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 23 
Key points 24 
Question: Do bipolar disorder and lithium treatment change adaptation of risk-taking over 25 
time? 26 
Findings: Across an observational study and a randomized controlled trial, we found that 27 
while participants modulate their risk taking in a gambling task over time, this was reduced 28 
as a function of risk for bipolar disorder. Neurally, this was accompanied by changes in reward 29 
memory traces in medial frontal pole. 30 
Meaning: The results show that bipolar disorder is linked to a reduction in adaptation of risk-31 
taking to the environment, suggesting a possible computational mechanism and treatment 32 
target. 33 
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 2 

Abstract 48 

Cognitive and neural mechanisms underlying bipolar disorder (BD) and its treatment are still 49 
poorly understood. Here we examined the role of adaptations in risk-taking using a reward-50 
guided decision-making task. 51 

We recruited volunteers with high (n=40) scores on the Mood Disorder Questionnaire, MDQ, 52 
suspected of high risk for bipolar disorder and those with low-risk scores (n=37). We also 53 
recruited patients diagnosed with BD who were assigned (randomized, double-blind) to six 54 
weeks of lithium (n=19) or placebo (n=16) after a two-week baseline period (n=22 for FMRI). 55 
Participants completed mood ratings daily over 50 (MDQ study) or 42 (BD study) days, as well 56 
as a risky decision-making task and functional magnetic resonance imaging. The task 57 
measured adaptation of risk taking to past outcomes (increased risk aversion after a previous 58 
win vs. loss, ‘outcome history’). 59 

While the low MDQ group was risk averse after a win, this was less evident in the high MDQ 60 
group and least so in the patients with BD. During fMRI, ‘outcome history’ was linked to 61 
medial frontal pole activation at the time of the decision and this activation was reduced in 62 
the high risk MDQ vs. the low risk MDQ group. While lithium did not reverse the pattern of 63 
BD in the task, nor changed clinical symptoms of mania or depression, it changed reward 64 
processing in the dorsolateral prefrontal cortex.  65 

Participants’ modulation of risk-taking in response to reward outcomes was reduced as a 66 
function of risk for BD and diagnosed BD.  These results provide a model for how reward may 67 
prime escalation of risk-related behaviours in bipolar disorder and how mood stabilising 68 
treatments may work. 69 
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 3 

Introduction 94 
 95 
Bipolar disorder (BD) is typically characterized by episodes of depression or mania, lasting 96 
weeks and months. Lithium is the most effective mood stabiliser for management of BD, 97 
reducing the frequency of both manic and depressive episodes (1).  While fluctuating mood 98 
episodes have traditionally be seen as lasting weeks or months, more recent work has shown 99 
that, in fact, patients with BD show large day-to-day fluctuations in mood even when 100 
symptoms are in the non-clinical range (2) and that this is affected by lithium treatment (3). 101 
Understanding the processes underpinning bipolar disorder may help us develop and assess 102 
more effective treatment approaches. 103 
 104 
From a computational psychiatry perspective, two causes for mood fluctuations in bipolar 105 
disorder could be considered. First, mood fluctuations could be the result of either increased 106 
and prolonged responses to valanced outcomes. Recent work from the field of reinforcement 107 
learning has suggested that destabilizing positive feedback cycles between mood and 108 
perceptions of rewards may contribute to BD (4–7): In people with subclinical symptoms of 109 
BD, positive or negative surprises were found to affect the neural and behavioural responses 110 
to reward and punishments. In particular, symptoms were associated with an increase in 111 
reward value after a positive surprise.  This kind of reward sensitivity has been linked to later 112 
changes in mood, suggesting a route by which escalation of reward responses may translate 113 
into clinical symptoms (4). Second, mood fluctuations could be the result of reduced 114 
behaviours that stabilize mood. Using momentary ecological monitoring has revealed that in 115 
the healthy state, when mood fluctuates, people self-report using strategies to re-establish 116 
mood homeostasis such as engaging with aversive activities when they are in a good mood 117 
(8). This strategy is reduced in people with depression or low mood (9). However, it is yet 118 
unclear whether regulating behaviour is also reduced in BD. In the lab, adaptations of 119 
behaviour to past outcomes have been studied in the field of decision-making, revealing 120 
temporal interdependencies. For example, people show ‘biases’ such as ‘loss chasing’ (10) 121 
(taking more risks to try and recover losses). Here, we used a lab-based task that allowed us 122 
to test the impact of BD and its’ treatment on both putative processes. 123 
 124 
Optimal decision making involves interplay between frontostriatal systems, which play a role 125 
in motivation, reward value and its regulation. The ventral striatum and the ventromedial 126 
prefrontal cortex (vmPFC) are implicated in reward anticipation as well as its hedonic impact 127 
(11,12). vmPFC is further implicated in the evaluation of options (13), including tracking of 128 
past reward outcomes (14). We would therefore expect that if bipolar disorder affects the 129 
adaptation of behaviour to past outcomes, these signals in the vmPFC should be changed.  By 130 
contrast, activity in the dorsolateral PFC is associated with regulation of behaviour towards 131 
reward, including self-regulation of reward craving (15,16). Previous work has linked bipolar 132 
disorder to increased reward related striatal signalling, coupled with altered patterns of 133 
ventromedial and dorsolateral PFC engagement (17) and interaction (18), while a meta-134 
analysis (19) has highlighted a role for orbitofrontal cortex abutting dlPFC.  135 
 136 
Here, we have built on these findings to test whether a gradient across a bipolar disorder 137 
spectrum (i.e. from low risk to diagnosed bipolar disorder), was linked to changed behavioural 138 
adaptation (risk taking) from trial to trial in response to reward/loss outcomes. For this, we 139 
recruited 40 volunteers with high scores on the mood disorder questionnaire (MDQ (20)), at 140 
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suspected high risk for bipolar disorder, 37 volunteers with low scores, and 35 treatment 141 
seeking patients with diagnosed BD (n=22 for FMRI). To assess whether behaviour and 142 
naturally occurring daily-life mood fluctuations were related, participants completed up to 50 143 
longitudinal testing sessions at home. To understand the neural mechanisms of risk 144 
adaptation behaviour, we measured brain activity with fMRI. To test the causal effect of a 145 
commonly prescribed mood-stabilizing drug, lithium, 19 patients were randomly assigned to 146 
receive six weeks of lithium treatment (dose titrated individually to plasma levels of 0.6-1 147 
mmol/L) and 16 to placebo treatment in a double-blind design. 148 

We hypothesized that BD and risk for BD would be associated with reduced adaption of risk 149 
taking behaviour (i.e. choice being less connected to previous experience of a win or a loss), 150 
which would be associated with changes in vmPFC and dlPFC signalling of previous win/loss 151 
experiences during fMRI.  We also hypothesized that these behavioural and neuroimaging 152 
differences would be normalised following six weeks of lithium vs placebo treatment in BD. 153 
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METHODS 172 

Participants 173 

Participants were recruited in two separate studies (see below). The non-interventional study 174 
was approved by the local ethics committee (MSD-IDREC-C2-2014-023) and the 175 
interventional study by the National Research Ethics Service Committee South Central – 176 
Oxford A (15/SC/0109) and the Oxford Health NHS Foundation Trust. Participants gave 177 
informed consent and were reimbursed for taking part in the study. 178 
 179 
Volunteers at suspected high vs low risk of bipolar disorder: Participants were recruited 180 
through local advertisement and from pools of previous participants. In an online pre-181 
screening session, participants completed the Mood Disorders Questionnaire (MDQ (20)), a 182 
self-report screening instrument to identify risk for bipolar disorder. Participants were only 183 
invited for a full screening session if they scored either <5 points (‘low MDQ’ group, n=37 184 
included, at presumed low risk for bipolar disorder); or ³ 7 (‘high MDQ’ group, n=40 included).  185 
The screening  verified that several of these symptoms measured with the MDQ happened 186 
during the same period of time.  Structured clinical interviews with the SCID revealed that 5 187 
of this group met criteria for bipolar disorder, despite not having received a formal diagnosis 188 
or seeking treatment. See supplementary method [1A] for detailed exclusion criteria.   189 
 190 
Patients with BD: Participants were recruited through the BD Research Clinic (Oxford). All 191 
participants met criteria for BD-I (n=7), BD-II (n=27) or BD not otherwise specified (BD-NOS, 192 
n=1), based on structured clinical interview. All participants were outside major mood 193 
episodes requiring immediate treatment. Full exclusion criteria are provided in the 194 
supplementary materials [1B]. Participants were assigned to placebo (n=16) or lithium (n=19), 195 
in a randomised double-blind design, see below. 196 
 197 

Study design 198 

Volunteers. We measured participants’ mood and behaviour in a cognitive task longitudinally 199 
five times a week over ten weeks. Brain activity during the same task was measured during 200 
an MRI scan. The data here were part of a larger study (supplementary method [1B]).  201 
 202 
Patients with BD. This study was a randomised, 6-week, double-blind, placebo-controlled trial 203 
(21). See supplementary method [1B] for full information. All participants underwent a two-204 
week pre-randomization phase (‘baseline’) during which they completed the cognitive task 205 
and mood ratings daily at home. Due to logistic challenges, for some participants this phase 206 
lasted longer than two weeks. For the next phase (6 weeks), participants were pseudo-207 
randomly assigned to receive either lithium (starting dose of 400mg and then titrated to 208 
plasma levels of 0.6-1 mmol/L) or placebo in a double-blind design. Only 22 participants were 209 
fMRI compatible. Participants were invited to complete online weekly assessments of 210 
depression symptoms with the Quick Inventory of Depressive Symptomatology (QIDS, (22)) 211 
and symptoms of Mania with the Altman Self Rating Mania Scale (23). 212 
 213 
Throughout, we performed two types of group comparisons. First, we compared across risk 214 
of BD (i.e. group as ordered factor (24) in regressions, Low MDQ £ High MDQ £ patients with 215 
BD), subsequently referred to as ‘bipolar disorder  gradient’. Ordered factors in regression 216 
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imply a relationship of order between the groups, this does not have to be a linear 217 
relationship (i.e. the difference low MDQ to high MDQ can be larger or smaller [but of same 218 
sign] than the difference high MDQ to patients with BD).  MDQ was not measured in the 219 
patient group. As this involved data from the BD group before assignment to lithium or 220 
placebo, all participants were included. Significant results were post-hoc followed up 221 
comparisons of the individual groups (t-tests). Second, we tested for the effects of lithium 222 
treatment as drug (lithium/placebo) x time point (pre, i.e. baseline/post) interactions. 223 
 224 

‘Wheel of fortune’ task 225 

Trial structure. On each trial of the task, participants were given two options shown side-by-226 
side. In the at-home version, these were wheels of fortune (Figure 1A). In the fMRI version, 227 
they were instead presented as bars. Each option had three attributes: probability of winning 228 
vs. losing (size of green vs. red area), magnitude of possible gain (number on green area, 10 229 
to 200), and magnitude of possible loss (number on red area, also 10 to 200). After 230 
participants chose one option, the wheel of fortune started spinning and then randomly 231 
landed on either win or loss. Finally, participants were shown their updated total score. The 232 
experiment was designed so that most choices were difficult, i.e., the options were very 233 
similar in expected value, i.e. relative utility (reward magnitude * probability; 90% of choices 234 
were not more than 20 points apart; 76% not more than 5 points apart, Figure 1B, Figure S1).  235 
 236 
 237 

 238 
Figure 1. Task design and longitudinal behaviour. A) On each trial, participants chose 239 
between two gambles (‘wheel of fortune’) that differed in their probability of winning or 240 
losing points and in the number of points that could be won or lost. Once participants had 241 
chosen an option, the alternative was hidden, and the chosen wheel started spinning until 242 
finally landing on the win or loss. B) Participants’ choices (left vs. right option) were guided 243 
by the relative utilities (reward utility – i.e., probability * magnitude – minus loss utility): the 244 
higher the utility of the left option, the more it was chosen. The computational model (lines) 245 
captured behaviour (dots with error bars) well. Data were combined across all testing 246 
sessions (up to 50) per participant (20 trials per session). Error bars show the standard error 247 
of the mean, and the size of the dots indicates the number of data points available. 248 
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 249 
 250 
Timings and number of trials. Each day, participants rated their positive and negative mood 251 
using the Positive and Negative Affect Schedule – Short Form, PANAS-SF (25). They also gave 252 
an overall rating of their mood (‘How are you feeling’, referred to here as ‘happiness VAS’) 253 
using a slider ranging from ‘very unhappy’ (red sad face drawing) to ‘very happy’ (green smiley 254 
face).  They then played 20 trials of the task. After the task, they repeated the happiness VAS. 255 
 256 
In the fMRI scanner, participants played 100 trials. All timings were jittered. From the onset 257 
of options until participants could make a choice: 1-2 sec; delay between participants’ 258 
response and outcomes shown: 2.7 to 7.7 sec; duration of outcome shown: 1-3 sec; duration 259 
of total score shown: 1-9 sec; ITI: 1-9 sec.  260 
 261 

Behaviour  262 

Behavioural data were analysed in R (26) (version 4.0.2) and Matlab. R-packages: Stan (27) , 263 
BRMS (28,29), dplyr (30), ggpubr (31), sjPlot (32), compareGroups  (33), emmeans (34), ggsci 264 
(35). 265 
 266 
Group comparisons 267 
To compare groups, instead of a standard ANOVA procedure which tests for any differences 268 
between groups, we tested for a systematic effect, i.e. bipolar disorder gradient (group as 269 
ordered factor (24), Low MDQ £ High MDQ £ patients with BD) in linear regressions, also 270 
controlling for age and gender. Models used the BRMS toolbox interface for Stan 271 
(supplementary methods 2). For this and all subsequent analyses, we used Bayesian Credible 272 
Intervals (36) to establish significance by the 95% CI not including zero. 273 
 274 

Computational models 275 

Decision making. We used a computational model to capture participants’ choices. The 276 
model first computed the overall  expected (‘utility’) of each option, then made a choice (left 277 
or right option) depending on which option had the better utility, but also allowing for some 278 
random choice behaviour (37,38).  279 
 280 
First, the model compared the options’ utilities as displayed at the time of choice on the 281 
current trial, i.e., probability (prob) x magnitude (mag). We allowed for individual differences 282 
in sensitivity to the loss vs. reward utility (l). We also included in the model a measure of 283 
adaptions of risk taking (i.e. loss vs win sensitivity) to past outcomes (‘outcome history’).  284 
Specifically, a parameter (g) changed the weighting of the loss utility on the current trial 285 
depending on whether the previous trial’s outcome was a win or a loss (i.e., g>0 means 286 
increased sensitivity to losses after a win on the previous trial).  287 
 288 
 289 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦!"#$ = 𝑃𝑟𝑜𝑏 ∗ 𝑀𝑎𝑔%"& − 0l+ g ∗ 𝑃𝑟𝑒𝑣𝑂𝑢𝑡𝑐&'(
!)**

7 ∗ (1 − 𝑃𝑟𝑜𝑏) ∗ 𝑀𝑎𝑔!)** 290 

 291 
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 8 

To decide which option to choose, the model compared the utilities of the left and right 292 
options taking into account each participant’s ‘randomness’ (inverse temperature (b), higher 293 
numbers indicating higher choice consistency): 294 
 295 
 296 

𝑝<𝐶ℎ𝑜𝑖𝑐𝑒!"#$? =
1

1 + 𝑒b∗(-$'!'$.!"#$%/-$'!'$.&'(%)
 297 

 298 
To allow fitting of individual sessions (20 trials), a Bayesian approach was implemented that 299 
allowed specifying priors for each parameter (supplementary methods [2C]). The model was 300 
validated using simulations and model comparisons (Table S1-3 and supplementary methods 301 
[2A-B]).  302 
 303 
 304 
Group differences.  305 
To assess group differences, we entered the session-wise parameters into hierarchical 306 
regressions (using BRMS). This allowed us to take into account that parameters might change 307 
over days of testing, as well as individual differences in the means and variability (standard 308 
deviation) across sessions. For example: 309 
 310 
Mean: invTemp(b) ~ 1 + day + group+ Age + Gender + (1 + day | ID),  311 
 312 
And error term: sigma ~ 1 + group + Age + Gender + (1|ID)) 313 
The effect of lithium (vs. placebo) was tested analogously: 314 
Mean: invTemp(b) ~ 1 + day + group*pre, i.e. baseline/post+ Age + Gender + 315 
number_days_baseline + (1 + day | ID) 316 
 317 
These models were used for group comparisons of mean parameters (supplementary 318 
methods 2C+D). Variabilities of parameters over days were not compared as model validation 319 
(Table S1) suggested poor recovery. Mood data (positive and negative PANAS, happiness VAS) 320 
were analysed using similar regressions (supplementary methods 2D) to assess group 321 
differences in mood (mean or variability) or the relationship between task outcomes and 322 
changes in happiness VAS.  323 
 324 
Model-free analyses of behaviour 325 
To test that participants could perform the task, i.e., that their choices were sensitive to 326 
expected value, we binned their choices (% left vs. right option) according to the overall utility 327 
difference between the two options (i.e., left vs. right reward utility minus loss utility, 328 
utility=probability*magnitude).  329 
 330 
To test sensitivity to risk of losses, as has been previously reported to be affected in BD 331 
(39,40), we refined the binning of choices (as above) by further splitting the data according 332 
to win and loss utility (i.e. probability * magnitude). 333 
 334 
We next analysed behaviour for adaptions of risk taking to past outcomes by considering how 335 
participants change their behaviour – here risk-taking (avoidance of potential losses) – based 336 
on win/loss outcomes on previous trials (‘outcome history’ effect). For this, we computed 337 
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 9 

how their choices differed after a win or loss on the previous trial (difference % choosing 338 
option with lower potential loss [loss utility] after win minus after a loss). We focused on the 339 
most extreme (lowest/highest) loss utility bins from the analyses above (‘taking loss utility 340 
more into account’) as adaptation to past trial outcomes by taking loss more into account (i.e. 341 
a multiplicative effect) should most strongly affect choices the more dissimilar the loss utilities 342 
of the two options. 343 
 344 

MRI acquisition  345 

Data from all 77 high and low MDQ volunteers and 13 patients with BD were collected on a 346 
3T Siemens Magneton Trio. Data from 9 patients with BD were collected at a different site 347 
using a Siemens Magneton PRISMA. Group comparisons include scanner as a control 348 
regressor. Scan protocols were carried out following (14), supplementary methods [3A]. 349 
 350 
 351 

FMRI analysis – whole-brain 352 

General approach. Data were pre-processed using FSL ((41), supplementary methods [3B]). 353 
Statistical analysis was performed at two levels, event-related GLM for each participant, 354 
followed by group-level mixed-effect model using FSL’s FLAME 1 (42,43) with outlier de-355 
weighting. Whole-brain images are all cluster-corrected (p<0.05 two-tailed, FWE), voxel 356 
inclusion threshold: z < 2.3.  357 
 358 
Regression designs. At the time of the decision, we looked for neural activity correlating with 359 
the utility (reward, loss) of the choice. At the time of the outcome of the gamble, we looked 360 
for neural activity related to the processing of the outcome (win/loss as continuous 361 
regressor). Decision and outcome-related activity could be dissociated due to jitter used in 362 
the experimental timing (14). As a key measure of interest, we looked at whether there was 363 
a history effect at the time of the choice (i.e., previous trial’s gamble win/loss outcome 364 
(14,44), analogous to the behavioural analyses). Full design information: supplementary 365 
methods [3C], Figure S2.  366 
 367 
Group-level comparisons. We compared the low vs high MDQ groups (n=77) in whole-brain 368 
analyses. As only 22 patients with BD were available, these group comparisons were first 369 
performed in regions of interest (ROIs) derived from comparisons of the high/low MDQ 370 
groups. As exploratory analyses, BD groups were also compared at the whole-brain level.  371 
 372 
ROI analyses. Mean brain activations (z-stats) were extracted for each participant. These 373 
were used to illustrate group differences and also to perform independent statistical tests 374 
(e.g., ROIs of clusters defined based on group differences of high vs. low MDQ could be used 375 
to test group differences between lithium and placebo). For this, non-hierarchical Bayesian 376 
regressions were used, also controlling for age and gender. Brain activations for the outcome 377 
history effect were correlated with the corresponding behavioural measures. For this, effects 378 
of age, gender and group (and for the patients with BD: number of days in the baseline phase 379 
pre-randomization, i.e. before the MRI scan) were first removed using regressions from both 380 
neural and behavioural measures.  381 
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 382 

 383 

RESULTS 384 

We recruited four groups of participants in two separate studies (Table 1). In the group of 385 
patients with BD, based on self-report scores (Altman self-report scale, quick inventory of 386 
depressive symptomatology), in the phase before the assignment to placebo or lithium, 30% 387 
scored in the mania range and 53% scored at least moderate symptoms of depression (Table 388 
1). Similar numbers persisted throughout treatment with lithium vs. placebo (Table 1, Figure 389 
S3). Participants with BD took several medications at study inclusion (Table 2). 390 
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   391 

  Low MDQ    High MDQ   Bipolar lith Bipolar pla

ANOVA all 4 
groups (p-
value)

Low vs high 
MDQ (p-
value)

BD lith vs. 
pla (p-
value)

N=37 N=40 N=19 N=16                        
Age 25.0 (6.61) 25.0 (7.06) 28.8 (9.81) 35.1 (13.8) <0.001 0.974 0.137
Gender:                                                  0.819 0.998 1
    F 24 (64.9%) 27 (67.5%) 11 (57.9%) 9 (56.2%)                        
    M 13 (35.1%) 13 (32.5%) 8 (42.1%) 7 (43.8%)                        
Diagnosis:                                                  <0.001 0.119 0.527
    BDI 0 (0.00%) 0 (0.00%) 3 (15.8%) 4 (25.0%)                        
    BDII 0 (0.00%) 3 (7.50%) 16 (84.2%) 11 (68.8%)                        
    BD NOS 0 (0.00%) 2 (5.00%) 0 (0.00%) 1 (6.25%)                        
    None 37 (100%) 35 (87.5%) 0 (0.00%) 0 (0.00%)        
Additional diagnosis:                                                  0.018
    Depression 0 (0.00%) 4 (10.0%) NA NA                
    Depression & Past alcohol 
dependence 0 (0.00%) 1 (2.50%) NA NA                
    Depression & Past panic 
disorder 0 (0.00%) 1 (2.50%) NA NA                
    Depression & PTSD 0 (0.00%) 2 (5.00%) NA NA                
    None 37 (100%) 31 (77.5%) NA NA                
    Past alcohol dependence 0 (0.00%) 1 (2.50%) NA NA        
MDQ 1.11 (1.31) 9.32 (1.67) NA NA <0.001
Altman Mania (pre):                                                  0.001 0.24 1
    Mania 0 (0.00%) 3 (8.11%) 5 (27.8%) 5 (31.2%)                        
    None 37 (100%) 34 (91.9%) 13 (72.2%) 11 (68.8%)                        
QIDS Depression (pre):                                                  <0.001 <0.001 0.043
    None 36 (97.3%) 18 (48.6%) 4 (22.2%) 1 (6.25%)                        
    Mild 1 (2.70%) 17 (45.9%) 5 (27.8%) 6 (37.5%)                        
    Moderate 0 (0.00%) 2 (5.41%) 8 (44.4%) 4 (25.0%)                        
    Severe 0 (0.00%) 0 (0.00%) 0 (0.00%) 5 (31.2%)                
    Very severe 0 (0.00%) 0 (0.00%) 1 (5.56%) 0 (0.00%)                
Altman Mania (post):                                                  1
    Mania 0 (.%) 0 (.%) 4 (22.2%) 3 (20.0%)                
    None 0 (.%) 0 (.%) 14 (77.8%) 12 (80.0%)                
QIDS Depression (post):                                                  0.731
    None 0 (.%) 0 (.%) 4 (22.2%) 1 (6.67%)                
    Mild 0 (.%) 0 (.%) 7 (38.9%) 8 (53.3%)                
    Moderate 0 (.%) 0 (.%) 4 (22.2%) 4 (26.7%)                
    Severe 0 (.%) 0 (.%) 3 (16.7%) 2 (13.3%)                
Handedness:                                                  0.757
    Right 32 (86.5%) 32 (80.0%) NA NA                
    Ambidext 0 (0.00%) 1 (2.50%) NA NA                
    Left 5 (13.5%) 7 (17.5%) NA NA                
# Behav. days 46.7 (3.63) 44.9 (6.61) NA NA 0.146
# Behav. days (pre) NA NA 11.8 (6.72) 12.4 (5.04) 0.771
# Behav. days (post) NA NA 24.5 (7.85) 28.5 (9.32) 0.182
Has longitudinal data: Yes 37 (100%) 38 (95.0%) 19 (100%) 16 (100%) 0.762 0.494 1
Has FMRI data: Yes 37 (100%) 40 (100%) 13 (68.4%) 9 (56.2%) <0.001 1 0.696
Day time difference (h) 
between longitudinal session 3.55 (1.19) 3.68 (1.16) 2.60 (1.25) 2.71 (1.39) 0.002 0.62 0.806
Most common longitudinal 
session time of day:                                                  0.61 0.552 1
    Afternoon 9 (24.3%) 12 (31.6%) 3 (15.8%) 2 (12.5%)        
    Evening 24 (64.9%) 19 (50.0%) 14 (73.7%) 13 (81.2%)        
    Morning 4 (10.8%) 6 (15.8%) 2 (10.5%) 1 (6.25%)        
    Night 0 (0.00%) 1 (2.63%) 0 (0.00%) 0 (0.00%)        
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Table 1. Participant demographics. Statistical tests are two-tailed p-values and refer to 392 
comparisons between the two groups of participants with low or high MDQ scores (‘Low vs. 393 
high MDQ’) and between the two groups of patients with BD randomized to lithium or placebo 394 
(‘Lith vs. pla’). Values are the mean and standard error of the mean. Abbreviations: ‘# Behav. 395 
Days’ – number of days of behavioural data available (20 trials per day), ‘# Behav. Days (pre)’ 396 
– number of days in the baseline phase for the patients with BD, ‘# PANAS days’ – number of 397 
days with mood scores (PANAS, positive affect negative affect scale, short form) available. 398 
‘MDQ’ – Mood disorder questionnaire. ‘Has longitudinal data: Yes’ – percentage of 399 
participants from whom longitudinal data (i.e., sessions at home) were available. Diagnoses: 400 
‘BD-I’ – bipolar I disorder; ‘BD-II’ – bipolar II disorder; ‘BDNOS’ – bipolar disorder not otherwise 401 
specified; ‘PTSD’ – post traumatic stress disorder. For the patients with BD, comorbid disorders 402 
were not measured. Note that in the low and high MDQ groups, diagnoses were only based 403 
on SCID, not on a full clinical examination. Participants completed weekly self-report scales of 404 
symptoms of mania (Altman) and depression (QIDS) at baseline (pre) and post assignment to 405 
lithium or placebo. The average scores pre (baseline) and post lithium were here categorized 406 
according to standard cut-offs (Altman: <6 for no mania, QIDS: 1-5: no depression, 6-10: mild 407 
depression, 11-15: moderate depression, 16-20: severe depression, 21-27: very severe 408 
depression). In short, lithium vs. placebo did not affect ratings of mania and depression, in line 409 
with the groups recruited here being outside major mood episodes requiring immediate 410 
treatment (see figure S3 for time course of ratings). 411 
 412 
 413 

  414 
Table 2. Medication in patients with BD. At baseline, most patients were on stable doses of 415 
different medications, categorized here as: atypical antipsychotics (quetiapine, olanzapine, 416 
aripiprazole, risperidone, amisulpiride), benzodiazepine (clonazepam, lorazepam, diazepam), 417 
beta blocker (propranolol), mood stabilizer (valproate, lamotrigine), noradrenaline (NA) and 418 
dopamine (DA) reuptake inhibitor (buproprion), nonbenzodiazepine (zopiclone), sedative 419 
(promethazine), serotonin and noradrenaline reuptake inhibitor (SNRI, venlafaxine), SSRI 420 
(selective serotonin reuptake inhibitor (sertraline, citalopram, fluoxetine), tetracyclic 421 

Bipolar lith Bipolar pla
# Participants N=19 N=16
Medication:
    None 5 (8.93%) 3 (9.68%)
    Atypical antipsychotic 16 (28.6%) 6 (19.4%)
    Benzodiazepine 2 (3.57%) 1 (3.23%)
    Beta blocker 1 (1.79%) 0 (0.00%)
    Mood stabilizer 5 (9.80%) 3 (10.7%)
    NA and DA reuptake inhibitor 1 (1.79%) 0 (0.00%)
    Nonbenzodiazepine 1 (1.79%) 1 (3.23%)
    Sedative 1 (1.79%) 0 (0.00%)
    SNRI 1 (1.79%) 0 (0.00%)
    SSRI 20 (35.7%) 12 (38.7%)
    Tetracyclic antidepressant 2 (3.57%) 2 (6.45%)
    Tricyclic antidepressant 0 (0.00%) 3 (9.68%)
    Typical antipsychotic 1 (1.79%) 0 (0.00%)
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antidepressant (mirtazapine), tricyclic antidepressant (dosulepin, lofepramine, amitriptyline), 422 
typical antipsychotic (stelazine, haloperidol). 423 
 424 
 425 
 426 
General performance 427 
Participants completed longitudinal daily behavioural test sessions at home, consisting of 20 428 
trials of a gambling task and mood self-reports. In the task (Figure 1A), participants needed 429 
to choose repeatedly between two gambles (wheels of fortune), considering the probabilities 430 
of winning or losing points and the number of points that could be won or lost. Participants 431 
in all groups performed the task well (Figure 1B), selecting options with higher values more 432 
frequently.  433 
 434 

Risk taking (avoidance of potential losses) 435 

To test whether sensitivity to (i.e. avoidance of) potential losses vs. wins when gambling was 436 
reduced with a bipolar disorder gradient (low MDQ £ high MDQ £patients with BD), we built 437 
a stochastic decision-making model that described participants’ choices as being based on the 438 
reward and loss utilities of the two options while allowing for individual differences in how 439 
people made decisions (see table S2 for model comparisons; model accuracy: 71%). The 440 
model captured participants’ sensitivity to losses (vs. wins) as a parameter (l). We found that 441 
the higher the bipolar disorder gradient, the lower the sensitivity to losses vs wins (Figure 2Ai, 442 
Table S4A, mean =-0.27, 95%CI = [-0.49; -0.05]). This was driven mainly by a step change 443 
decrease in the group of patients with BD compared to the low/high MDQ groups, rather than 444 
a continuous linear relationship (table S4A for group comparison and continuous measure of 445 
mania symptoms across all groups). Lithium vs. placebo did not affect this (Figure 2Aii, table 446 
S4B). To illustrate the effect in a model-free way, we plotted the sensitivity of choices to the 447 
win or loss dimensions (i.e., steepness of the curve, Figure 2Aiii). This revealed that the 448 
difference between groups (group*win/loss dimension* utility bin: mean=0.33, 95% CI = 449 
[0.06; 0.61]) is driven by both an increased sensitivity to wins (group*utility bin: mean 0.24, 450 
95% CI = [0.08; 3.99]) and a decreased sensitivity to losses (group* utility bin: mean = -0.15, 451 
95% CI = [-0.30; -0.01]) with the bipolar disorder gradient. Alternative computational models 452 
in Table S5. 453 

Outcome history effects 454 

We next analysed how participants adapted their risk taking across trials based on win or loss 455 
outcomes in the previous trial (‘outcome history effect’). In the computational model, 456 
outcome history effects were captured as a parameter (g) that described to what extent 457 
participants were more sensitive to (i.e. avoidant of) potential losses after a win on the 458 
previous trial. We found that the bipolar disorder gradient reduced outcome history effects 459 
(Figure 2Bi, Table S4A+S5 mean=-0.05, 95% CI=[-0.11; -0.0003], showing also a continuous 460 
effect with mania symptoms across all groups, table S4A). This was not affected by lithium 461 
(Figure 2Bii, Table S4B+S5). We can unpack this effect in the data without a model (Figure 462 
2Biii) by focusing on the most extreme loss utility bins (if the loss utility difference is small, it 463 
will not affect choices if it is taken slightly more or less into account). If people show no 464 
outcome history effect, their choices should not change depending on the last trial’s outcome. 465 
However, the low MDQ group in fact takes the loss dimension more into account after a 466 
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previous trial win vs. loss (i.e. less likely to pick options with high potential loss and more likely 467 
to pick options with low potential loss). This effect decreases with the bipolar disorder 468 
gradient (group*last loss/win: mean=0.02, 95% CI = [0.0008; 0.04]).  469 
 470 
 471 
 472 
  473 
 474 
 475 

 476 

*

*

needs adding to legend

Biii
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Figure 2. Group differences in longitudinal behaviour and mood. A) Loss sensitivity. Ai) 477 
Decreased loss sensitivity (l, avoidance of potential losses) with bipolar disorder gradient, 478 
particularly for patients with BD. Aii) Lithium (vs. placebo) did not affect loss sensitivity (group 479 
[lithium/placebo] * time [pre, i.e. baseline/post] interaction). Aiii) Illustration of sensitivity of 480 
choices to loss/reward utility – as utility increases for the left compared to the right option, 481 
participants are more likely to choose the left option. For low/ high MDQ participants, this 482 
increase in choice probability is similar for the reward or loss dimension. In contrast, patients 483 
with BD show decreased sensitivity to losses vs. rewards (the loss curve is shallower. B) 484 
Outcome history (i.e. adaptation of risk taking to past outcomes; avoidance of potential losses 485 
after a win [rather than loss] on the previous trial). Bi) The outcome-history model parameter 486 
(g) differed between the groups, with low MDQ participants showing the most and the 487 
patients with BD showed the least outcome history effects. Bii) Lithium (vs. placebo) did not 488 
affect outcome history effects. Biii) After a win vs. a loss on the previous trial (‘last win’/ ‘last 489 
loss’), low MDQ participants avoided losses more, while this was reduced with the MDQ 490 
gradient, so that patients with BD did not adapt their choices to past trial outcomes. A full list 491 
of comparisons of parameters for the groups is shown in Tables S4 (longitudinal data) and 492 
Table S6 (fMRI session data). Relationships between parameters measured longitudinally over 493 
weeks or in the lab during the fMRI session are shown in Table S7. ii) and iii) show conditional 494 
effects from regression models, roughly equivalent to means, controlling for regressors of no 495 
interest. Lines in Aiii and Biii show the choices predicted by the model. Participant numbers: 496 
low MDQ: 37, high MDQ:40, BD lithium: 19, BD placebo: 16. 497 
 498 

Mood 499 

Finally, an advantage of the behavioural data being collected at home was that we could 500 
relate daily mood ratings to task-based behaviour. As reported previously (3,45) and similar 501 
to other studies (2,46,47) groups differed in their instability (standard deviation) of mood: 502 
The low MDQ group showed the lowest and the patients with BD the highest mood instability 503 
(positive PANAS: mean= 0.22, 95%CI = [0.11; 0.33]; negative PANAS: mean=0.64, 95%CI = 504 
[0.45; 0.83], Table S8A, Figure S4A). Lithium did not affect instability when using our measure 505 
of standard deviation here (Table S8B, Figure S4B), though note that using a measure of 506 
Bayesian volatility, lithium has been found to increase volatility of positive mood (3). Across 507 
all groups, happiness VAS at the end of each session, compared to before was increased by 508 
overall (summed across the whole session) reward and decreased by loss outcomes (mean = 509 
0.42, 95%CI = [0.31; 0.52]), similar to previous reports (48,49). However, this did not differ by 510 
bipolar disorder gradient (mean =-0.06, 95% CI = [-0.15, 0.03], table S8C). While mood 511 
instability differed between the groups, the impact on behaviour was distinct, with mood 512 
instability affecting the choice noisiness (the more unstable the mood, the more random the 513 
choices), without clearly affecting either loss sensitivity or outcome history effects (Figure 514 
S4C). The relationship between mood (PANAS) on the day of testing (rather than an overall 515 
measure of instability) and behaviour was not robust (table S8D). An exploratory analysis 516 
found that in the BD group, positive mood (PANAS) before the session led to reduced choice 517 
noisiness (figure S4C, stats on the regression interaction term BD gradient x PANAS predicting 518 
choice noisiness: mean: 0.18, 95%CI: [0.01; 0.35]). 519 
 520 
 521 
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Neural results 522 

Neural data were available for 77 volunteers and 22 patients. Across volunteers, brain 523 
activations to reward and loss utility during decisions (Figure 3A) and at the receipt of 524 
outcomes (Figure 3C) activated brain evaluation networks, including ventromedial prefrontal 525 
cortex (vmPFC), ventral striatum, dorsal anterior cingulate cortex (dACC), insula (Table S9). 526 
Next, we tested whether, related to the outcome history effect, there was brain activity when 527 
participants made a choice that correlated with the previous trial’s outcome. Indeed, we 528 
found that activity in a network including the ventral striatum, vmPFC and medial frontal pole 529 
(FPm) related to the outcome of the previous trial, i.e. increased activity the more positive 530 
(and less negative) the previous trial’s outcome (Figure 3B, Table S9).  531 
 532 

 533 
Figure 3. Neural activity during gambling. A) At the time of the decision a wide network of 534 
areas activated with relative (chosen minus unchosen) reward utility (orange), while loss 535 
relative utility activated the anterior cingulate cortex (blue). B) At the time of the decision, the 536 
last trial’s outcome (points won or lost) activated areas including vmPFC and ventral striatum 537 
(orange). C) At the time of the outcome (win or loss received), the outcome (points won or 538 
lost) activated areas including vmPFC, FPm, and ventral striatum (red/orange) and 539 
deactivated the pre-supplementary area. All results are cluster-corrected at p<0.05, two-540 
tailed, with inclusion cut-off z>2.3. See Table S9 for the full list of results. Data were combined 541 
across both volunteer groups (low and high MDQ). Participant numbers: low MDQ: 37, high 542 
MDQ: 40. 543 
 544 
 545 
 546 
Next, we compared the low and high MDQ groups. Activity for the previous trial’s outcome 547 
was higher for the low MDQ vs high MDQ group in FPm (Figure 4Ai-ii, Table S10, p=0.038, 548 
whole-brain cluster corrected). In other words, while all participants showed activity in 549 
vmPFC/FPm, in low MDQ participants the cluster extended further into FPm. Moreover, there 550 
was a correlation between the neural signal for the previous trial’s outcome and the 551 
behavioural outcome history effect: the stronger the activity for the last trial’s outcome in 552 
this area, the stronger the behavioural outcome history effect (Figure 4Aiii, r=0.24, p=0.017, 553 
partial correlation after correction for control variables and group; without correction: r=0.28, 554 
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p=0.005; test performed as robust regression, controlling for outliers: 95% Bayesian CI = [0.03; 555 
1.52]). Lithium vs. placebo participants’ activity did not differ in this area (mean=0.64, 95% CI 556 
= [-0.23; 1.44]).  557 
 558 
 559 

560 
Figure 4. Group differences in brain signals A) Differences between the low and high MDQ 561 
groups for the outcome history effects. Ai) Activation with last trial’s outcome at the time of 562 
the current trial’s decision differed between the low and high MDQ groups in the medial 563 
frontal pole (FPm; x=-10, y=56, z=16; p=0.038, n=77, cluster-corrected, Table S10A. In the low 564 
MDQ group, the activation with the last trial’s outcome that is found across both groups 565 
(Figure 3B) extends further dorsally. Aii) This group difference was driven by the low MDQ 566 
group showing stronger activation than the high MDQ group in FPm (Figure shows conditional 567 
effects from regression model, roughly equivalent to means, controlling for regressors of no 568 
interest). There was no significant difference between activations comparing lithium and 569 
placebo groups (-0.30, 95%CI: [-0.73; 0.17]). Aiii) This FPm activity correlated with the 570 
longitudinally measured outcome history parameter. Related whole-brain results shown in 571 
Figure S5. Colours match those of groups in B. B) Exploratory whole-brain group differences in 572 
the patients with BD for gamble outcome signal (lithium vs. placebo). Bi) Outcome related 573 
activity differed between the placebo and the lithium participants in an area including 574 
dorsolateral prefrontal cortex and lateral frontal pole (whole-brain cluster-corrected, Table 575 
S10B). This effect is illustrated in Bii). Participant numbers: low MDQ: 37, high MDQ:40, BD 576 
lithium: 13, BD placebo: 9. 577 
 578 
 579 
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As exploratory analyses (due to low sample sizes in BD groups for the MRI scan), we next 580 
compared lithium vs. placebo treatment at the whole-brain level. We found that patients 581 
receiving placebo had stronger activity related to the outcome of gambles in an area spanning 582 
dorsolateral prefrontal cortex (dlPFC, area 46) and lateral frontal pole (Figure 4B, Table S10B, 583 
p=0.009). We also tested whether the gamble outcome activation related to the behavioural 584 
outcome history effect, finding that interestingly it did (Figure S5), in an mFP area overlapping 585 
with the area of group differences identified above, though not in the dlPFC area of group 586 
differences between lithium and placebo (Figure 4A). 587 
 588 
 589 

DISCUSSION 590 

We designed a study to test the computational and neural correlates of adaptations of risk-591 
taking to gains and losses in bipolar disorder (BD), in risk of bipolar disorder and treatment 592 
with lithium. We included participants along a gradient of bipolar disorder ranging from 593 
volunteers with low risk of BD (low MDQ group), to volunteers with high risk of BD, to patients 594 
with diagnosed BD. In the patients, we tested the effect of lithium treatment in a placebo-595 
controlled double-blind design. We measured how much participants adapted their risk-596 
taking following reward outcomes in a risky decision-making task (‘outcome history effects’). 597 
We measured behaviour both longitudinally over up to 50 days and during a brain imaging 598 
(FMRI) session. We found that the low MDQ group showed an ‘outcome history effect’. 599 
Specifically, after a win on a trial, they were more risk averse (avoiding potential losses). This 600 
was reduced across the bipolar disorder gradient (lowest risk aversion adaptation in patients 601 
with BD). Neurally, outcome history was related to the representation of past information in 602 
a large network including ventromedial prefrontal cortex (vmPFC) and medial frontal pole 603 
(FPm). In low MDQ volunteers, this brain signal extended further dorsally into FPm compared 604 
to the high MDQ scorers and this was correlated with risk adaption behaviour.  605 
 606 
Decreased loss sensitivity and reward hypersensitivity have been suggested as central to BD 607 
(39,40) (50,51) and may drive risky or impulsive decision making. Our findings of decreased 608 
sensitivity to potential losses (vs wins) with BD gradient are in agreement with this. This effect 609 
showed a step change between the volunteer and the patient groups, rather than a 610 
continuous effect across the gradient. Then, we went further looking at adaptation of risk 611 
taking to past outcomes. We found that volunteers with presumed low risk of bipolar disorder 612 
(low MDQ) showed sequential dependencies between their choices and previous trials’ 613 
outcomes, avoiding potential losses after a win on the previous trial (‘outcome history 614 
effect’), as similarly recently reported in a go/no go decision-making task (52) . This was not 615 
strictly rational in our task since outcomes for gambles across trials were independent (10). 616 
However, this kind of  behaviour observed in the lab may be functionally appropriate in more 617 
naturalistic environments (38,53–55) and thus reflect prior beliefs participants have about 618 
reward distributions (e.g. non-independence between trials). For example, in natural 619 
environments, which are experienced continually rather than in discrete trials and in which 620 
different types of rewards (e.g. food, water) need to be accumulated or a homeostatic 621 
setpoint needs to be reached, it would make sense to adapt behaviour according to previous 622 
outcomes (56–60). The influence of past losses (vs wins) was lower in the high vs low MDQ 623 
group and lowest in patients with BD (i.e. the pattern showed a continuous gradient, also 624 
captured as a linear relationship to mania scores across all groups, rather than a step change 625 
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from volunteers to patients). Reduced homeostatic behaviour of this kind could lead to 626 
unstable moods since in the healthy population mood has been found to be regulated 627 
through behaviour (8). Relatedly, in patients with BD, purposefully regulating behaviour 628 
during the prodromal periods has been shown to reduce the risk of relapse (61). However, in 629 
our study, links between ratings of mood and behaviour were weak and so this suggestion 630 
remains speculative. Future studies could measure mood over longer timescales, more 631 
frequently than done here and using a more naturalistic task. We also note that our findings 632 
diverge from previous findings (4) of a stronger impact of previous rewards (and associated 633 
emotions) on the perception of outcomes in a study including a participant sample not 634 
specifically selected for BD diagnosis or risk of bipolar disorder, but completing the 635 
Hypomanic Personality scale (62) after the task. 636 
 637 
We focused on whole-brain analyses for the low/high MDQ volunteer sample due to the 638 
larger sample size compared to the patient study. Decision-making and the processing of 639 
outcomes produced a typical pattern of activation (63–66) in areas including dorsal anterior 640 
cingulate cortex, striatum and vmPFC. However, there were no group differences in any of 641 
these signals, matching our behavioural results of an absence of differences in general ability 642 
to make decisions or sensitivity to rewards vs. losses per se in the low vs. high MDQ groups. 643 
We next looked for brain activity related to the modulation of risk taking with ‘outcome 644 
history’. We found that at the time when people made decisions, there was activity 645 
representing the last trial’s outcome in an area spanning vmPFC to FPm. This is similar to 646 
previous findings in a learning context of between-trial activities (14,44,67). This gamble 647 
outcome activation was related to the behavioural outcome history effect across participants.  648 
This signal extended more dorsally into FPm in low MDQ volunteers. Furthermore, the 649 
stronger this signal, the stronger the modulation of risk taking by outcome history. As such 650 
the influence of outcomes on decision making may be a feature of risk for bipolar disorder 651 
which involves the FPm. This adds to previous work linking BD to changes in reward related 652 
signals in ventral striatum and OFC (19,68) and changes in connectivity between striatum and 653 
PFC (17,18). In this region, lithium did not affect brain activity, suggesting that its mechanism 654 
of action may not involve direct modulation of vmPFC value weighting.  655 
 656 
In an exploratory analysis, we compared the brain activity of patients with BD randomised to 657 
lithium or placebo. Patients given placebo showed larger outcome-related activity in 658 
dorsolateral prefrontal cortex. Yet at the same time, lithium did not change behaviour.  dlPFC 659 
signalling has largely been associated with regulation of mood and reward-related behaviour. 660 
Previous work in bipolar disorder has showed altered patterns of both vmPFC and dlPFC 661 
activity.  In particular, Mason et al. (17) reported that while controls activated dlPFC more to 662 
rewards of high probability, patients with bipolar disorder showed greater dlPFC to low 663 
probability (more risky) rewards. As such, our preliminary findings suggest that lithium may 664 
modulate a key component of frontostriatal circuitry important for effective decision making.  665 
Previous work in healthy volunteers also reported an effect of lithium on reward related 666 
signals in the ventral striatum which wasn’t detected in the current study(69).  667 
 668 
The current work has a number of limitations. Our sample size was low for the comparison 669 
between lithium and placebo fMRI responses, which may have affected our statistical power 670 
for key comparisons. It is also relevant that we saw no effect of lithium on the clinical 671 
questionnaires included in this study. However, this is consistent with the characteristics of 672 
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the sample recruited here, where current symptoms were largely residual (i.e. outside of an 673 
acute episode). Furthermore, lithium is largely used for relapse prevention rather than acute 674 
treatment of mania or depression (70) which could not be tested in the short timescale of the 675 
current investigation. Data across a large number of tasks and measures were also completed 676 
as part of these studies, and analysis is still ongoing. These complete results may shed light 677 
on the overall effects of bipolar disorder risk and treatment on different facets of mood and 678 
cognition. While we pre-registered our lithium trial (2014-002699-98), we did not pre-register 679 
our specific hypotheses for this part of the analysis. While we found an expected value signal 680 
(chosen minus unchosen value) in a typical ‘negative value’ network including the dACC, we 681 
did not find a ’positive value’ signal in a typically expected area like the vmPFC. This is unlikely 682 
to be due to signal drop out as vmPFC showed activation with reward outcome and an 683 
outcome history signal at the time of choice. This result is reminiscent of our previous findings 684 
(14), where it was interpreted as possibly due to the integration of an aversive dimensions 685 
(there: effort) with reward, rather than only integrating two positive dimensions (e.g. reward 686 
probability and reward magnitude). Similarly, here, participants were faced with a negative 687 
dimension, i.e. monetary loss. 688 
 689 
Our results highlight the importance of considering rewarded decision-making and related 690 
neural activity to understand symptoms of bipolar disorder and the stabilising effects of 691 
lithium.   692 
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Table S1. Parameter recovery, longitudinal data (related to main text methods ‘Computational models’). 
Parametric (Pearson) correlations between ground-truth (‘t.’) and fitted (‘f.’) parameters. We simulated 400 
participants with mean (‘_mean’) and standard (‘_sd’) from which choices for individual sessions of 20 trials 
were then generated (see supplementary methods [2A]). Simulated participants provided 47-50 sessions of 
data (50%-100% range of participants). Parameters: inverse temperature (b), sensitivity to loss utility (l) and 
change in loss sensitivity after prev. trial win vs. loss (g). Results show that recovery for mean parameters 
was very good (correlations between true and corresponding fitted, all >0.68). However, recovery for 
standard deviations was poor (e.g. g_sd: r=0.24). Given this, we decided not to analyse group differences in 
standard deviations. Neither did we therefore attempt more complex models of variations of parameters 
across time, such as a volatility model (1). 
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Table S2. Model comparison with Akaishi Information Criterion (AIC) (related to main text methods 
‘Computational models’). We compared three types of models. M1 (model used in main manuscript): 
decision variables as weighted combination of reward and loss (methods in main text); M2: decision variable 
containing exponential scaling of reward and loss magnitudes (supplementary methods [2B]); M3: weighted 
combination expected value, variance and skew (supplementary methods [2B]). Each of these models was 
run with different parameters being included or excluded (‘x’ in the table indicates inclusion) – parameter 
abbreviations: inv. temp = inverse temperature; outcome hist = outcome history; reward dist.= exponential 
distortion of reward magnitude; loss dist. = exponential distortion of loss magnitude. Annotations: 1Model 
of type M2, with outcome history included as linear weighing of the loss expected value; 2Model of type M2, 
with outcome history included in the exponential weighing; 3Model of type M2, with a shared parameter for 
exponential distorting of reward and loss magnitudes. AIC values are shown relative to the best fitting model, 
higher numbers indicate worse fit. Importantly, for all types of models, there is a model including outcome 
history that provides the best fit. While the model presented in the paper (M1) showed not the best fit to 
the data, it was retained it for ease of meaning of parameters (e.g. sensitivity to potential losses vs. sensitivity 
to skew) and analogy to previous decision making studies. Potentially, in the present study, the reason that 
a model with variance and skew provides a better fit is because total expected value of the two options was 
often very similar (Figure S1). However, we note, that the key behavioural findings of the paper, i.e. decrease 
in the outcome history effect with mood elevation gradient and decrease in loss aversion in BP are also 
captured in the both models M2 and M3, see Table S5. Though note that for the outcome history effect in 
M3, the 95%CI for the effect just about included zero [-0.0006;0.06], while the difference between the BD 
and low MDQ and high MDQ groups was significant).  Parameter recovery for M2 and M3 type models in 
Table S3. 
 
 
 
 
 
 

Model 
type

inv. 
temp

vari
ance skew

outcome 
hist

reward 
dist.

loss 
dist.

loss 
weight AIC

M3 x x x x 0
M3 x x x 99
M3 x x x 133
M3 x x x 215
M2 x x1 x x 3972
M2 x x x 4052
M2 x x2 x x 4131
M3 x x 5029
M2 x x3 x3 6126
M1 x x x 6869
M1 x x 6875
M2 x x 6972
M2 x x 7127
M3 x x 7412
M1/2/3 x 11431
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Table S3. Parameter recovery for alternative models (M2, M3, see Table S2 and supplementary methods 
[2B], related to main text methods ‘Computational models’). Shown are only the parameter recovery results 
for participant-wise means, the standard deviations showed equally bad recovery as for M1 (Table S1). 
 
 
 
 
 
 
 
 
 

M3 t.invTemp
t.var 
weight

t.skew 
weight

t.outcome 
history f.invTemp

f.var 
weight

f.skew 
weight

f.outcome 
history

t.invTemp -0.058 -0.109* -0.08 0.867*** -0.081 -0.145** -0.131**

t.var weight -0.058 0.027 0.026 -0.069 0.978*** 0.01 0.049
t.skew weight -0.109* 0.027 0.067 -0.196*** 0.015 0.977*** 0.106*

t.outcome history -0.08 0.026 0.067 -0.082 0.017 0.058 0.907***

f.invTemp 0.867*** -0.069 -0.196*** -0.082 -0.081 -0.220*** -0.114*

f.var weight -0.081 0.978*** 0.015 0.017 -0.081 0.001 0.041
f.skew weight -0.145** 0.01 0.977*** 0.058 -0.220*** 0.001 0.098
f.outcome history -0.131** 0.049 0.106* 0.907*** -0.114* 0.041 0.098

M2 t.invTemp
t.loss 
mag dist

t.rew 
mag dist

t.outcome 
history f.invTemp

f.loss 
mag dist

f.rew 
mag dist

f.outcome 
history

t.invTemp 0.075 -0.046 -0.052 0.901*** 0.099* -0.091 0.006
t.loss mag dist 0.075 -0.029 -0.023 0.074 0.820*** 0.112* -0.009
t.rew mag dist -0.046 -0.029 0.06 -0.057 0.312*** 0.905*** 0.082
t.outcome history -0.052 -0.023 0.06 -0.06 0.019 0.071 0.914***

f.invTemp 0.901*** 0.074 -0.057 -0.06 0.077 -0.135** 0.011
f.loss mag dist 0.099* 0.820*** 0.312*** 0.019 0.077 0.423*** 0.046
f.rew mag dist -0.091 0.112* 0.905*** 0.071 -0.135** 0.423*** 0.09
f.outcome history 0.006 -0.009 0.082 0.914*** 0.011 0.046 0.09
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Table S4. Computational modelling results (related to Figure 2). Computational model parameters for the 
longitudinal data. A) Comparison of the three groups (mood elevation gradient, ordered factors across low 
MDQ, high MDQ, patients with BD, at baseline, i.e. pre-randomization to lithium or placebo). The groups 
differed in their loss sensitivity (patients with BD being least sensitive to losses) and outcome history 
effects (patients with BD being least sensitive to past trial outcomes). How participants performed the task 
changed over time (effect of ‘Day’), in particular they became more random (lower inverse temperature) 
and less sensitive to potential losses (loss sensitivity). When repeating the analyses, but omitting the 5 
participants from the high MDQ group that were given a BD diagnosis (Table 1) during the intake interview, 
results remained broadly the same. For loss sensitivity, we find the same results as before (-0.26; 95% CI: [-
0.48; -0.03]). For the outcome history effect, the group effect is not quite significant anymore, but 
numerically very close to the previous finding ( -0.05; 95%CI: [-0.11; 0.0006]). When repeating the analyses 
and including as additional regressor for each session the time (days) since the previous session, we found 
numerically very similar results (Loss sensitivity: -0.25; 95%CI: [-0.47;-0.03]; outcome history: -0.0586, 
95%CI: [-0.105; 0.0026]). Repeating the analyses and replacing group assignment by the Altman Mania 
score (‘Mania’, continuous measure, available for all but one participant in the BD group [later assigned to 
lithium] and 3 in the high MDQ group), outcome history remains significant, while loss sensitivity is no 
longer significant (though trend in the same direction as considering group).  B) Comparison for the effect 
of lithium vs. placebo in hierarchical models (Main text Methods, section ‘Model fitting’, term of interest is 
the interaction drug (lithium/placebo) * time (pre/post)). No significant group differences were found. 
Values are means and 95% Bayesian Credible Intervals; for comparisons between groups, significance is 
defined as 95% intervals not including zero. All estimates were obtained from hierarchical regression 
models (Main text Methods, section ‘Model fitting’). 

Group Choice consist. (β) Loss sensitivity (λ) Outcome history effect (γ)
3 group gradient -0.154 [-0.5698 0.2498] -0.269 [-0.4868 -0.0519] -0.053 [-0.1104 -3e-04]
High vs low MDQ -0.42 [-1.15 0.36] -0.01 [-0.41 0.39] -0.05 [-0.11 0.03]
BD vs high MDQ 0.14 [-0.62 0.9] -0.5 [-0.93 -0.08] -0.07 [-0.19 0.05]
BD vs low MDQ -0.3 [-1 0.52] -0.52 [-0.94 -0.08] -0.12 [-0.24 0]
BD 5.84 [5.24 6.49] 0.89 [0.56 1.23] 0 [-0.11 0.1]
High MDQ 5.71 [5.13 6.29] 1.4 [1.12 1.69] 0.07 [0.02 0.12]
Low MDQ 6.13 [5.55 6.71] 1.41 [1.13 1.72] 0.11 [0.06 0.16]
Day -0.555 [-0.763 -0.339] -0.239 [-0.329 -0.155] -0.03 [-0.062 0.002]
Mania -0.208 [-0.4911 0.0728] -0.087 [-0.2375 0.0625] -0.039 [-0.072 -0.0056]

Group Choice consist. (β) Loss sensitivity (λ) Outcome history effect (γ)
Lith/pla x pre/post 0.193 [-0.9163 1.2654] -0.01 [-0.5146 0.4884] -0.11 [-0.2983 0.0797]
Lith pre vs post 0.36 [-0.49 1.2] -0.18 [-0.53 0.16] -0.06 [-0.19 0.08]
Pla pre vs post 0.17 [-0.78 1.09] -0.17 [-0.54 0.21] 0.05 [-0.09 0.2]
Lith vs pla (pre) 0.76 [-0.42 1.83] 0.19 [-0.25 0.61] -0.07 [-0.23 0.1]
Lith vs pla (post) 0.55 [-0.6 1.73] 0.2 [-0.22 0.62] 0.04 [-0.08 0.17]
Lith (pre) 6.36 [5.43 7.29] 1.09 [0.8 1.39] -0.03 [-0.15 0.09]
Placebo (pre) 5.61 [4.61 6.6] 0.9 [0.58 1.23] 0.04 [-0.08 0.17]
Lith (post) 6 [5.19 6.88] 1.26 [0.97 1.55] 0.03 [-0.06 0.11]
Placebo (post) 5.44 [4.5 6.35] 1.06 [0.76 1.38] -0.01 [-0.1 0.09]

A) Low MDQ, High MDQ, Bipolar disorder (BD) groups (baseline)

B) BD groups, pre/post * lithium/placebo 
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Table S5. Group comparisons for alternative models (M2, M3, see Table S2 and supplementary methods 
[2B]). A) In M3, instead of considering reward and loss expected values/ utility separately, we consider total 
expected value, variance and skew. Now, the previous (M1) decreased loss risk aversion with BD expressed 

A) M3: Expected value, variance, skew

Group Choice consist. (β) Var Weight Skew Weight Outcome history effect 
3 group gradient -0.114 [-0.4411 0.2132] 0.108 [0.0072 0.2066] 0.047 [-0.0497 0.145] 0.027 [-6e-04 0.0556]
High vs low MDQ 0.05 [-0.53 0.62] 0.01 [-0.17 0.19] 0.04 [-0.13 0.22] 0.01 [-0.03 0.04]
BD vs high MDQ -0.26 [-0.82 0.42] 0.21 [0.02 0.42] 0.06 [-0.13 0.27] 0.06 [0 0.11]
BD vs low MDQ -0.21 [-0.81 0.42] 0.22 [0.02 0.42] 0.1 [-0.09 0.31] 0.06 [0.01 0.12]
BD 2.62 [2.12 3.13] 0.23 [0.07 0.38] 0.1 [-0.05 0.26] 0.01 [-0.04 0.06]
High MDQ 2.87 [2.43 3.33] 0.02 [-0.12 0.14] 0.04 [-0.08 0.17] -0.04 [-0.07 -0.02]
Low MDQ 2.83 [2.36 3.27] 0.01 [-0.12 0.14] 0 [-0.14 0.13] -0.05 [-0.08 -0.02]
Day -0.133 [-0.297 0.033] 0.047 [0.015 0.08] 0.108 [0.07 0.147] 0.014 [-0.001 0.029]

Group Choice consist. (β) Var Weight Skew Weight Outcome history effect 
Lith/pla x pre/post -0.273 [-1.1636 0.6362] 0.152 [-0.0605 0.364] -0.217 [-0.4738 0.0465] -0.006 [-0.1042 0.0895]
Lith pre vs post -0.28 [-0.96 0.4] 0.16 [0.02 0.32] -0.04 [-0.22 0.14] 0.02 [-0.05 0.09]
Pla pre vs post -0.01 [-0.72 0.7] 0.01 [-0.14 0.18] 0.18 [-0.03 0.37] 0.02 [-0.05 0.1]
Lith vs pla (pre) 0.61 [-0.23 1.5] 0.09 [-0.12 0.3] -0.11 [-0.39 0.16] 0 [-0.09 0.08]
Lith vs pla (post) 0.89 [-0.03 1.81] -0.06 [-0.25 0.12] 0.1 [-0.2 0.43] 0 [-0.06 0.06]
Lith (pre) 2.83 [2.14 3.49] 0.24 [0.1 0.39] -0.03 [-0.22 0.16] 0.01 [-0.05 0.07]
Placebo (pre) 2.22 [1.53 2.92] 0.15 [-0.01 0.3] 0.09 [-0.11 0.28] 0.02 [-0.05 0.08]
Lith (post) 3.11 [2.45 3.77] 0.08 [-0.05 0.2] 0.01 [-0.19 0.22] -0.01 [-0.05 0.03]
Placebo (post) 2.22 [1.54 2.93] 0.14 [0 0.27] -0.09 [-0.32 0.14] -0.01 [-0.05 0.04]

B) M2: exponential distortions of magnitudes
Bi) M2: Low MDQ, High MDQ, BD (baseline) groups
Group Choice consist. (β) Rew mag dist Loss mag dist Outcome history effect 
3 group gradient -0.362 [-0.8268 0.1023] 0.046 [-0.0291 0.1216] -0.078 [-0.1551 -1e-04] 0.023 [3e-04 0.0532]
High vs low MDQ -0.12 [-1 0.76] 0.04 [-0.1 0.17] 0 [-0.13 0.13] 0.02 [0 0.04]
BD vs high MDQ -0.48 [-1.3 0.43] 0.06 [-0.1 0.21] -0.16 [-0.32 -0.02] 0.03 [-0.04 0.1]
BD vs low MDQ -0.6 [-1.48 0.25] 0.1 [-0.06 0.26] -0.16 [-0.31 -0.01] 0.05 [-0.02 0.12]
BD 7.12 [6.4 7.9] 1.34 [1.22 1.47] 1.32 [1.2 1.44] 0.04 [-0.03 0.1]
High MDQ 7.6 [6.91 8.34] 1.29 [1.19 1.39] 1.49 [1.39 1.58] 0.01 [-0.01 0.03]
Low MDQ 7.73 [7.01 8.47] 1.25 [1.15 1.34] 1.48 [1.39 1.57] -0.01 [-0.03 0.01]
Day -0.668 [-0.928 -0.409] 0.056 [0.027 0.085] 0.029 [-0.002 0.06] 0.012 [0.001 0.023]

Group Choice consist. (β) Rew mag dist Loss mag dist Outcome history effect
Lith/pla x pre/post -0.073 [-1.2749 1.123] -0.085 [-0.2576 0.0919] -0.202 [-0.4042 3e-04] 0.054 [-0.1137 0.2272]
Lith pre vs post -0.16 [-1.05 0.74] 0.01 [-0.11 0.12] -0.07 [-0.21 0.08] -0.01 [-0.12 0.11]
Pla pre vs post -0.09 [-1.15 0.99] 0.09 [-0.03 0.23] 0.13 [-0.02 0.29] -0.06 [-0.2 0.07]
Lith vs pla (pre) 0.83 [-0.4 2.01] -0.02 [-0.18 0.15] -0.09 [-0.36 0.2] 0.04 [-0.11 0.18]
Lith vs pla (post) 0.9 [-0.5 2.29] 0.07 [-0.13 0.27] 0.11 [-0.14 0.35] -0.02 [-0.13 0.09]
Lith (pre) 7.55 [6.52 8.57] 1.29 [1.17 1.4] 1.26 [1.07 1.46] 0.02 [-0.08 0.12]
Placebo (pre) 6.71 [5.62 7.8] 1.3 [1.18 1.42] 1.36 [1.16 1.56] -0.02 [-0.12 0.1]
Lith (post) 7.71 [6.64 8.76] 1.28 [1.15 1.42] 1.33 [1.17 1.5] 0.03 [-0.04 0.09]
Placebo (post) 6.81 [5.63 7.94] 1.21 [1.06 1.35] 1.22 [1.05 1.4] 0.05 [-0.04 0.12]

Ai) M3: Low MDQ, High MDQ, Bipolar disorder (BD, baseline) groups

Aii) M3: BD groups, pre/post * lithium/placebo 

Bii) M2: BD groups, pre/post * lithium/placebo 
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itself as increased preference for options with higher variance (see Figure S1 for relationship – high 
correlation- between risk of loss and variance). The mood elevation gradient is again linked to decreased 
adaptation across trials, here captured as decreased preference to options with high variance after win on 
previous trial (in M1: decreased avoidance of risk of losing). B) In M2, the model has parameters for the 
(exponential) distortion of reward magnitudes and loss magnitudes. Outcome history effects are captured 
as linear weighting of the loss expected value. Again, group differences captured are conceptually very 
similar to M1. As we could not fit a model (due to low trial numbers per session) including both the linear 
and exponential effects of loss sensitivity, future studies will need to be done to describe the specific shape 
of the increased loss sensitivity more precisely.  Values are means and 95% Bayesian Credible Intervals; for 
comparisons between groups, significance is defined as 95% intervals not including zero. 
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Table S6. FMRI session computational parameters (related to Figure 2).  Values are reported separately for 
each of the four groups (Bipolar participants on lithium (‘Bip Lith’), bipolar participants on placebo (‘Bip Pla’), 
healthy volunteers with low or high mood instability (‘Low MDQ’, ‘High MDQ’) as means and 95% Bayesian 
Credible Intervals (intervals not including zero are significant).  
All estimates were obtained from linear regression models allowing correcting for age and gender. Group 
differences were computed across all four groups (‘4 group diff’). Group differences are also reported 
separately comparing high and low mood instability participants (‘High vs. low MDQ’) and lithium vs. placebo 
participants (‘Lith vs pla’). There were no significant group differences. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Group Choice consist. (β) Loss sensitivity (λ) Outcome history effect (γ)
Lith (post) 8.8 [7.08 10.52] 1.48 [0.92 2.03] -0.07 [-0.31 0.17]
Pla (post) 6.58 [4.55 8.48] 1.58 [0.95 2.29] -0.01 [-0.27 0.27]
High MDQ 7.06 [6.08 8.08] 1.76 [1.38 2.07] 0.13 [-0.02 0.27]
Low MDQ 7.34 [6.28 8.34] 1.73 [1.38 2.09] 0.12 [-0.03 0.25]
4 Group diff (post) -0.002 [-0.74 0.67] -0.059 [-0.278 0.157] -0.051 [-0.141 0.039]
Lith vs pla (post) 2.23 [-0.3 4.95] -0.1 [-0.96 0.75] -0.06 [-0.42 0.28]
High vs low MDQ -0.28 [-1.61 1.21] 0.03 [-0.46 0.53] 0.02 [-0.17 0.21]

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 8, 2024. ; https://doi.org/10.1101/2023.03.13.23287200doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.13.23287200
http://creativecommons.org/licenses/by/4.0/


 8 

  
Table S7. Correlations between parameters from longitudinal and FMRI data (related to Figure 2). For all 
but one parameter, computational parameters derived from longitudinal measurements and those obtained 
during the FMRI scan correlate significantly. Only for the outcome history effect parameter (g) are the 
correlations not significant. Correlations were computed using Pearson correlations across combined data 
from all four participant groups. 
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Table S8. Group difference for mood (PANAS) mean and standard deviations and impact of task outcomes 
on momentary mood (VAS). A) Comparison of the three groups (mood elevation gradient, ordered factors 
across low MDQ, high MDQ, patients with BD [i.e. pre randomization to lithium or placebo]). The groups 
differed in variability (standard deviation (log scale) for positive and negative PANAS with patients with BD 

Group Positive PANAS (mean) Negative PANAS (mean) Positive PANAS (sd) Negative PANAS (sd)
3 group gradient 0.15 [-0.6434 0.9624] 2.61 [1.9555 3.2551] 0.221 [0.1118 0.3321] 0.642 [0.4558 0.8305]
High - low MDQ 0.16 [-1.29 1.67] 1.26 [-0.02 2.47] 0.35 [0.15 0.56] 0.73 [0.41 1.06]
BD - high MDQ 0.04 [-1.22 1.38] 2.1 [0.9 3.25] 0.1 [-0.12 0.34] 0.6 [0.23 0.95]
BD - low MDQ 0.2 [-1.11 1.52] 3.36 [2.18 4.45] 0.45 [0.22 0.68] 1.33 [0.94 1.71]
BD 6.76 [5.63 7.86] 4.94 [3.97 5.87] 1.15 [0.97 1.33] 1.13 [0.84 1.41]
High MDQ 6.73 [5.75 7.75] 2.83 [2.03 3.73] 1.05 [0.9 1.19] 0.53 [0.3 0.75]
Low MDQ 6.56 [5.41 7.69] 1.57 [0.73 2.53] 0.7 [0.56 0.86] -0.2 [-0.43 0.05]
Day -0.296 [-0.56 -0.049] -0.007 [-0.139 0.119] NA NA

Group Positive PANAS (mean) Negative PANAS (mean) Positive PANAS (sd) Negative PANAS (sd)
Lith/pla x pre/post -0.274 [-1.5488 1.019] 0.264 [-0.8541 1.3526] 0.013 [-0.4098 0.4187] -0.086 [-0.4867 0.3164]
Lith pre vs post 1.01 [-0.03 2.08] 0.86 [-0.01 1.72] 0.22 [-0.06 0.51] 0.1 [-0.19 0.36]
Pla pre vs post 1.3 [0.12 2.58] 0.58 [-0.41 1.59] 0.2 [-0.11 0.5] 0.18 [-0.12 0.46]
Lith vs pla (pre) 0.2 [-1.61 1.86] -0.35 [-2 1.31] 0.06 [-0.43 0.49] -0.2 [-0.65 0.25]
Lith vs pla (post) 0.49 [-1.59 2.51] -0.62 [-2.47 1.27] 0.04 [-0.36 0.47] -0.11 [-0.57 0.32]
Lith (pre) 7.92 [5.98 9.87] 6.19 [4.41 8.04] 1.17 [0.84 1.48] 0.88 [0.54 1.18]
Placebo (pre) 7.72 [5.78 9.7] 6.55 [4.62 8.35] 1.11 [0.77 1.45] 1.08 [0.75 1.39]
Lith (post) 6.89 [4.98 8.9] 5.33 [3.57 7.3] 0.95 [0.66 1.23] 0.78 [0.46 1.07]
Placebo (post) 6.43 [4.48 8.6] 5.97 [4.09 8.02] 0.91 [0.59 1.19] 0.89 [0.58 1.21]

C) Group differences in impact of gambling outcomes on mood
Total gain Total loss Total gain minus loss
0.843 [0.6303 1.0599] 0.942 [0.7177 1.1755] 1.026 [0.7737 1.286]
0.12 [-0.0254 0.2764] 0.188 [0.0291 0.3525] 0.133 [-0.0037 0.2764]
-0.083 [-0.2753 0.0951] -0.146 [-0.3453 0.0576] -0.123 [-0.3475 0.0926]

D) Impact of mood before the task on task behaviour
Choice consist. (β) Loss sensitivity (λ) Outcome history  (γ)
0.034 [-0.0835 0.1533] 0.007 [-0.0488 0.061] -0.01 [-0.0396 0.0187]
0.03 [-0.0856 0.1478] 0 [-0.0548 0.053] -0.017 [-0.0484 0.014]
-0.093 [-0.2803 0.086] -0.007 [-0.0973 0.0834] -0.022 [-0.0708 0.0239]
0.157 [-0.0078 0.3185] 0.005 [-0.0666 0.0772] 0.005 [-0.0355 0.0438]
-0.095 [-0.5057 0.3175] -0.268 [-0.4829 -0.0452]-0.059 [-0.1189 -0.0041]
0.03 [-0.0933 0.158] -0.015 [-0.0719 0.0419] 0 [-0.0299 0.0306]
0.009 [-0.0289 0.0491] -0.009 [-0.0466 0.0287] 0.002 [-0.0367 0.0407]
-0.093 [-0.2756 0.0794] -0.017 [-0.1056 0.0673] -0.001 [-0.047 0.0439]
0.177 [0.0059 0.3461] 0.002 [-0.0732 0.0782] 0.001 [-0.0417 0.0412]
-0.166 [-0.5529 0.2334] -0.265 [-0.4898 -0.038] -0.056 [-0.1126 -0.0032]
-0.031 [-0.1628 0.0978] -0.037 [-0.0992 0.0274] 0.019 [-0.0122 0.0505]
-0.007 [-0.0487 0.0359] -0.014 [-0.0576 0.0298] 0.045 [0.0025 0.0872]
0.036 [-0.2153 0.2919] -0.012 [-0.1293 0.1091] 0.071 [0.0039 0.1487]
-0.053 [-0.2339 0.1254] -0.008 [-0.0952 0.0775] -0.027 [-0.0747 0.0178]
-0.114 [-0.5185 0.3209] -0.232 [-0.4619 0.0057] -0.071 [-0.1345 -0.0138]

negPANAS x 3gr gradient
3 group gradient (ctr negPANAS interact)

Regressor

Regressor
Outcome->Mood change
3 group gradient
3 group gradient x outcome

posPANAS x 3gr gradient
3 group gradient (ctr posPANAS interact)
negPANAS (not ctr gr)
negPANAS (ctr gr)
negPANAS (ctr interact)

totalPANAS x 3gr gradient
3 group gradient (ctr totalPANAS interact)
posPANAS (not ctr gr)
posPANAS (ctr gr)
posPANAS (ctr interact)

totalPANAS (not ctr gr)
totalPANAS (ctr gr)
totalPANAS (ctr interact)

A) Low MDQ, High MDQ, Bipolar disorder (BD) groups (baseline)

B) BD groups, pre/post * lithium/placebo 
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showing the highest variability. Groups also differed in the mean values for negative PANAS. B) Comparison 
for the effect of lithium vs. placebo in hierarchical models (Main text Methods, section ‘Model fitting’, term 
of interest is the interaction drug (lithium/placebo) * time (pre i.e. baseline /post)). No significant group 
differences were found. C) In a regression predicting changes in mood rated on a visual analogue scale (VAS) 
post completing the daily task vs. pre, there was an overall effect that the higher the total reward, and the 
lower the total loss (i.e. more positive number), the more mood improves. However, this impact of task 
outcomes on mood was not affected by the mood elevation gradient (‘3 Group x outcome’). Values are 
means and 95% Bayesian Credible Intervals; significance is defined as 95% intervals not including zero. All 
estimates were obtained from hierarchical regression models (Main text Methods, section ‘Model fitting’). 
D) In separate regressions, we assessed the impact of mood behaviour the daily tasks on behaviour. Mood 
was measured as positive or negative PANAS or as the total PANAS (positive minus negative PANAS). The 
regressions were of the same form as throughout the paper (e.g. S4), additionally including mood and/or an 
interaction between mood and BD gradient. For completeness, we report the results here for regressions 
only including mood, not BD gradient (‘not ctr gr’), controlling BD gradient in addition to mood (‘ctr gr’), 
controlling for an interaction between mood and BD gradient (‘ctr interact’). We report also the interactions 
between mood and BD gradient (‘x 3gr gradient’) and the result for BD gradient, controlling intearctions with 
mood (‘ctr mood interact’). We find (figure S4C for illustration) that in the BD group, choice consistency is 
higher (i.e. less choice noisiness) when positive PANAS is higher. While there appears to be an impact of 
negative PANAS on outcome history, this only emerges when including the BD gradient as a regressor, 
making it difficult to interpret (one could speculate that a ‘masking’ effect is present because neg PANAS 
and group have the opposite impact on outcome history and neg PANAS differs between the groups).  
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Table S9. General task brain (de)activations (related to Figure 3). Data across the low and high mood 
instability (MDQ) groups was combined to identify general brain (de)activations during the task. Coordinates 
are reported in MNI space. Significance was determined using cluster-based thresholding (methods section 
“FMRI analysis – whole-brain”), with inclusion threshold: z=2.3 and significance p<0.05 two-tailed. The 
maximum z-value of the cluster, the p-value and number of voxels are given for each cluster. Anatomical 
labels are based on: [1] (2)) [2] (3), [3] (4), [4] (5), [5] (6).  
 
 

Low and high MDQ groups combined x y z

max z-

score

p-value (2-

tailed) # voxels

Reward utility (chosen - unchosen) at choice 
Activation

Precuneus, primary motor area (M1), caudal 

cingulate zone (CCZ), supplementary motor area 

(SMA), posterior rostral cingulate zone (RCZp) [2] -12 -44 50 4.22 2.08E-13 3106

Area 9/46 and 45a and 47m and 47o and IFS [2,3,4] 48 8 44 4.85 6.16E-13 2961

Temporal lobve (right) 60 -28 -2 4.47 4.86E-11 2401

Temporoparietal junction (TPJa) [1] (left) -48 -44 18 3.93 2.90E-10 2184

Spanning precuneus and intracalcarine cortex -18 -62 12 3.94 4.20E-09 1867

Area 47m and 47o (left)  [2] -40 42 -4 4.02 1.19E-07 1472

Superior parietal lobe (SPLA) [1] (left) -32 -40 54 3.82 1.58E-04 812

Area 8a [3] (left) -46 4 42 4.03 4.28E-04 728

Area 8m [2] 4 44 38 5.11 8.64E-03 493

Loss utility (chosen - unchosen) at choice
Activation
Rostral cingulate zone (RCZa) [2] 12 28 26 3.26 2.06E-02 431

Last trial's win/loss magnitude (signed) at choice
Activation
Ventral striatum (bilateral) and ventromedial 

prefrontal cortex (14m and 11m) and medial 

frontal pole (FPm) [2] -18 12 -8 4.37 4.52E-13 3084

Occipital cortex -16 -84 -2 3.7 1.72E-02 454

Win/loss magnitude (signed) at outcome
Activation
Ventral striatum and vmPFC (14m) [2] 14 12 -8 8.88 1.88E-30 9977

Inferior parietal lobe (IPLA) [1], left -58 -18 26 4.65 2.80E-08 1708

Area 8m [2], left -16 38 42 5 3.58E-07 1442

Primary motor area (M1) [2], right 20 -28 72 4.06 4.76E-07 1409

Occipital lobe, left 30 -88 -6 4.94 3.10E-06 1208

Precuneus, bilateral -16 -52 12 4.58 9.78E-06 1093

Occipital lobe, right -28 -92 4 4.72 2.56E-04 792

Temporal lobe, left -56 -38 -12 4.09 3.22E-04 772

Inferior parietal lobe (IPLE, IPLD, IPLC) [1], left -42 -66 40 5.47 8.48E-04 690

Cerebellum (right) 42 -70 -38 3.57 3.32E-02 408

Deactivation
Pre supplementary motor area (pre-SMA) [2] 2 16 52 4.72 0.00033 770
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Table S10. Whole-brain group comparisons (related to Figure 4). A) Comparisons of the low vs high mood 
elevation volunteers. Repeating the group comparisons in the ROI, but excluding participants from the high 
MDQ group who had a BD diagnosis (n=5), results were still significant: estimate = 1.00, 95%CI=[0.6; 1.39]. 
B) Comparisons of the patients with BD assigned to placebo or lithium. All cluster-based thresholded, 
inclusion threshold: z=2.3, significance p<0.05 two-tailed. The maximum z-value of the cluster, the p-value 
and number of voxels are given for each cluster. Anatomical labels are based on: [1] (2)) [2] (3), [3] (4), [4] 
(5), [5] (6).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A  Low vs high MDQ groups x y z
max z-
score

p-value (2-
tailed) # voxels

Last trial's win/loss magnitude (signed) at choice
Low > high MDQ
Medial frontal pole (FPm), area 9m [2] -10 56 16 3.52 0.0378 398

B  Bipolar lithium vs. placebo groups - exploratory
Win/loss magnitude (signed) at outcome
Placebo > Lithium
Dorsolateral preforntal cortex (Area 46 [5]) and 
lateral frontal pole [2], Inferior frontal sulcus (IFS), 
(right) 38 48 0 3.49 0.00898 503

C  Patients vs non-patients - exploratory
Last trial's win/loss magnitude (signed) at choice 
Non-patients > Patients
Anterior cingulate cortex  (area 32d and 24), cluster 
extending to caudate 6 42 14 3.43 0.0000062 1135
Thalamus -20 -34 0 3.87 0.001068 669
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Figure S1. Illustration of task schedule (related to Figure 1). A)-E) Distributions for total expected value or 
‘utility’ (EV, i.e. for each option: probability*reward magnitude + (1-probability)*loss magnitude, assuming 
loss magnitude is coded as negative number), loss expected value ((1-probability)*loss magnitude), reward 
expected value (probability*reward magnitude), variance and skew across all trials of the experiment (see 
supplementary methods [2B]). i) shows the distribution of these values across all options and ii) the 
distribution of left minus right (‘diff’) options. F) Correlation between the task properties. Of note, as 
expected, variance and total expected value are highly correlated with both reward and loss expected value 
differences. 
 
 
 
 
 
 
 
 
 

F
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Figure S2. FMRI designs. Correlations of the haemodynamically convolved regressors for FMRI design 1 (A) 
and design 2 (B). No value regressors exceeded correlations of r>0.5 with any other regressors or confounds. 
Abbreviations: chosen reward utility (rewUtilC), unchosen reward utility (rewUtilUC), chosen loss utility 
(lossUtilC), last trial’s outcome, i.e. points won or lost, e.g. +10 or -20 (LastWinLoMag), current trial’s 
outcome (WinLossWithMag), relative reward utility (rewUtilCmUC), interaction between last trial’s outcome 
and the current trial’s loss utility (LastWinLoMagxLossUtilCmUC). 
 
 
 
 
 
 
 
 
 
 
 
 
 

A
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Figure S3. Mania (Altman Self Rating Mania Scale, A) and depression (Quick Inventory of Depressive 
Symptomatology, B) over the course of the study in patients with BD. Week zero is the average value of all 
weeks pre randomization (i.e. baseline) to lithium (black) vs. placebo. (purple) Horizontal lines show standard 
cut-offs. There were no significant differences between the groups (result of a regression predicting Altman 
or QIDS based on group, time and group*time, controlling for age and gender: group*time interaction: 
Altman 0.018, 95% CI [-0.10; 0.14]; QIDS: 0.05, 95% CI: [-0.1; 0.2]; main effect of group: Altman -0.70, 95% 
CI [-3.5; 2.0]; QIDS: -0.09, 95% CI: [-0.10; 0.02]; main effect of time: Altman: -0.01, 95% CI [-0.10; 0.07]; QIDS: 
-0.09, 95% CI: [-0.19; 0.02]). 
 
 
 
 

A B
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None
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Severe

Very severe
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Figure S4. Mood (PANAS) variability (standard deviation). A and B as previously reported in Panchal et al. 
(7), shown here for ease of accessibility together with results relating mood to behaviour. A) BD gradient 
(ordered factor with low MDQ < high MDQ < patients with BD pre assignment to placebo or lithium) is linked 
to increased variability (standard deviation) for both positive and negative mood (PANAS). B) In contrast, 
lithium (as interaction term drug (lithium/placebo) * time (pre/post) does not affect variability of mood. See 
Table S8 for statistical values. C) Linking daily ratings of positive PANAS to inverse temperature (choice 
consistency) revealed an interaction with group (see Table S8). D) We adapted a more comprehensive model 
of mood variation from Pulcu et al. (1) (see supplementary methods [4] Bayesian mood instability models), 
fitting both mood variability and the links of mood variability to behaviour. Di) In the model, we captured 
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separately the noisiness of mood ratings (PANAS SD, standard deviation) and the change in the average 
underlying moods (PANAS volatility). Dii) The groups differed in both measures of mood instability. Group 
was not included in the models. To test how predictive mood instability was for group, we trained regression 
models for out-of-sample leave-one-out predictions (see supplementary methods [4]). We found that for a 
model trained to predict low vs high MDQ group, % correct classification prediction was 72% (chance: 46%). 
When training to predict the three groups, classification was  61% correct (either when trained on all 
participants or omitting those that had a diagnosis of BD in the high MDQ group; chance: 32% correct). For 
the high MDQ participants with a BD diagnoses, 0% were misclassified as BD.    Diii) The higher the mood 
variability (PANAS SD), the less consistent participants’ choices (i.e. lower inverse Temperature), mean =-
0.07, 95%CI [-0.15; -0.002]. We illustrate here the data across all measurements, but statistics were done in 
the full model taking the hierarchical structure of the data (i.e. several days per participant) into account. 
For other parameters, no consistent results emerged (i.e. changing the modelling approach slightly to 
capture mood instability and its link to behaviour in separate models meant that some results disappeared 
that were significant in the full model, suggesting that they were at least less reliable).  
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Figure S5. Whole-brain individual difference analyses. A) To complement Figure 4Aiii, we repeated the 
analyses whole brain, linking individual differences in the behaviour (at home) for the outcome history effect 
to neural signals for the last trial’s outcome at choice (orange) and for the reward/loss outcome signal (pink). 
Significant (p<0.05) whole-brain clusters overlapped with the area of the group difference in the last trial’s 
outcome signal at choice between the high and low MDQ groups (red, see Figure 4Ai). In particular, the result 
for the current trial outcome is noteworthy as that activation did not show any group differences. Together, 
this highlights a role for this medial frontal polar area in the outcome history effects. B) Despite the absence 
of whole-brain corrected differences between the high and low MDQ group for the outcome reward/loss 
activations, we also tested for group differences in the region of group differences for the last trial’s outcome 
at the time of the choice (Figure 4A, red activation in A). We found that in fact, the low MDQ group shows a 
greater outcome-related activation than the high MDQ group (mean = 0.5, 95% Bayesian CI: [0.06; 0.93]). 
There were no differences between the BD lithium and BD placebo groups (mean=-0.1, 95% CI: [-0.92; 0.76]). 
Participant numbers: n=99 (all available participants across the four groups).  
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Supplementary methods  
[1] Additional participant information 
[1A] Exclusion criteria 
Healthy volunteers with low and high mood instability. Common inclusion criteria across both groups were: 
over 18 years old, no current medication (other than contraceptive pill), no use of antidepressants, 
antipsychotics, lithium or anticonvulsant medication in the last 6 weeks, no contraindication to MRI or MEG. 
Participants were recruited based on their scores of mood instability (MDQ). The questionnaire includes first 
questions describing symptoms of bipolar and second a question about whether the different symptoms 
occurred at the same time. Participants were included in the low MDQ group if their number of reported 
symptoms was 5 or less. Participants were included in the high MDQ group if they reported 7 or more 
symptoms and report that they have happened at the same time. Additionally, in the low mood instability 
group, we excluded participants with a current or past diagnosis of an axis 1 psychiatric disorder (assessed 
using DSM-IV interview) or a first degree relative with bipolar disorder. In the high mood instability group, 
we excluded participants with a current or past diagnosis of an axis 1 psychiatric disorder other than bipolar 
disorder I or II, major depression or anxiety disorders. 
 
Participants diagnosed with bipolar disorder. Inclusion criteria: over 18 years old, meeting criteria for BDI, 
BDII or BDNOS as assessed  using the Structured Clinical Interview for DSM-V Axis I Disorders (SCID-I), 
clinically significant mood instability (established through interview), not currently suicidal (currently suicidal 
assessed as a score of  ≥ 4 on the C-SSRS  (Columbia Suicide Severity Rating Scale Score (8)), no 
counterindications to lithium (assessed through pre-treatment tests including renal, cardiac, thyroid and 
parathyroid functions), not currently taking any psychotropic drugs that could not be withdrawn, not 
requiring acute treatment so that placebo would be inappropriate, participation in a previous research trial 
in the past 12 weeks. Participants with counterindications to MRI scanner were included in the behavioural 
part of the study. 
 
All participants. When inspecting the PANAS daily mood ratings, we noticed that for some participants on 
some days, every single response (to all positive and negative items was zero). This suggests a technical 
problem. We set the data from these days to zero. There were 25 participants (across all groups) for who 
this happened for more than 10% of measurements. Because of using hierarchical models, we could include 
most participants for all analyses. Specifically, we could include all participants that did not have a standard 
deviation of zero for the mood measures (this excluded 1 participant for the analyses for negative PANAS , 
0 for positive PANAS and 2 for the analyses of changes in mood before and after the task). 
 
[1B] Larger study – full information 
Volunteers: 
The data presented here was part of larger study (CONBRIO, Collaborative Oxford Network for Bipolar 
Research to Improve Outcomes: The cognitive neuroscience of mood instability; Cognition and Mood 
Evolution across Time (COMET) – MSD-IDREC-C2-2014-023). Participants who expressed interested in the 
study were given an electronic version of the information sheet and the Mood Disorder Questionnaire 
(MDQ). If they scored in either the ‘low MDQ’ or the ‘high MDQ’ category they were invited for a first study 
visit.  
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During the first study visit, inclusion and exclusion criteria were checked. Participants were also screened for 
psychiatric disorders using the Structured Clinical Interview for DSM Disorders (SCID) (9). Participants 
completed several questionnaires, including Barratt Impulsiveness Scale (10), Sleep Condition Indicator (11), 
Maclean Screening Instrument (12), Affective Lability Scale (13), Affect Intensity Measure (14). Participants 
were set up with and instructed how to use devices to measure their activity (GeneActiv watch and FitBit) 
over the ten weeks study period. They were given an iPad mini and trained on four cognitive tasks: ‘wheel 
of fortune’ – risky decision making (presented here), ‘guess the gap’ – performance learning, ‘fractals’ – 
stimulus-outcome learning, ‘whack-a-t’ – implicit spatial learning.  
 
Over a period of ten weeks, they were asked to complete these tasks five times a week and to wear the 
GeneActiv and FitBit devices as much as possible. They were also asked to complete clinical questionnaires 
(Quick Inventory of Depressive Symptomatology (15) , Altman self-rating mania scale (16), Generalized 
Anxiety Disorder-7 (17), EuroQol-5 [health-related quality of life] (18)) on the True Colours mood monitoring 
system (19) once a week. They were also asked to stay within the recommended daily alcohol intake levels 
throughout. 
 
In the beginning of the ten-week period (weeks one or two) and in the end (weeks nine and ten), participants 
attended an MRI scan and a MEG scan. Due to MEG scanner downtime, only 24 participants received the 
MEG scan. During both MRI scans, resting state and structural data was obtained. At the first scan, additional 
the ‘wheel of fortune’ was measured. At the second MRI scan, ‘fractals’ and ‘guess the gap’ was measured, 
as well as diffusion tension imaging and fluid-attenuated inversion recovery.   
 
Participants diagnosed with bipolar disorder: 
Participants first took part in a screening visit in which inclusion criteria were checked and informed consent 
was taken. Using the SCID-I, a diagnosis check was done. In addition, demographic and clinical information 
was obtained, including duration of illness, previous use of psychotropic medicines, family history of mood 
disorders, presence of comorbid borderline personality disorder and attention deficit hyperactivity disorder 
and current suicidal ideation, concomitant medication and substance use and a physical examination. If 
blood samples have not been taken as part of routine monitoring, they were taken at this visit.  Two sets of 
samples were taken, one was sent to the pathology lab for analysis and the other was retained as 
replacement for samples lost/damaged in transit and for storage for future research. Tests included urea 
and electrolytes, full blood count, fasting blood glucose, glycosylated haemoglobin (HbA1c), blood lipid 
profile, LFTs, T4, T3, TSH, thyroid antibodies, PTH, vitamin D, eGFR, Cystatin C and NGAL and inflammatory 
markers CRP and IL-6. A sample was taken to measure calcium level using the InSight™ Electrolyte Analyser 
located in the NIHR-CRF. Weight/BMI, pulse and blood pressure were also recorded, and an ECG was 
performed. Participants were given an iPad mini and trained on the same cognitive tasks as the healthy 
volunteers described above. They were also set up with the True Colours system to rate weekly mood and 
on Mood Zoom (20) to rate daily mood. Participants were also given activity monitors. They were also given 
saliva swabs. 
 
Before being randomised to lithium or placebo, all participants completed two weeks of daily cognitive tasks, 
mood and activity measurements at home (though some participants completed up to 30 days due to logistic 
challenges). Then, they were randomised and performed six weeks of cognitive tasks, mood and activity 
measurements.  
 
In the beginning of the six weeks period (week one or two), they completed an MRI and a MEG scan using 
the same scans as described for the healthy volunteers.  
 
Randomisation: The first 10 participants were fully randomly assigned to avoid predictability, while for 
subsequent participants, an algorithm was used to minimize differences in age (<25 or >25 years) and gender 
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between the two groups. In the lithium group, participants were titrated to doses producing plasma levels 
of 0.6-1 mmol/L (see supplementary methods 1C for dosing details). 
 
[1C] Lithium dosing information 
In the lithium group, participants were prescribed an initial dose of 400g/day, unless there was a clinical 
indication to start at a lower dose. During this phase, participants attended brief assessments at 4-days, 8-
days and between 2 and 3 weeks post-randomisation to review lithium levels by a psychiatrist (if lithium 
level ≤ 0.3 mmol/L, dose increased to 800mg/day; if lithium level between 0.4 to 0.5 mmol/L, dose increased 
to 600mg/day; if lithium level 0.6 -1.0mmol/L, continued current dose; if lithium level ≥ 1.0mmol/L, decrease 
dose by 200mg/day or 400mg/day as found appropriate by psychiatrist), receive additional supplies of 
lithium/ placebo as needed and were asked about adverse events. Participants took part in one 
neuroimaging session in week 3 or 4. During the trial, participants were asked to complete the cognitive 
tasks daily.  
 
 
 
 
 
[2] Computational modelling, additional information 
[2A] Decision making model validation 
We validated our computational models using simulations (21,22). We simulated 400 participants with 
parameter values (mean and standard deviations) drawn from a uniform distribution in the 95% range of the 
parameters for real individual participants. For each participant, we simulated 47-50 sessions (uniform 
distribution). Parameters for single sessions were drawn from normal distributions of simulated participants’ 
means, standard deviations and linear effects of days. Simulated data was then fitted using same approaches 
as above. To speed up fitting of data, variational Bayesian approximation (23) was used unless control indices 
(pareto smoothed importance sampling, khat >0.7 (24)) suggested unsuccessful fitting even after increasing  
number of samples and decreasing tolerance, in which case sampling was used. When fitting the models, 
initially, 4 chains, with each 15,000 iterations were drawn and the target acceptance rate (adapt_delta, (25)) 
was set to 0.85. Whether models had been fit appropriately was checked using a criterion of R-hat (measure 
of mixing of chains) < 1.1 and absence of divergent samples. If these were not fulfilled, number of iterations 
were increased by 50% and adapt_delta was increased towards 1 (by 50% of distance from 1). This was 
repeated until all models converged. 
 
To validate the model, we then checked the correlations between true and fitted values for mean and 
standard deviation of parameters across individual subjects (table S1). 
 
[2B] Alternative decision-making models and model comparison 
In addition to the models in the main text (section Computational models – decision making), we also 
considered two other classes of models (see table S2 for full list). First models that incorporated probability 
and magnitude distortions according to prospect theory (26) (class ‘M2’): 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦!"#$ = 𝑃𝑟𝑜𝑏_𝑎𝑑𝑗 ∗ 𝑀𝑎𝑔%"&d% − l ∗ (1 − 𝑃𝑟𝑜𝑏_𝑎𝑑𝑗) ∗ 𝑀𝑎𝑔!'((
g!  

Where 

𝑃𝑟𝑜𝑏)*+ =	
𝑃𝑟𝑜𝑏e

(𝑃𝑟𝑜𝑏e + (1 − 𝑃𝑟𝑜𝑏)e)
,
e
 

Here, e is the probability distortion; dr is the distortion of the reward magnitudes;  dl is the distortion of the 
loss magnitudes and l is the weighting of the loss (scaled mag * scaled prob). 
We also fitted further versions of this model, leaving out the probability distortion, the loss scale or the 
magnitude distortions. 
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Of note, due to there only being 20 trials available per session, not all of these models could be fitted. 
Specifically models that contained probability distortion could not be fitted and models with a loss weight in 
addition to exponential scaling of loss could not be fitted. 
 
In these models, the outcome history effect was initially included in the exponential of the loss magnitude:  

𝑀𝑎𝑔!'((
(g!.g∗0%"123$4!"#

$%&&
)

 
However, we noted that, potentially due to the difficulty of estimating parameters that are used as an 
exponent, parameter recovery for the outcome history effect in this model was not very good. Therefore, 
we also included the outcome history parameter as a linear weight of the exponentially distorted 
magnitudes. 
 
The second set of models allowed participants to differ in their relative weighting of  expected value, 
variance and skew (27) (class ‘M3’): 

𝑈𝑡𝑖𝑙𝑖𝑡𝑦!"#$ = 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒 + 	a ∗ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + c ∗ 𝑆𝑘𝑒𝑤	 
Where: 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒	(𝐸𝑉) = 𝑃𝑟𝑜𝑏 ∗ 𝑀𝑎𝑔%"& − (1 − 𝑃𝑟𝑜𝑏) ∗ 𝑀𝑎𝑔!'(( 
(given that Magloss is a positive number). 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑃𝑟𝑜𝑏 ∗ (𝑀𝑎𝑔%"& − 𝐸𝑉)6 + (1 − 𝑃𝑟𝑜𝑏) ∗ (−𝑀𝑎𝑔!'(( − 𝐸𝑉)6 

𝑆𝑘𝑒𝑤 =
𝑃𝑟𝑜𝑏 ∗ (𝑀𝑎𝑔%"& − 𝐸𝑉)7 + (1 − 𝑃𝑟𝑜𝑏) ∗ (−𝑀𝑎𝑔!'(( − 𝐸𝑉)7

𝑉𝑎𝑟67
 

 
Again, we fitted this model also without the weighing for skew or without the weighing for variance.  
In this model, outcome history was captured as impacting the weighing of variance or skew or both. 
 
To compare models, we used the Akaike Information Criterion (AIC) (28), which combines the log likelihood 
with the number of model parameters to avoid selection of over-parameterized models. Models were fit 
across all sessions from each participant, including for each parameter (other than outcome history effects, 
see table S5) a linear effect of day: 
Parametert = Parametert0 + day_effect*current_day 
AIC values were summed across participants. Participants for whom not all models could be fit were omitted 
(n=2).  
 
[2C] Bayesian models – additional information for standard settings 
Regression models were computed with the BRMS toolbox (29) which uses the Bayesian programming 
language Stan (30). The key advantages of the Bayesian approach are: priors can be defined to ease fitting, 
particularly when little data is available (as here only 20 trials per session); models can be hierarchical and 
account for individual differences in each parameter (i.e. taking into account data consistent of within and 
between subject measurements, e.g. several data points per person and several subjects); variability in 
measurements across people can be taken into account.  
 
Linear non-hierarchical regression 
All regression estimates (parameters) were given flat priors for all parameters and 5000 iterations for each 
of four chains were drawn (target acceptance rate, adapt_delta = 0.9). Model fit was checked using criterion 
of Rhat <1.1 and the absence of divergent samples (25). If models did not converge, iterations and 
adapt_delta were increased step-wise, up to a max of 25312 iterations and adapt_delta = 0.991. If fitting 
was then still not successful (only the case for Prospect Theory models, class M2, listed in [2B] above), the 
sessions were left out from model comparisons. 
  
Linear hierarchical regressions 
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To ease fitting (31), all regression estimates were given weakly informative priors, normal(0,5). 6,000 
iterations for each of 4 chains were drawn (target acceptance rate, adapt_delta = 0.9). Model fit was checked 
as above for non-hierarchical models. Significance follows the standard definition of the Bayesian 95% 
Credible Interval not including zero. To compare individual groups, the same model was fitted with group as 
an unordered factor and posthoc tests were then done using the emmeans package (32) (again using 95% 
Credible Intervals to define significance). Results of regressions are illustrated as conditional effects, i.e. all 
other variables are set to their mean.  We computed mean parameters for individual participants to relate 
to neural activity. 
 
Computational decision-making models – prior settings 
For each parameter weakly informative priors were specified for models for the longitudinal or the FMRI 
data for each session (longitudinal) or person (FMRI): inverse temperature (b): cauchy(5,3), weighting of the 
loss utility (l): cauchy(-1,1), the impact of the previous trial’s win/loss on the weighting of the loss utility (g); 
group level standard deviations: inverse temperature (b): cauchy(0,3), all other parameters: cauchy(0, 1).  
 
When fitting the decision-making models, number of iterations and adapt_delta were increased until fit 
indices suggested appropriate fit, as described above.  
 
 
 
 
FMRI 
Computational models were fitted as for the longitudinal data, i.e. first separately for each individual 
participant before then comparing the computational model parameters across groups using non-
hierarchical models (as one FMRI session per person).  
 
[2D] Regressions relating mood, task outcomes and behaviour 
We used hierarchical regression models to test for group differences in the impact of task outcomes on 
mood: 
Mean: Happiness (post minus pre) ~ 1 + Task outcomes* group + Task outcomes + group + day + Age + 
Gender + (1 + day + outcome | ID) 
And error term: sigma ~ 1 + group + age + gender + (1|ID) 
Where outcome was either the total wins in the daily task, the total losses or the total wins minus losses. 
Group was coded as monotonic factor. 
 
In addition to the happiness VAS that was measured before and after the task, we also measured mood using 
a more detailed questionnaire (PANAS-SF) before the task. We used this to replicate previous findings 
(1,20,33,34) of mood instability related to bipolar disorder (with hierarchical models): 
Mean: PANAS ~ 1 + day + group + age + gender + (1 + day |ID) 
Error term: Sigma ~ 1 + group + age + gender + (1|ID) 
Where PANAS was either the positive or the negative PANAS score. 
 
 
[3] MRI scan 
[3A] MRI acquisition sequences 
Scan protocols were similar across both sites and differences are highlighted. T1-weighted structural images 
were acquired with the settings TR=3 sec, TE=4.71 msec (4.65ms for second site [some bipolar patients]), TI 
(inversion time) = 1.1 sec, 1x1x1 mm voxel size, 256x176x224 mm grid, flip angle = 8°, phase-encoding 
direction = R-L, GRAPPA (Generalized autocalibrating partially parallel acquisition) = 2. Functional images 
were acquired using a Deichmann echo-planar imaging (EPI) sequence with TR=3 s, TE=30 ms, 3x3x3 mm 
voxel size, 87° flip angle, 30° slice angle and z-shimming to reduce signal distortions as well as dropout in 
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medial orbitofrontal areas (35). A fieldmap with dual echo-time images (TE1 = 5.19 ms, TE2 = 7.65 ms, whole 
brain coverage, voxel size 3.5 × 3.5 × 3.5 mm) was obtained for each subject to allow for corrections in 
geometric distortions induced in the functional images. 
 
[3B] FMRI preprocessing 
We used FSL (36) version 6.00 for standard image preprocessing and analysis (suppl. Methods [4B]. We used 
FSL’s BET (37) on the high-resolution structural MRI images and fieldmaps images to separate brain matter 
from nonbrain matter. We used the structural images to register functional images in MNI space using 
nonlinear registration as implemented in FNIRT (38). Functional images were corrected for motion using 
FSL’s MCFLIRT (39), corrected for geometric distortions using FSL’s FUGUE (FMRIB's Utility for Geometrically 
Unwarping EPIs) and spatially smoothed with a Gaussian kernel of 5mm full-width half-maximum. Finally, 
images were then high-pass filtered with a 3 dB cutoff of 100s.  
 
[3C] FMRI analysis 
Data were pre-whitened before analysis (40).  The fMRI design was as follows (see Figure S2 for design 
correlation matrix): We included four boxcar regressors capturing the different phases of each trial: the 
decision phase (aligned to the onset of the decision phase and lasting until participants could make a choice), 
the spinning phase (aligned to when the indicator on the chosen wheel of fortune started moving and lasting 
until it stopped), the outcome phase (the time the outcome was shown to participants and lasting until it 
disappeared from the screen) and the total score phase (aligned to when the screen with the total score was 
shown and lasting until it disappeared). Here the decision and the outcome phase are the main phases of 
interest, the others are included as control regressors. We also included parametric boxcar regressors 
aligned to same onsets as the phases described above, but with duration one second. All regressors were z-
score normalized within each participant. In the decision phase, we included separate regressors for the 
reward and loss utilities (i.e. probability x magnitude) of the chosen minus the unchosen options, a regressor 
for last trial’s outcome (win loss, including the magnitude therefore, e.g. +10 or -20), as well as participants’ 
log-transformed reaction time as a control regressor. In the outcome phase, we included a regressor 
indicating the current trial’s outcome (win/loss, including the magnitude thereof). As control regressor we 
also included the total score phase with total scores as parametric value. All regressors were convolved with 
a double-gamma hemodynamic response function. 
 
 
[4] Bayesian mood instability models  
Pulcu et al. (1) proposed a model of mood variations that captures simultaneously variability in mood ratings 
and drifts (volatility) in the mean mood ratings. We adapted this model here (simplifying due to less data 
being available than in Pulcu et al., that neither volatility nor standard deviations changed over time and fit 
to both positive and negative PANAS simultaneously). The same model also captured relationships between 
PANAS standard deviation and behaviour. The key equations of the model included: 
PANASratings[t] ~ normal(PANASt,PANASsd) 
PANASt ~ normal(PANASt-1, PANASvolatility) 
Where volatility and standard deviation of PANAS ratings were shared across positive and negative PANAS. 
In contrast, PANAS values (PANASt above) were captured separately for positive and negative PANAS.  
Behaviour ~ normal(b0 + bPANAS_sd*PANASsd + btesting day*testing_day, behavioursd) 
The model was fit to data from all participants who had at least 5 data points available for all measurements 
and standard deviations of both positive and negative PANAS above 0 (i.e. who did not always report exactly 
the same mood). Models were fitted as hierarchical models (mixed effects models), with group level 
parameters (mean and standard deviations) fitted for PANASsd, PANASvolatility, btesting_day and behavioursd. 
Parameters for individual participants were then drawn from the thus defined normal distributions. PANASt 
for positive and negative PANAS was fitted as one parameter per person per day (with the temporal order 
constraints as described in the regressions above). All parameters were given priors normal(0,1), for 
constraint parameters (i.e. standard deviations and volatility), log transformations were used. 
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To test how predictive mood instability was of group membership, we first fitted a simpler model of only the 
PANAS scores, excluding the behaviour, separately for each person. We then used the PANASsd and 
PANASvolatility to predict group membership in a leave-one-out cross-validation procedure, each time fitting 
a model of the form: 
Group ~ 1+ PANASsd + PANASvolatility 
The model was fit to training data (i.e. all participants apart from one) and used to predict the test data (the 
left out participant). We trained models separately predicting low vs. high MDQ and predicting all three 
groups.  
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