in Figure 1A.  

 

First, to confirm that EVtrap can efficiently isolate extracellular vesicles from plasma, a test 

plasma sample was processed to remove platelets and other large particles and enriched for 

EVs using EVtrap beads (see methods for details). Transmission electron microscopy (TEM) 

analysis of the EV pellet showed cup-shaped extracellular vesicles (exosomes and microvesicles) 

(Supplementary Figure 1A), and nanoparticle tracking analysis (NTA) using ZetaView 

instrument (Particle Metrix) demonstrated that the isolated EVs were in the 100−200 nm 

diameter range, with a mean diameter of 152 nm (Supplementary Figure 1B).  Second, to 

assess the technical reproducibility of the EV proteomics approach, the test plasma sample was 

processed in six replicates and Pearson correlation analysis revealed a very high correlation (r2 

> 0.97) between replicates (Supplementary Figure 2A, Supplementary Table 2). These results 

provided the confidence to proceed with the analysis of our discovery set of plasma from 124 

subjects. In this cohort, we identified 1,708 unique proteins (Supplementary Table 3). The 

number of unique EV proteins detected per 100µL of plasma sample varied from 817 to 1,128, 

with an average of 912 unique proteins per sample (Supplementary Figure 2B). We did not 

observe differences between non-tumor and tumor samples regarding the overall number of 

EV proteins identified. Within the PDAC group, we did not observe significant differences in the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2024. ; https://doi.org/10.1101/2023.03.13.23287216doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287216
http://creativecommons.org/licenses/by/4.0/


 7

average number of EV proteins detected for different disease stages. Collectively, these data 

demonstrate high reproducibility of EV isolation and robust label-free MS quantification of 

cEVs. 

 

Diseases of the Pancreas Express Distinct Circulating EV Proteome Compared to Controls 

Next, we aimed at identifying specific cEV proteins associated with clinical parameters with the 

potential to serve as diagnostic biomarkers. We first compared the proteomics profile of 

individuals with underlying pancreatic diseases (PDAC, chronic pancreatitis and IPMN) against 

healthy controls. We selected EV proteins expressed in at least 50% of subjects in the disease 

group with a fold change of expression ≥2 or ≤2 compared to controls and p-value ≤0.01 after 

adjusting for multiple testing.  A total of 207 proteins were identified that met the criteria, with 

the largest number of differentially expressed markers in PDAC (176), followed by chronic 

pancreatitis (55) and IPMN (3) (Supplementary Table 4). Principal component analysis (PCA) of 

these markers showed control samples as a tight cluster segregated away from PDAC samples 

but closer to IPMN and chronic pancreatitis patients (Figure 2A). 

 

Circulating EV Proteome Discriminates Pancreatic Cancer from Benign Pancreatic Diseases 

To further assess the potential of cEV proteins for cancer detection, we compared proteomic 

profiles of cEVs between patients with PDAC with those with underlying benign diseases of the 

pancreas (chronic pancreatitis and IPMN). We identified 182 differentially expressed proteins in 

malignant cases (92 over-expressed and 90 with reduced expression) (Supplementary Table 5). 

Several of those markers had remarkable overexpression in PDAC (greater than 10-fold), 
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including PDCD6IP, SERPINA12, RUVBL2, among others, as shown in the volcano plot (Figure 

2B). Unsupervised clustering showed a clear separation between PDAC and benign pancreatic 

diseases. Individuals with IPMN were more closely related to controls, whereas chronic 

pancreatitis cases were more related to PDAC (Figure 2C). In addition, the PDAC cohort was 

separated into two subgroups: the first, enriched for early-stage tumors and more closely 

related to the other pancreatic diseases (chronic pancreatitis and IPMN); the second, enriched 

for advanced and metastatic cases with expression profiles further apart from early-stage 

cancer and pancreatic diseases (Figure 2C). We further noticed that some proteins such as 

PDCD6IP, SERPINA12, KRT20 showed statistically significant population-wise enrichment in 

pancreatic cancer compared to benign pancreatic diseases (Figure 2D, Supplementary Figure 

3). Together, these data indicate the existence of EV markers that can separate controls, benign 

and malignant pancreatic diseases, as well as proteins that separate early versus late-stage 

PDAC, suggesting their potential to serve as diagnostic biomarkers. 

 

Functional and Systems Biology of cEV Proteome 

To gain molecular insight into the functions of the 182 proteins differentially expressed in 

pancreatic cancer as compared to benign pancreatic diseases, we conducted pathway analysis 

using the Gene Ontology (GO) and REACTOME databases (Supplementary Table 5). We 

identified protein modules in protein localization, biomolecule binding/docking, peptidase 

activities among changes enriched in PDAC compared to benign diseases (Supplementary 

Figure 4). Interestingly, KRT20 (keratin 20), a gastrointestinal epithelia-associated keratin, was 

increased in PDAC patient EVs, while keratins associated basal cells, KRT4, KRT15, and KRT3, 
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were reduced. KRT20 overexpression is frequently found in pancreatic tumor tissues and 

correlates with poor prognosis
25

,  suggesting a biological basis for their high levels in the cEVs of 

PDAC patients.  

 

Interestingly, proteins associated with immunological functions showed complex regulation 

with increased representation of leukocyte mediated immunity (GO:0002443), leukocyte 

degranulation (GO:0043299), myeloid leukocyte activation (GO:0002274), and decrease in Fc 

receptor signaling (GO: 0038093), regulation of complement activation (GO:0030449), and 

immune effector process (GO:0002252) (Supplementary Table 5). These data suggest that 

direct profiling of cEVs from patient plasma provided unique insights into systemic changes in 

immune biology during pancreatic cancer development, which is lacked in analysis restricted to 

tissue or cell models.   

 

Circulating EV Proteomics Reveal Markers Associated with Metastasis and Worse Prognosis 

We then investigated whether cEV proteins can assist in the distinction of metastatic versus 

non-metastatic pancreatic cancer. We compared the cEV proteome profiles of individuals with 

metastatic cancer to those without metastasis and identified 85 proteins differentially 

expressed between the two groups (Supplementary Table 6). Supervised clustering between 

metastatic and non-metastatic diseases showed a clear separation with two distinct expression 

patterns (Figure 3A). In particular, PSMB4, RUVBL2 and ANKAR (Figure 3B) EV protein levels 

were increased in patients with metastatic disease, whereas RAP2B, SERPINA12 and IGLV4-69 

abundance levels were decreased in the cEVs of patients with metastasis (Figure 3C). Together, 
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these findings suggest the presence of a core set of cEV proteins with the potential to 

distinguish early versus metastatic pancreatic cancer.  

 

We further analyzed whether the expression of certain cEV proteins had prognostic relevance 

in our cohort. We first classified individuals with PDAC as having low or high expression of any 

given markers based on each marker's first and third quartile. Survival was estimated by the 

Kaplan Meier method. We identified that the cEV expression of RALB, CRP, and CD55 had a 

significant correlation with overall survival, with a trend for PDCD6IP (Figure 3D).  

 

Validation of cEV Markers Using Parallel Reaction Monitoring and Identification an EV Protein 

Signature for Pancreatic Cancer Diagnosis 

Because pancreatic cancer is extremely heterogeneous, the chance of identifying a single 

biomarker with sufficient diagnostic performance is likely low. Instead, the identification of a 

panel of candidate markers may have enhanced diagnostic performance.  

 

To identify a signature that shows the most discriminatory power between ‘benign diseases’ 

and ‘PDAC,’ we employed a binary classification approach using Support Vector Machines 

(SVM). Classification models, built based on a large number of proteins, contain irrelevant 

markers that can reduce the predictive accuracy. Hence, we implemented a consensus feature 

selection method based on two algorithms:  one using recursive feature elimination (RFE) 

algorithm (SVM-RFE)
26

 and second, RFE combined with a non-parametric Wilcox rank test 

(sigFeature)
27

. The top 16 markers were selected whose classification performance can be 
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tested in the independent validation cohort (Supplementary Table 7). A summary of selection 

process is shown in Supplementary Figure 5. The classification performance of these 16 

markers, individual and in all combinations, were tested using 80% training data and evaluated 

in the remaining 20% test data. The quality of training was assessed using five repetitions of 10-

fold cross-validation. The optimal kernel parameters were estimated by tuning over a wide 

range of values. Receiver operating characteristic (ROC) analysis was used as the metric to 

assess the performance of the classifier model. We found a set of 7-EV protein signature 

comprised of RUVBL2, PDCD6IP, ATP5F1, DLD, KRT20, CCT4, and SERPINAI2, that gave 100% 

accuracy when tested in the discovery cohort (Supplementary Table 7, Supplementary Figure 

6). Recurrence of these putative markers in our dataset varied from 55% to 97%. 

 

The model was further validated on an independent validation cohort whose proteome was 

obtained using an alternate technology, parallel reaction monitoring (PRM) mass spectrometry. 

The markers chosen for validation included 16 markers selected for SVM classification model 

and an additional 9 markers to result in top 25 markers that are significantly differentially 

expressed in the discovery cohort with a fold change increase in PDAC ≥ 5.5 and p-value ≤0.01 

(Methods, Supplementary Table 8). The independent validation cohort consisted of 36 new 

subjects (24 with PDAC, 6 with chronic pancreatitis, and 6 with IPMN) (Supplementary Table 9). 

A total of 10 proteins, including all 7 signature proteins, showed a significant difference (p < 

0.05) in patients with PDAC as compared to benign pancreatic diseases (Figure 4A). The 

performance of individual validated markers according to the specific underlying disease in the 

validation cohort is presented in Supplementary Figure 7. The performance of 7-EV protein 
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signature was further tested using SVM model, in our independent validation cohort, yielding 

an 89% prediction accuracy (Figure 4B, Supplementary Figure 8). As expected, we observed 

that no single marker achieved sufficiently high sensitivity and specificity as the combined 

model for the diagnosis of pancreatic cancer. 

 

 

DISCUSSION 

 

Extracellular vesicles hold a great promise as a source of potential biomarkers, making them 

attractive candidates for liquid biopsy tests. Previously, we reported that organoid cultures of 

pancreatic cancer could serve as models to discover tissue-derived EV proteins with high 

specificity for PDAC, as opposed to chronic pancreatitis and other benign gastrointestinal 

diseases
28

. A shortcoming of these tissue-based studies is the inability to discover markers 

associated to the systemic responses to cancer. Here, we performed a large-scale, 

comprehensive analysis of circulating EV proteomes directly from plasma samples of 124 

patients, with subsequent validation in a separate cohort of 36 patients. To our knowledge, this 

represents the largest proteomics profiling dataset of circulating EVs conducted in pancreatic 

cancer to date. In this study, we identified and validated new EV markers from plasma that 

distinguish patients with pancreatic cancer from subjects with benign pancreatic diseases. 

Furthermore, we discovered several cEV proteins associated with metastatic disease and poor 

prognosis. In contrast to the prior studies of experimental cell models or tissues extracts that 

were examined only against healthy subjects
14-16

, we report the identification of EV proteins in 
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plasma of patients with pancreatic cancer compared to patients with underlying pancreatic 

diseases, which is clinically relevant as many patients with pancreatic cancer have underlying 

chronic inflammation and premalignant cystic lesions.  

 

In addition, our study demonstrated the feasibility of using the novel EVtrap method
19,20

 for 

discovery of hundreds of EV proteins directly from a small volume (100uL) of plasma samples. 

This methodological advance can be adopted for biomarker discovery in other cancer types. 

Other workflows traditionally employed for EV isolation from blood samples require laborious 

techniques including lengthy ultracentrifugation steps which are unsuitable for large scale 

studies
29

. 

 

We identified several EV proteins as significantly associated with metastasis or survival. For 

instance, PSMB4 and RUVBL2 levels were increased in cEVs of patients with metastatic PDAC. 

Notably, PSMB4 (proteasome subunit beta type-4), a protein of the ubiquitin-proteasome 

degradation pathway, has been identified as the first proteasomal subunit with oncogenic 

properties and associated to poor prognosis in several tumors including melanoma, breast and 

ovarian cancers
30-33

. As expected, the EV proteomic profiles of PDAC patients exhibited 

significant heterogeneity. While the above-mentioned markers exhibited strong association 

with disease states at population levels, their abundances in individual patients varied 

significantly. Those observations highlight the need to develop multi-protein panels for 

pancreatic cancer diagnosis and prognosis.  
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We also discovered RALB, CRP and CD55 expression on EVs to have a significant correlation 

with poor survival, while PDCD6IP expression was associated with improved outcomes. 

Interestingly,  PDCD6IP (programmed cell death 6-interacting protein), was also identified as a 

PDAC-enriched protein in the tissue-based proteomics studies from Le Large et.al
34

 and 

Hoshino et.al
18

. In line with our findings, its tissue expression in liver metastasis of pancreatic 

cancer has been found to also correlate with improved prognosis in patients with PDAC in the 

study of Law et.al
35

. Collectively, these data suggest that some tissue-specific proteins can be 

isolated from circulating EVs and their quantifiable levels in the blood may have the potential to 

serve as diagnostic or prognostic biomarkers in pancreatic cancer. 

 

In our validation studies, all seven putative markers identified from the model were significantly 

enriched in the plasma of PDAC patients. Based on the top seven markers, we derived a 7-EV 

protein panel that yielded an 89% prediction accuracy for diagnosing pancreatic cancer. A 

recent modeling study showed that a new diagnostic assay for PDAC would have to perform 

with a minimum sensitivity of 88% and a specificity of 85% to reduce healthcare expenditure 

and prolong survival
6
. Serum CA19-9, the best-established blood test for PDAC, has a pooled 

sensitivity of 75.4% and a specificity of 77.6%
36

. It commonly rises late in the disease and may 

be elevated in nonmalignant conditions such as biliary obstruction and pancreatitis, making it 

unsuitable as a diagnostic biomarker for PDAC
37

. As such, our 7-EV protein signature with 89% 

prediction accuracy serves as a proof-of-concept and has the potential to facilitate the further 

development of biomarker tests for pancreatic cancer. We anticipate that for clinical use 

application, an even higher diagnostic performance is needed. Future studies are warranted to 
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investigate if combining our validated cEV proteins with other biomarkers such as cell free DNA, 

serum proteins or metabolites, as a multi-analyte biomarker assay, would yield higher accuracy 

in diagnosing pancreatic cancer.  

 

While our work involved a large cohort with 160 patients, the single-center nature is an 

inherent limitation of our study. Also, it would be ideal to perform validation with a larger 

cohort of controls to achieve greater statistical power. To balance this limitation, we increased 

the rigor of our validation by selecting controls with underlying benign diseases of pancreas as 

opposed to healthy volunteers, and an alternate quantitative technology for measuring protein 

abundance (Parallel Reaction Monitoring Mass Spectrometry) instead of MS-LC. While this 

approach increased the generalizability, it marginally reduced model prediction. Thus, the 

performance of our 7-EV protein PDAC panel should be cross validated in larger and 

multicenter populations. In addition, in this work we only used EVtrap as EV isolation method 

and mass spectrometry for protein quantification, and it is possible that there was some degree 

of heterogeneity in the extracellular vesicles analyzed. The clinical impact of biomarkers 

identified in our study will need to be cross validated using other methods.  

 

With no major treatment breakthrough for pancreatic cancer in the last decade, every effort 

should be made to diagnose this deadly cancer at earlier stages and to discover new proteins 

involved in tumorigenesis. Our study provides a valuable open resource to the scientific 

community with a comprehensive catalog of novel proteins packaged inside circulating EVs that 
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may assist in the development of novel biomarkers and improve the outcomes of patients with 

pancreatic cancer.   
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METHODS 

 

Study Design and Patient Demographics 

We conducted this study at Beth Israel Deaconess Medical Center with the approval of the 

Harvard Cancer Center Institutional Review Board. All subjects provided written informed 

consent. Clinical data and blood samples were prospectively collected from 2017 to 2019 from 

patients with pancreatic cancer, chronic pancreatitis, intraductal papillary mucinous neoplasms 

(IPMN), and age-matched controls. A total of 124 patients, including PDAC (N=93), chronic 

pancreatitis of different etiologies (N=12), IPMN (N=8), and controls (N=11), were included in 

the discovery cohort. PDAC diagnosis was established by histology or cytology, and staging was 

performed according to the American Joint Committee on Cancer guidelines (8th Edition 

2016)
38

(Supplementary Table 1). For the independent validation cohort, a total of 36 patients 

were enrolled, including PDAC (N=24), IPMN (N=6), and chronic pancreatitis (N=6) 

(Supplementary Table 9). 

 

Plasma Sample Collection and Processing 

All blood samples were collected and processed following the same standard operating 

procedure optimized for EV analysis and included the following steps: (i) whole blood was 

collected into one 10ml yellow-top tube containing acid citrate dextrose; (ii) blood was mixed 

by gently inverting the tube five times; (iii) vacutainer tubes were stored upright at room 

temperature (RT); (iv) samples were centrifuged at 1,300g for 15 min in RT; (v) plasma was 

removed from the top carefully avoiding cell pellet; (vi) repeat centrifugation of plasma at 
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2,500g for 15 min in RT; (vii) again, plasma was removed from the top carefully avoiding cell 

pellet; (viii) third centrifugation at 2,500g for 15 min in RT, then samples were aliquoted to be 

stored at -80
0
C. 

 

Extracellular Vesicle Isolation from Plasma 

We employed EVtrap for EV isolation from plasma samples
19

. EVtrap beads were provided by 

Tymora Analytical (West Lafayette, IN) as a suspension in water and were used as previously 

described in more details
19,20

. Briefly, 100 μL plasma samples were diluted 20 times in the 

diluent buffer, the EVtrap beads were added to the samples in a 1:2 v/v ratio, and the samples 

were incubated by end-over-end rotation for 30 min according to the manufacturer’s 

instructions. After supernatant removal using a magnetic separator rack, the beads were 

washed with PBS, and the EVs were eluted by a 10 min incubation with 200 mM triethylamine 

(TEA, Millipore-Sigma). The samples were fully dried in a vacuum centrifuge. 

 

Preparation of EV samples 

The isolated and dried EV samples were lysed to extract proteins using the phase-transfer 

surfactant (PTS) aided procedure. The proteins were reduced and alkylated by incubation in 10 

mM TCEP and 40 mM CAA for 10 min at 95°C. The samples were diluted fivefold with 50 mM 

triethylammonium bicarbonate and digested with Lys-C (Wako) at 1:100 (wt/wt) enzyme-to-

protein ratio for 3 h at 37°C. Trypsin was added to a final 1:50 (wt/wt) enzyme-to-protein ratio 

for overnight digestion at 37°C. To remove the PTS surfactants from the samples, the samples 

were acidified with trifluoroacetic acid (TFA) to a final concentration of 1% TFA, and ethyl 
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acetate solution was added at a 1:1 ratio. The mixture was vortexed for 2 min and then 

centrifuged at 16,000 × g for 2 min to obtain aqueous and organic phases. The organic phase 

(top layer) was removed, and the aqueous phase was collected. This step was repeated once 

more. The samples were dried in a vacuum centrifuge and desalted using Top-Tip C18 tips 

(Glygen) according to the manufacturer’s instructions. The samples were dried completely in a 

vacuum centrifuge and stored at -80°C. 

 

LC−MS Analysis of Plasma EV Proteome  

Approximate 1 μg of each dried peptide sample was dissolved in 10.5 μL of 0.05% 

trifluoroacetic acid with 3% (vol/vol) acetonitrile containing spiked-in indexed Retention Time 

Standard containing 11 artificially synthetic peptides (Biognosys). The spiked-in 11-peptides 

standard mixture was used to account for any variation in retention times and to normalize 

abundance levels among samples. 10 μL of each sample was injected into an Ultimate 3000 

nano UHPLC system (Thermo Fisher Scientific). Peptides were captured on a 2-cm Acclaim 

PepMap trap column and separated on a heated 50-cm Acclaim PepMap column (Thermo 

Fisher Scientific) containing C18 resin. The mobile phase buffer consisted of 0.1% formic acid in 

ultrapure water (buffer A) with an eluting buffer of 0.1% formic acid in 80% (vol/vol) 

acetonitrile (buffer B) run with a linear 60-min gradient of 6–30% buffer B at a flow rate of 300 

nL/min. The UHPLC was coupled online with a Q-Exactive HF-X mass spectrometer (Thermo 

Fisher Scientific). The mass spectrometer was operated in the data-dependent mode, in which a 

full-scan MS (from m/z 375 to 1,500 with the resolution of 60,000) was followed by MS/MS of 
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the 15 most intense ions (30,000 resolution; normalized collision energy - 28%; automatic gain 

control target (AGC) - 2E4, maximum injection time - 200 ms; 60sec exclusion). 

 

EV Proteome Data Processing  

The raw files were searched directly against the human Swiss-Prot database with no redundant 

entries using Byonic (Protein Metrics) and Sequest search engines loaded into Proteome 

Discoverer 2.3 software (Thermo Fisher Scientific). MS1 precursor mass tolerance was set at 10 

ppm, and MS2 tolerance was set at 20ppm. Search criteria included a static 

carbamidomethylation of cysteines (+57.0214 Da) and variable modifications of oxidation 

(+15.9949 Da) on methionine residues and acetylation (+42.011 Da) at the N terminus of 

proteins. The search was performed with full trypsin/P digestion and allowed a maximum of 

two missed cleavages on the peptides analyzed from the sequence database. The false-

discovery rates of proteins and peptides were set at 0.01. All protein and peptide identifications 

were grouped, and any redundant entries were removed. Only unique peptides and unique 

master proteins were reported. 

All data were quantified using the label-free quantitation node of Precursor Ions Quantifier 

through the Proteome Discoverer v2.3 (Thermo Fisher Scientific). For the quantification of 

proteomic data, the intensities of peptides were extracted with initial precursor mass tolerance 

set at 10 ppm, a minimum number of isotope peaks as 2, maximum ΔRT of isotope pattern 

multiplets – 0.2 min, PSM confidence FDR of 0.01, with hypothesis test of ANOVA, maximum RT 

shift of 5 min, pairwise ratio-based ratio calculation, and 100 as the maximum allowed fold 

change. The abundance levels of all peptides and proteins were normalized to the spiked-in 
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internal iRT standard. For calculations of fold-change between the groups of proteins, total 

protein abundance values were added together, and the ratios of these sums were used to 

compare proteins within different samples. 

The abundances of EV proteins were normalized using indexed retention time (iRT) in Proteome 

Discoverer (ThermoFisher Scientific). Abundances were categorized into four different 

categories: Control, Chronic Pancreatitis, IPMN, and PDAC. Protein abundances were then log2 

transformed and quantile normalized for further analysis.  

A non-parametric Wilcox Rank Sum test was performed to test the null hypothesis that the 

distributions of two groups of the patient population are the same, and the fold change and p-

values for each protein were estimated for the following comparisons: IPMN vs. Control, CP vs. 

Control, PDAC vs. Control, Benign Pancreatic Diseases (CP, IPMN) vs. PDAC. Multiple testing 

correction was done using Benjamini-Hochberg method to control for the false discovery rate
39

.  

Volcano plots were created using those p values and fold change. Heatmaps visualization and 

clustering of statistically significant proteins, with adjusted p-value ≤ 0.05 and absolute fold 

change ≥ 2, were created in R using the pheatmap package. Euclidean distance and average 

cluster method were used. The values were row-scaled for normalization. Both rows and 

columns were allowed to cluster. 

 

Pathways Enrichment and Protein Network Analysis 

Pathway enrichment analysis was performed on statistically significant genes using g:Profiler
40

, 

a web-based tool that searches for pathways whose genes are significantly enriched in our 
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dataset compared to a collection of genes representing Gene Ontology (GO) terms and 

Reactome pathways. We further used EnrichmentMap
41

, a Cytoscape, v3.8.2
42 

application to 

create a visual network of connected pathways that helps to identify relevant pathways and 

theme
43

. A Protein-Protein interaction network was generated using a stringApp, a Cytoscape 

app. This application allows to import STRING networks into Cytoscape and enables to perform 

complex network analysis and visualization of networks
44

. 

 

Parallel Reaction Monitoring and Data Analysis 

Parallel reaction monitoring mass spectrometry (PRM-MS) was employed for validation 

experiments. Twenty-five cEV markers were selected for validation based on fold change 

increase ≥5.5, p-value ≤0.01, and technical aspects (number of unique peptides and coverage) 

(Supplementary Table 8). Thirty-six plasma samples from a new cohort were used for the 

validation (24 PDAC, 6 IPMN and 6 chronic pancreatitis samples). The EVs were isolated from 

plasma and the proteins processed as described before. Peptide samples were dissolved in 10.8 

μL 0.05% TFA & 2% ACN, and 10 μL injected into the UHPLC coupled with a Q-Exactive HF-X 

mass spectrometer (Thermo Fisher Scientific). The mobile phase buffer consisted of 0.1% formic 

acid in HPLC grade water (buffer A) with an eluting buffer containing 0.1% formic acid in 80% 

(vol/vol) acetonitrile (buffer B) run with a linear 60-min gradient of 5–35% buffer B at a flow 

rate of 300 nL/min. Each sample was analyzed under PRM with an isolation width of ±0.8 Th. In 

these PRM experiments, an MS2 level at 30,000 resolution relative to m/z 200 (AGC target 2E5, 

200 ms maximum injection time) was run as triggered by a scheduled inclusion list. Higher-
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energy collisional dissociation was used with 28 eV normalized collision energy. PRM data were 

manually curated within Skyline-daily (64-bit) 20.2.1.404 (32d27b598)
45

.  

 

Identification of EV signature for pancreatic cancer diagnosis 

To identify a biomarker signature demonstrating the highest discriminatory power between 

‘benign’ and ‘PDAC’ diseases, we adopted a binary classification approach utilizing Support 

Vector Machines (SVM). Recognizing that classification models built on an extensive array of 

proteins may incorporate irrelevant markers, which can diminish the predictive accuracy, we 

started with a list of significantly differentially expressed set of 91 proteins between ‘benign’ 

and ‘PDAC’ patients and further employed a consensus feature selection strategy using two 

algorithms, ‘Recursive Feature Elimination’ (SVM-RFE), and ‘Integrated RFE with a non-

parametric Wilcox rank test (sigFeature). Subsequently, we selected the top 16 markers, the 

classification performance of which was subjected to testing in an independent validation 

cohort. The classification performance evaluation of these markers, both individually and in 

various combinations, involved a rigorous assessment utilizing 80% of the data for training and 

the remaining 20% for internal-validation. To ensure the quality of the training process, we 

employed five repetitions of a 10-fold cross-validation approach. The optimal kernel 

parameters were determined through tuning across a broad range of values. Receiver operating 

characteristic (ROC) analysis served as the metric to gauge the performance of the classifier 

model. All algorithms for identifying the EV signature predictive of pancreatic cancer diagnosis 

were implemented in R. We used Support Vector Machine (SVM) using CRAN package, e107
46

. 
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Ranking of genes was achieved using packages ‘sigFeature’ and ‘SVM-RFE’.  An R package, 

‘pROC’
47

 was used to build a receiver operating characteristic curve (ROC) and to calculate the 

area under the curve (AUC).   

 

Survival Analysis 

The prognostic value of every protein was estimated by dividing patients into two groups: 

group 1, patients with expression below the 25
th

 percentile, and group 2, patients with 

expression values greater than 75
th

 percentile.  The Kaplan-Meier estimator was used to 

estimate the survival function associating survival with EV protein expression, and the log-rank 

test was used to compare survival curves of two groups. ‘survival’ R package was used for the 

analysis.  

 

Statistical Analysis 

All statistical analyses were performed using the statistical software R. Statistical significance 

was calculated by two-tailed Student’s t-test or Wilcoxon rank-sum test unless specified 

otherwise in the figure legend. Data are expressed as mean ± SEM. A p-value < 0.05 in biological 

experiments or FDR < 0.05 after multiple comparison corrections in proteomics data analysis 

was considered statistically significant. 
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FIGURES 

 

 

Figure 1. Study Design 

The discovery cohort was comprised of 124 individuals, including pancreatic ductal 

adenocarcinoma (PDAC, N=93), chronic pancreatitis (CP, N=12), intraductal papillary mucinous 

neoplasm (IPMN, N=8) and healthy controls (N=11). Plasma samples were processed for EV 

isolation using EVtrap and analyzed by liquid chromatography-tandem mass spectrometry (LC-

MS/MS).  

 

Figure 2. Identification of cEV Proteins Differentially Expressed in Disease Groups  

(A) Principal component analysis of cEV proteins differentially expressed in the plasma of 

patients with pancreatic diseases compared to controls. Each dot indicates one individual 

enrolled in the study: green, controls; blue, patients with intraductal papillary mucinous 

neoplasm (IPMN); purple, patients with chronic pancreatitis (CP); salmon, early stage (stages I 

and II) pancreatic ductal adenocarcinoma (PDAC); red, late stage (stages III and IV) PDAC.  

(B) Volcano plot of circulating EV proteins enriched in the plasma of patients with PDAC versus 

benign pancreatic diseases. X-axis, log base 2 of fold changes; Y-axis, negative of the log base 10 

of p values  

(C) Heatmap of cEV proteins differentially expressed in the plasma of patients with pancreatic 

diseases compared to controls. Designations of clinical parameters were indicated at the top of 

the heatmap. 
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(D) Expression of enriched cEV proteins in patients with PDAC versus benign pancreatic 

diseases. Each dot indicates the target protein signal from one patient. Y-axis, normalized log 

base 2 of protein signals detected by mass spectrometry; Error bars, min and max values; lines 

in boxes, median values. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. 

 

Figure 3. Circulating EV Proteomics Reveal Markers Associated with Metastasis and Worse 

Prognosis. 

(A) Heatmap showing EV proteins differentially expressed in the plasma of metastatic versus 

non-metastatic PDAC. Designations of clinical parameters are indicated at the top of the 

heatmap.  

(B) Expression patterns of cEV proteins associated with metastatic disease. Y-axis, normalized 

log base 2 of protein signals detected by mass spectrometry; N, non-metastatic PDAC group; M, 

metastatic PDAC group. Each dot indicated the target protein signal from one patient. Error 

bars, min and max values; lines in boxes, median values.  * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, 

**** p ≤ 0.0001.  

(C) As is (B), except for cEV markers with increased expression in non-metastatic PDAC. 

(D) Correlation of cEV marker expression with survival. Kaplan–Meier curves and log-rank test P 

values of representative survival cEV markers quantified in the discovery cohort. 

 

Figure 4. Validation of cEV Markers and Identification of 7-EV Protein Signature for PDAC 

Diagnosis. 
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(A) Differences of cEV protein abundances between patients with PDAC (n=24) and benign 

pancreatic diseases (chronic pancreatitis and IPMN) (n=12). x axis, minus log p values of protein 

abundance differences between PDAC and benign groups; y axis, average fold changes of 

proteins in PDAC group compared to benign group. Size of bubbles indicate average protein 

abundances in PDAC group. Pink color, proteins that had at least two-fold enrichment in PDAC 

group (p<0.05). 

(B) ROC curves were calculated for individual cEV markers as well as for the 7-EV protein PDAC 

signature combination to determine optimum diagnostic performance. AUC, area under the 

curve.  

 

SUPPLEMENTARY MATERIAL 

 

Supplementary Table 1. Baseline characteristics of patients enrolled on the discovery cohort. 

 

Supplementary Table 2. Plasma EV analysis reproducibility 

 

Supplementary Table 3. LC-MS results of EV analysis of plasma from patients with PDAC (PA), 

IPMN, Chronic Pancreatitis (CP) and Control individuals. 

 

Supplementary Table 4. List of EV proteins that met the eligibility criteria for principal 

component analysis.  
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Supplementary Table 5. List of 182 proteins differentially expressed in PDAC compared to 

benign diseases. 

 

Supplementary Table 6. List of EV proteins that are significantly altered in patients with 

metastatic versus non-metastatic diseases. 

 

Supplementary Table 7. Table A: Support Vector Machine Prediction model output for the 16 

individual markers included in the in External Validation Cohorts. Table B: The contingency 

table for 7-biomarker signature, offering insights into model accuracy for both the Internal-

Discovery and External Validation cohorts.   

 

 

Supplementary Table 8. List of 25 cEV proteins that met the eligibility criteria for validation 

studies.  

 

Supplementary Table 9. Baseline characteristics of patients enrolled in the validation cohort.  

 

Supplementary Figure 1. EVtrap isolation of extracellular vesicles 

(A) Transmission electron microscopy (TEM) images collected of a single EV and multiple EVs 

captured from plasma by EVtrap. TEM imaging of EVs was carried out on a HITACHI H-8100 

electron microscope (Hitachi, Tokyo, Japan) with an accelerating applied potential of 200 kV.  
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(B) Nanoparticle tracking analysis (NTA) of EVs after elution off EVtrap beads. NTA was carried 

out using ZetaView instrument (Particle Metrix) after calibration with 100 nm polystyrene 

particles. 

 

Supplementary Figure 2. EV proteomics analytical performance  

(A) Reproducibility of the method. A standard plasma sample was processed in six replicates 

and performed a Pearson correlation analysis that revealed a very high correlation between 

replicates. 

(B) Number of quantified EV proteins per sample according to different patient cohort. 

 

Supplementary Figure 3. Heatmap of abundance of 25 proteins enriched and 25 proteins 

reduced in EVs from PDAC patients compared to EVs from patients without cancer. Protein 

abundances were normalized across patients for each protein. 

 

Supplementary Figure 4. Network Analyses of cEV Proteins Differentially Expressed in PDAC 

Compared to Benign Pancreatic Diseases.  

(A) Functional association of proteins identified by STRING database. Red, cEV proteins 

enriched in PDAC patients as compared to benign pancreatic diseases. Green, cEV proteins 

decreased in patients with PDAC as compared to benign pancreatic diseases. Red, cEV proteins 

increased in PDAC as compared to benign pancreatic diseases. Thickness of lines indicate 

confidence of association.   
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(B, C) Clustering of cEV protein pathways enriched (B) or downregulated (C) in PDAC cohorts.  

Pathways were identified using Gene Ontology database and REACTOME database.  

 

Supplementary Figure 5. Summary of selection process to develop EV signature for pancreatic 

cancer diagnosis.    

 

Supplementary Figure 6. Diagnostic performance of 7-EV protein signature compared to 

performance of each of the 7 individual marker. 

 

Supplementary Figure 7. Validation of individual cEV proteins in an independent cohort of 

patients. 

Expression of biomarker candidates detected by Parallel Reaction Monitoring (PRM) analyses. A 

total of 25 cEV proteins with significant overexpression in PDAC in the discovery cohorts were 

quantified by PRM in a separate validation cohort of patients.   

 

Supplementary Figure 8. Performance of PDAC EV Signature in both Discovery and Validation 

cohorts. 
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