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ABSTRACT 

Data on population health are vital to evidence-based decision making but are rarely adequately

localized or updated in continuous time. They also suffer from low ascertainment rates, 

particularly in rural areas where barriers to healthcare can cause infrequent touch points with 

the health system. Here, we demonstrate a novel statistical method to estimate the incidence of 

endemic diseases at the community level from passive surveillance data collected at primary 

health centers. The zero-corrected, gravity-based (ZERO-G) estimator explicitly models 

sampling intensity as a function of health facility characteristics and statistically accounts for 

extremely low rates of ascertainment. The result is a standardized, real-time estimate of disease

incidence at a spatial resolution nearly ten times finer than typically reported by facility-based 

passive surveillance systems. We assessed the robustness of this method by applying it to a 

case study of field-collected malaria incidence rates from a rural health district in southeastern 

Madagascar.  The ZERO-G estimator decreased geographic and financial bias in the dataset by

over 90% and doubled the agreement rate between spatial patterns in malaria incidence and 

incidence estimates derived from prevalence surveys. The ZERO-G estimator is a promising 

method for adjusting passive surveillance data of common, endemic diseases, increasing the 

availability of continuously updated, high quality surveillance datasets at the community scale.

Key words: health care access; geographic bias; floating catchment area; malaria; Madagascar
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INTRODUCTION

Health metrics are vital to public health efforts, allowing decision makers to better understand 

the state of population health and evaluate the impact of health interventions 1,2. Many of these 

metrics are based on routine passive disease surveillance from facility-based health 

management information systems (HMIS), which record the number of disease cases received 

at each facility at a regular frequency. Health records are then aggregated, digitized, and 

transferred to the district and, eventually, national health offices 3. While the exact structure 

differs by country, the scale of spatial aggregation of the data in an HMIS corresponds to the 

specific level of the health system and its corresponding health infrastructure. For example, 

national-level data are used by international organizations to monitor long-term, multi-country 

trends and inform policy; regional- and district-level surveillance data may be used by national 

public health offices to allocate resources within the country; and individual health facility 

information is used by district health offices for program management.

Missing from most HMIS are routine surveillance data at the scale of individual 

communities or villages. These data are needed for spatially targeted interventions for disease 

control in collaboration with community health programs, which primarily serve rural 

communities and play an integral role in achieving universal health coverage 4,5. While rural 

primary care facilities typically serve over ten thousand people spread along hundreds of square

kilometers, community health workers (CHWs) serve between several hundred to a few 

thousand individuals and their catchment is generally no bigger than 10 km2. Due to geographic 

barriers in particular, systemic lack of access to health facilities for large portions of the 

population has resulted in community health becoming a central pillar of national health 

strategies globally 6. The lack of long-term, continuously updated surveillance datasets at the 

community level impedes our ability to monitor changes in disease burdens over time, locally 

target or evaluate the impact of community-health interventions, create outbreak detection and 

forecasting systems at these levels, and generally incorporate health data into decision-making 

processes. Given the increasing role of community programs in providing primary health care 

and supporting disease control efforts, the lack of routine surveillance data at this level must be 

remedied.

There are several barriers to the creation of a routine surveillance system at the 

community level. First, CHWs often only diagnose and treat common illnesses for children 

under 5 years old 7, representing only a subset of the population. Second, though officially part 

of national health systems, community health programs are often inadequately funded, 

supported, and integrated 8,9, with negative consequences for data completeness and quality. 
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For example, a case study in Malawi found that over 40% of community health reports 

contained errors when aggregation was conducted by CHWs due to lack of training and time 

available for reporting 10. Third, the existing structure of health system reporting often means 

that paper reports from the community level are submitted to district officials and integrated into 

the electronic HMIS system with significant delays, which limits their use for disease 

surveillance. An alternative is the use of health facility data disaggregated at the community 

level, which is becoming increasingly available with the development of new technologies such 

as eHealth systems. However, even when data remain disaggregated, there are issues of 

completeness and geographic bias due to heterogeneous access to care 11–13. These problems 

are exacerbated at fine spatial scales. For example, communities in rural areas with low access 

to care may be missed by routine health facility systems 14, significantly under-estimating 

disease burdens in these already vulnerable communities. Given the current lack of high-quality 

data at the community level, methods are needed to account for biases in these data while 

retaining their spatial disaggregation.

At the scale of the government health district and higher, several methods have been 

developed to address these issues, particularly under-ascertainment of cases (Table 1). 

However, none of these adjustment methods result in estimates of disease incidence that are 

available at the spatial scale of individual communities or at a temporal frequency that allows for

rapid response. Existing methods are limited primarily by the frequency and spatial resolution of 

external data sources, such as large-scale surveys of disease prevalence or health-seeking 

behaviors. For example, information on healthcare utilization rates, such as that collected via 

Demographic and Health Surveys, is often collected nationally at the level of the district or 

region, and is inappropriate for use within smaller administrative zones. Prevalence surveys 

offer only a snapshot of disease burden in time, and their inferences, while available at finer 

spatial scales, often only apply to annual estimates. In addition, both forms of survey data are 

resource-intensive and are rarely available at spatial or temporal scales relevant to community 

health programs 15. 
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Table 1. Comparing the ZERO-G method to available methods for adjusting passive surveillance data

Input Data Output Estimates

Advantages Disadvantages
Data Source Frequency Spatial Scale

Temporal 
Resolution

Spatial 
Resolution

Standard Indirect 
Estimators (e.g. 
WHO Malaria 
Report)
 

Passive surveillance 
data for focal disease

Annual
Subnational
(Regional)

Annual Regional

- Straightforward 
adjustment method
- Directly accounts for 
health-seeking 
behaviors

- Only available at 
regional or national scales
- Requires adequate 
coverage of DHS surveys
- Limited to annual 
estimates
-Not appropriate for rare 
diseases

Survey data of health-
seeking behavior (e.g. 
DHS)

Multi-annual
Subnational
(Regional)

 Ecological 
Downscaling (e.g.
Weiss et al. 2019)

Prevalence survey
Once or Multi-

Annual
Subnational (Point

data)

Annual 5x5 km 

-  Avoids bias in 
passive surveillance 
data

- Requires environmental 
and socio-economic 
variables
- Requires prevalence 
data with adequate spatial
coverage

Environmental 
Variables (e.g. Bioclim)

Annual to Long-
term Average

5x5 km

Socio-economic 
variables

Multi-annual to
annual

Regional

 ZERO-G 
Estimator

Passive surveillance 
data for focal disease

Monthly Community Monthly Community

- Relies solely on 
health system data 
commonly available to 
Ministries of Health
- Provides continuous,
real-time estimates of 
incidence
- Corrects for missing 
data due to data 
quality issues

- Requires passive 
surveillance data at the 
community level
- Only appropriate for 
diseases with regular 
incidence and reporting
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Here, we introduce the zero-corrected, floating catchment gravity model estimator 

(ZERO-G). This method accounts for under-ascertainment of cases by public health facilities, 

resulting in a long-term dataset of disease incidence at the scale of individual communities or 

villages for common diseases that are regularly reported to the health system. Compared to 

existing methods, the ZERO-G estimator offers several distinct advantages for use in 

community health surveillance programs (Table 1). Because the main input data (notification 

reports and all-cause consultations) are released continuously on a set frequency, ZERO-G is 

able to produce estimates of disease incidence that are updated in real-time and available on a 

time scale relevant for decision makers. Unlike existing methods, ZERO-G relies solely on data 

available to local stakeholders: all-cause consultation rates, the focal disease incidence, and 

health facility characteristics. In addition, ZERO-G explicitly accounts for extremely low 

ascertainment rates that result in zero cases per month, a common occurrence in rural 

community health catchments. Finally, it does not rely on spatial aggregation or interpolation to 

combine estimates of healthcare utilization rates with disease incidence data, allowing it to 

retain a community-level spatial resolution. 

Building on work by Hyde et al. 16, the method first calculates a sampling intensity  

derived from healthcare utilization data (i.e. consultation rates) using a floating catchment area 

model 17. It then uses spatio-temporal imputation to adjust for missing cases due to low 

healthcare access. This zero-adjusted data and the sampling intensity estimates are finally used

to create an estimate of disease incidence that is adjusted for spatio-temporal heterogeneity in 

access to healthcare.  This target diseases for this method are common, endemic diseases that 

are regularly reported to health systems in areas of high healthcare access (e.g. malaria, 

pneumonia, diarrheal disease). ZERO-G is not appropriate for rare diseases or those where 

only severe cases are reported.  We demonstrate the method on a simulated endemic disease 

and on a case-study of field-derived passive surveillance dataset of malaria in a rural health 

district in southeastern Madagascar. The case study is used to further validate the ZERO-G 

method by comparing the estimated sampling intensity and malaria incidence rates to health-

care seeking behavior and malaria prevalence from a district-representative cohort.

THE ZERO-G ESTIMATOR

Indirect estimation methods estimate the “true” rate of disease incidence or prevalence from 

case data with low or uneven ascertainment rates by including information on the sampling 

intensity (e.g. healthcare use) in each administrative region 18. ZERO-G specifically combines 
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information on the number of cases recorded by the health system with information on the 

proportion of cases that are expected to be observed. In addition, it includes imputation 

methods for adjusting for extremely low ascertainment rates that result in zero cases reported. 

The final result is an estimation of disease incidence equal to the expected incidence if access 

to healthcare was identical across space and time.

The ZERO-G estimation method can be summarized in a pseudo-statistical framework 

consisting of three main steps (Figure 1): 1) the estimation of healthcare access via a gravity 

model (Eq. 7-12), 2) the adjustment of erroneous zeroes in case notifications (Eq. 4-6) and, 3) 

the conversion of healthcare access to sampling intensity via multi-objective optimization (Eq. 2-

3). The estimates of sampling intensity and zero-adjusted data are then used to estimate an 

adjusted incidence rate (Nit) for each administrative zone i and time period t, accounting for 

imperfect detection due to differing healthcare access via an Inverse Binomial distribution (Eq. 

1). The full ZERO-G estimator can be stratified across demographic classes (e.g. age, sex, etc.)

to account for demographically-dependent health-seeking behaviors. However, we limit our 

notation here to one class to improve readability. Parameters and variables representing data 

are further described in Table 2.

(Equation 1)

Rescaling healthcare access to sampling intensity (SI) via multi-objective optimization

(Equation 2)

(Equation 3)

Zero-adjustment framework

(Equation 4)

(Equation 5)

(Equation 6)

Estimating healthcare access (A) via a gravity model

(Equation 7)
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(Equation 8)

(Equation 9)

(Equation 10)

(Equation 11)

(Equation 12)
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Table 2. Description of variables and parameters in ZERO-G method.

Variable Description Source

The ZERO-G estimated incidence after correcting for 
under-ascertainment

Estimated via Eq. 1

Zero-adjusted reported incidence Estimated via Eq. 4

 Function describing random forest algorithm used in data 
imputation

Estimated via Eq. 4

The sampling intensity in zone i at time t Estimated via Eq. 2

The reported incidence in zone i at time t From data

Longitude of zone i From data

Latitude of zone i From data

Month of year (e.g. Jan-Dec) at time t From data

Probability of zero reported incidence Estimated via Eq. 5

Binomial variable representing if there was zero reported 
incidence 

From data

Coefficients used to estimate probability of zero reported 
incidence

Estimated via Eq. 6

FCA-based healthcare access Estimated via Eq. 7,8

Number of non-focal disease consultations From data

Population count of zone From data

Function describing temporal trend in . Specific function 
can be adjusted based on need

Estimated via. Eq. 12

Services provided by health facility j at time t Estimated via Eq. 9

Competition at health facility j  at time t Estimated via. Eq. 11

Value of health service s provided at health facility j at time 
t

From data

Coefficient for health service s Estimated via Eq. 9

Distance between zone i and health facility j. Can be 
calculated using Euclidean distance or based on actual 
routing.

From data

Distance decay coefficient Estimated via Eq. 10

Scaling coefficient for competition at health facilities Estimated via Eq. 11

Scaling coefficients for SI. Estimated via Eq. 6
Note: Subscript i refers to zone i and subscript t refers to time t.

Healthcare access (A) is estimated from monthly healthcare utilization rates (i.e. 

consultation rates with the focal disease removed, hit). The relationship between the monthly 

number of consultations and the estimated healthcare access is defined via a temporally-explicit
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floating catchment area (FCA) model of healthcare access (Eq. 7-12) 19. Based on a gravity 

model, FCA models consider both the quantity and spatial accessibility of services at a health 

center for a given population by weighting the distance to care by the availability of services 

provided at each health center. The effect of distance on healthcare access is described by a 

function  that assumes exponential distance-decay, with the specific shape of the decay 

defined by  (Eq. 10).  Healthcare access in each community is then modeled via an “attractive

force” to each health center and total access to care is the sum of these forces for a given zone 

(Eq. 8). Specifically, we use the modified two-step floating catchment area formulation of this 

metric, which allows for sub-optimal allocation of health resources via the inclusion of distance-

weighted competition for each healthcare clinic’s resources 20. We also include a term to 

account for temporal trends in access due to seasonal and linear trends (Eq. 12), following 

Garchitorena et al. 202111.

Erroneous zeroes to be adjusted are a function of both the seasonality of the disease 

and the estimated healthcare access of each zone. They are identified by fitting a logistic 

regression to the binomial variable of whether zone i reported zero incidence at time t (Eq. 4-5), 

resulting in estimates of the probability of a zero (ψit). The logistic regression’s explanatory 

variables include the month of the year of time t, estimated healthcare access for zone i at time 

t, and the interaction between the two (Eq. 6). This logistic regression is fit to the reported case 

data to estimate ψit. If zero cases are reported in a month for a zone and the probability of 

reporting zero cases is less than 0.5, this zero is assumed to be due to reporting error (not 

seasonality or low access) and is defined as erroneous. Erroneous zeros are replaced via a spatio-

temporal imputation process that incorporates seasonal and spatial patterns in incidence. 

Imputation is performed via 100 boosted regression tree models that estimate monthly incidence 

as a function of each zone’s longitude, latitude, and specific month of the zero-incidence 

occurrence, using the median of 100 imputations as the final imputed value (Eq. 4). Imputation is 

performed via the micemd package v 1.9.0 in R 22.

The sampling intensity (SI) is calculated from healthcare access via a constrained multi-

objective optimization routine that minimizes four objective functions (Eq. 3). The objective 

functions correspond to: 1) the Spearman correlation coefficient between a zone’s distance to a 

PHC and its average annual incidence rate (geographic bias), 2) the ratio of incidence rates in 

zones with reimbursement policies to those without (financial bias), 3) the number of zones with 

annual incidence rates over 1000 cases per 1000 population (over-correction bias), and 4) the 

covariance of all three biases, to reduce over-correcting one value at the expense of the others. 

This creates a Pareto front of non-dominated values across the four objectives. From this 
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subset, a constraint is used to limit the over-estimation of cases by constraining the results to 

parameters that result in monthly incidence values where the 99% percentile falls below a 

threshold equal to 1.5 times the original maximum monthly incidence value. The optimization 

routine is solved using the NSGA-II genetic algorithm via the mco package in R 21. The optimal 

values of x1 and x2 are then used to rescale Ait between x1 and 1 to calculate SIit (Eq. 2).

Figure 1. Workflow for adjusting incidence data using the floating catchment, zero-
corrected  (ZERO-G) estimator. Panel 1: A depiction of the gravity-model used in the floating 
catchment area model. A single zone i is represented surrounded by multiple clinics j with 
differing amount of services offered, with the distance between the zone and the clinic 
represented by dij. Panel 2: An example of the zero-adjustment step for one zone. Top row of 
Panel 2: All zeroes are identified in the dataset, represented by an X. Middle row of Panel 2: 
The probability of a zero is estimated via a logistic regression and those samples with a 
probability below 0.5 are identified. Bottom row of Panel 3: Those zeros that occur during a 
month with less than 0.5 probability of a zero are replaced via an imputation step. Panel 3: 
Hyperparameters are tuned via multi-objective optimization across a hyper-dimensional space, 
resulting in a Pareto front of non-dominated parameter values.

CASE STUDY: MALARIA INCIDENCE IN IFANADIANA, MADAGASCAR

We applied the ZERO-G estimator to malaria incidence in Ifanadiana District, Madagascar to 

demonstrate its utility in regions with highly heterogeneous rates of under-ascertainment. 
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Ifanadiana is a district in the Vatovavy region of southeastern Madagascar. It has an estimated 

population of 183,000 people spread across 195 fokontany (smallest administrative unit 

comprising about 1000 people) within 15 communes. Each commune contains one primary 

health center level 2 (PHC2), and six of the larger communes also contain a primary health 

center level 1 (PHC1), which provides more basic care, for a total of 21 PHCs within the district. 

Beginning in 2014, the Madagascar Ministry of Public Health (MMoPH) and the non-

governmental organization Pivot began a partnership to strengthen the health system, 

establishing Ifanadiana as a model health district. This intervention works across all levels of the

health system, from community health at the household level to tertiary care at the regional 

hospital. At the level of the PHCs, in addition to the removal of user fees, the intervention 

includes a range of activities to increase PHC readiness (e.g. infrastructure, equipment, 

supplies and personnel), support clinical programs (e.g. maternal and child health, infectious 

diseases), and improve data systems.  As of January 2023, a minimum package of support has 

been been provided to all 15 PHC2s of all 15 communes, and will be expanded to a complete 

package at all levels of PHCs by the end of 2024. Because the progress of these health system 

strengthening interventions in Ifanadiana and elsewhere typically differ across PHCs and time, 

this requires an adjustment method that considers spatio-temporal differences in healthcare 

policies and interventions, such as the ZERO-G estimator.

As is common in sub-Saharan Africa24, the primary barriers to healthcare at PHCs in 

Ifanadiana are geographical and financial. The majority of the district is rural and the 

transportation network is primarily non-motorized; over 70% of the population lives further than 

an hour travel time from a PHC 25. As such, geographical access to care at PHCs is highly 

unequal, and exhibits strong distance-decay  from PHC locations 11. Regarding financial 

barriers,  34% of the public health expenditure in Madagascar is out-of-pocket spending 26, with 

user fees the most cited barrier to healthcare seeking across the district 27. Given these known 

barriers, we aimed to reduce the impact of geographic and financial bias in malaria incidence 

rates by adjusting the data using ZERO-G.

Data Collection

Monthly consultation data were collected at each PHC for the district of Ifanadiana from January

2016 to December 2021. Photos were taken of handwritten registries at each PHC, and 

patients’ residences were manually geolocated to the precision of the fokontany. The number of 

all-cause consultations were reported by fokontany, as well as the number of malaria cases, as 

confirmed by rapid detection test. Because patient ages were provided in these registries, we 

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269



were able to divide the number of consultations and malaria cases into three age groups for 

analysis: children under 5 years old, juveniles aged 5-14, and adults aged 15 and over. 

Ifanadiana suffers from shortages of diagnostic materials, specifically rapid-detection tests 

(RDTs) 28, leading to unconfirmed cases of malaria. We accounted for this reduced diagnostic 

capacity by scaling the confirmed malaria cases by the proportion of feverish patients who were 

tested via an RDT at each PHC during each month (n = 536). Information on the characteristics 

of each clinic by month was provided by Pivot’s Monitoring and Evaluation for Research and 

Learning team.

Population data came from two sources. For the 80 fokontany that receive community 

health program support from Pivot, we used population estimates from a Pivot-led census 

conducted in 2021. For the remaining 115 fokontany, population estimates came from a national

census conducted in 2018 by the Madagascar National Institute of Statistics. By interpolating 

population values between the 2018 census and the previous 1993 census, we estimated an 

average annual population growth rate of 2.0%. We applied this population growth rate to both 

datasets to obtain each fokontany’s population by year. For both datasets, we assumed 18% of 

the population to be under 5 years old, 28.6% of the population to be aged 5 - 14 and the 

remainder to be 15 years old or above, based on the average age structure of the 80 fokontany 

that were censused in 2021.

Distances between residential areas and PHCs were calculated on a high-resolution 

transport network created via crowd-sourced mapping through a collaboration with 

Humanitarian OpenStreetMap. Over 20,000 km of footpaths and 100,000 buildings within the 

district were mapped through a two-step validation process 25, resulting in an open-source 

dataset on OpenStreetMap. Using this dataset, we estimated the distance between each 

household and each PHC within the district, and aggregated this to the scale of the fokontany to

result in an average distance to each PHC for each fokontany. Three fokontany lacked accurate

routing information and so were excluded from the analysis.

We evaluated our estimates of the SI and adjusted malaria incidence rates using 

external data from a longitudinal cohort survey conducted in the district of Ifanadiana (IHOPE 

cohort). The IHOPE cohort has conducted population-representative surveys approximately 

every two years from 2014-2021 using a two-stage cluster sampling scheme involving 80 spatial

clusters, each containing 20 households 29. We include data from 2016, 2018, and 2021 in this 

analysis. The IHOPE cohort is based on the internationally validated Demographic and Health 

Surveys and is implemented by the Madagascar National Institute of Statistics. See Miller et al. 
29 for further details on participant recruitment and study design. As part of the survey 
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questionnaire, participants were asked if they were ill in the past four weeks and, if so, if they 

sought care at a public PHC. This data represented self-reported health-care seeking behavior, 

comparable to ZERO-G estimates of sampling intensity. Malaria prevalence data was collected 

via rapid detection tests conducted as part of the IHOPE survey in 2021. Briefly, children under 

15 years old who consented to the study were tested for active malaria infection using SD One 

Step Malaria HRP-II(P.f) and pLDH(Pan) Antigen Rapid Tests. Those who tested positive were 

provided with a standard treatment of artesunate amodiaquine and paracetamol, with duration 

and dosage in accordance with national guidelines. In total, this resulted in 3774 samples 

across 80 clusters and 109 fokontany.

Applying the ZERO-G estimator 

Estimating healthcare access (A)

We estimated the healthcare access for each fokontany and month combination in our dataset 

following the methods described above for each age class (children, juveniles, and adults) using

non-malarial consultations at PHCs. We included five traits of the health center in our 

calculation of Sj: 

1. whether the PHC fell within the initial Pivot service catchment, 

2. if point-of-care user fees (consultation costs and medications) had been removed at that 

time, 

3. the number of staff at the PHC during each month, 

4. level of health clinic (PHC1 or PHC2, with PHC2 providing more services), 

5. distance from the PHC to the District office, which provides supplies, medications, and 

supervision. 

In addition, two new PHC2 were opened in the district during the study period, one in 

Ampasinambo in November 2016 and one in Ambiabe in April 2018, which we accounted for in 

our calculation of SI. Notably, ZERO-G allows for health center traits that change over time, 

which we used to include monthly staffing changes, the construction of new health centers, and 

user fee removal interventions that were implemented over the study period.

 To reduce computational time, we set a maximum limit on the distance between a 

community and the PHC (dij) at 25 km, slightly above the maximum distance of a fokontany to 

the nearest PHC in Ifanadiana (22.1 km). We also included an additional parameter in our 

estimation of  to allow the shape of this relationship to differ for those fokontany within the 

Pivot zone of intervention and those outside of the zone of intervention, following Garchitorena 

et al. 11
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We estimated the number of non-malarial consultations  as a random variable with a 

binomial distribution with the probability equal to the healthcare access ( ) and size  equal 

to the population size of the fokontany (Eq. 7).  Some fokontany had extremely low consultation 

rates and reported zero consultations for over 50% of the study period. We excluded these 

fokontany (n = 43) from the model fitting exercise estimating the parameters for , but did 

estimate their healthcare access from the fit model. To ensure our estimate represented the 

global maximum likelihood estimate (MLE), and not a local maximum, we used a two-step MLE 

estimation process. First, we performed a grid search via a latin hypercube sample of 1,000 

samples of coarse parameter space to identify the ten parameter sets with the lowest negative 

log-likelihood. We then performed a second MLE step using the BFGS algorithm via the optim 

function in the stats package in R 30, using the parameters from the ten parameter sets with the 

lowest negative log-likelihood from the first step as the starting parameters. We assessed each 

of these ten iterations for convergence and selected the parameter set with the lowest negative 

log-likelihood as the optimal fit. A total of 11 parameters were estimated for each age class 

(Table S2.1). From the optimal parameter sets, we estimated  for each fokontany-month 

combination for each age-class via Eq. 8.

Imputing erroneous zeroes

Nearly all fokontany (n = 189) reported zero malaria cases across all ages at least once during 

the study period, totaling 3468 (28.4%) of fokontany-month samples.  On average, fokontany 

reported zero malaria cases for 18.1 months out of the 66 month period, with a range of 0 -  53 

months reporting zeros. The ZERO-G method imputed between 6.08 to 10.00% of fokontany-

month incidence values for each age class, an average of 4.75 months per fokontany (range: 0 

– 22). 

Rescaling healthcare access to sampling intensity

We manually set the sampling intensity (SI) to 1 for those fokontany which had an average 

annual healthcare utilization rate over 1 consultation per capita-year, defined as “high access 

fokontany” (n = 19). The remaining fokontany’s healthcare access values were rescaled 

following Eq. 2 and 3 using multi-objective optimization to calculate their monthly SI values. 
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Evaluating Adjusted Datasets

We evaluated our estimates of the SI and adjusted malaria incidence rates using external data 

from the IHOPE cohort.  Self-reported healthcare seeking behavior was paired spatially to SI 

estimates by assigning a value to a fokontany if a village from the cluster was in that 

fokontany.Theese data were paired temporally by taking the average of the SI during the 6 

month period containing the months when the IHOPE survey was conducted in each year 

(January through June for 2016 and 2021 and July through December for 2018), to reduce the 

impact of month outliers in healthcare utilization data on SI estimates. We assessed the 

agreement between the two datasets by calculating the correlation between estimated SI and 

the proportion of residents reporting illness who attended PHCs using Clifford’s modified t-test, 

which controls for spatial autocorrelation 32. We assessed the correlation separately for each 

year (2016, 2018, 2021), including 109 fokontany per year.

We evaluated the ability of ZERO-G adjusted incidence rates to accurately represent 

malaria burdens by comparing adjusted incidence rates to malaria prevalence data collected via

the IHOPE cohort in 2021. The two datasets were paired spatially by assigning a value to a 

fokontany if a village from the cluster was in that fokontany and were paired overtime by 

matching the month of the IHOPE survey to the month of the incidence rates. Because the 

relationship between prevalence and incidence is non-linear, we transformed cluster-level 

prevalence rates into incidence rates following a previously published model33 to allow us to 

compare incidence rates from both datasets. However, there remain important differences 

between this measure of incidence and that derived from case notifications. Prevalence data 

may under-estimate malaria incidence as the conversion results only in symptomatic cases of 

malaria while case notifications may include a higher proportion of asymptomatic cases due to 

co-infection with a second febrile-inducing pathogen 34. We compared adjusted incidence rates 

for children under 15 years old to prevalence rates of children under 15 years old from the 

IHOPE cohort for all fokontany with information in both datasets (n= 109) via Clifford’s modified 

t-test. We also assessed the ability of the adjusted incidence data to correctly identify hot spots 

of malaria, defined as the quartile of fokontany with the highest prevalence values.

APPLYING ZERO-G TO A SIMULATED DISEASE

To demonstrate its generalization, we used the ZERO-G estimator to adjust for under-

ascertainment of cases of a simulated endemic, seasonal disease. We simulated a model 
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health district containing 100 administrative zones and 8 health clinics that differed in the 

number of staff, whether they offered advanced services, and whether health care was 

subsidized. We then simulated disease dynamics for a constant background disease rate and 

for two additional diseases that exhibited annual seasonality for each administrative zone at a 

monthly frequency for five years. We modeled an individual’s probability of seeking care as a 

random variable with probability equal to that zone’s reporting rate, itself a function of its 

distance to a clinic and the services available at that clinic, plus a random error term (Eq. S2). 

To represent realistic issues in data quality, we also simulated months reporting zero cases as 

both a function of low reporting rates and low disease incidence and due to randomness. This 

resulted in a time series of “true” disease incidence and reported disease incidence for each 

zone over a five year period (Fig. S3). Further details on the creation of the simulated dataset 

are reported in the Supplemental Materials.

The performance of the ZERO-G method on the simulated data was evaluated by 

comparing the ability of the ZERO-G to reproduce the original simulated “true” data. We 

calculated the root mean squared error (RMSE) and correlation coefficient between the true 

incidence and adjusted incidence rates across patches and seasons. We compared these 

values to the unadjusted incidence rates to assess the improvement provided by the ZERO-G 

method.

ETHICS STATEMENT

Use of aggregate monthly healthcare utilization data from PHCs in Ifanadiana District for this 

study was authorized by the Medical Inspector of Ifanadiana. The IHOPE longitudinal survey 

implemented informed consent procedures approved by the Madagascar National Ethics 

Committee and the Madagascar Institute of Statistics. Household-level de-identified data from 

the IHOPE survey were provided to the authors for the current study. We recognize that all 

research is conducted within the surrounding socio-political context and risks reproducing 

existing inequalities within the research team and across research partners. We've chosen to 

explicitly reflect on power dynamics and equitable authorship within the context of this research 

project in an accompanying reflexivity statement (Supplemental Materials). 
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Case Study: Malaria in Ifanadiana, Madagascar

We estimated the SI by fitting a floating catchment area model to healthcare utilization data from

January 2016 - December 2021 and rescaling it via multi-objective optimization. The resulting 

model performed well at reproducing the healthcare utilization data (under-5: Spearman’s ρ = 

0.619, p-value<0.001; juvenile: Spearman’s ρ = 0.608, p-value<0.001; adult: Spearman’s ρ = 

0.702, p-value<0.001). When averaged over all fokontany per month, it accurately represented 

the temporal trends in the healthcare utilization data, although this performance was dependent 

on age-class (under-5: Spearman’s ρ = 0.384, p-value <0.01; juvenile: Spearman’s ρ = 0.517, p-

value <0.001; adult: Spearman’s ρ = 0.578, p-value < 0.001). When averaged across time to 

result in one average SI per fokontany, it also was able to capture spatial and fokontany-specific

differences in healthcare utilization rates  (under-5: Spearman’s ρ =0.829, p-value <0.001; 

juvenile:  Spearman’s ρ =0.806, p-value <0.001; adult:  Spearman’s ρ =0.844, p-value <0.001). 

The spatial patterns in the estimated SI mirrored spatial patterns in self-reported 

healthcare seeking behavior from the IHOPE longitudinal survey (Fig. 2). The estimated SI and 

self-reported healthcare seeking rates were significantly correlated across all years (Clifford’s t-

test; 2016: ρ = 0.502 (p < 0.01), 2018: ρ = 0.644 (p < 0.01), 2021: ρ = 0.564 (p < 0.01), Fig 

S2.1). Both data sources estimate higher healthcare access at fokontany nearer the national 

transportation network, specifically the paved road that runs east-west through the district, and 

in close proximity to PHCs. In addition, the two datasets were in agreement that the majority of 

the district has low access to healthcare. 
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Figure  2.  The sampling intensity  estimated via  the  gravity  model  and multi-objective
optimization  (bottom row) closely approximates self-reported healthcare seeking rates
from the IHOPE cohort (top row).  Shading represents rates grouped into quartiles, with Q1
corresponding to the lowest healthcare utilization rate and Q4 to the highest. Diamond points
show  the  location  of  level-2  PHCs.  Top  row:  Cluster-level  healthcare  seeking  rates  are
illustrated for each village in a cluster across the three survey years. Bottom row: The scaled
sampling intensity estimated via  Eq. 2-3 & 7-12. Scatter plots of this data are shown in Fig S2.1

Reduction of Bias in Malaria Incidence due to Geographic and Financial Barriers to Care

 The unadjusted dataset showed evidence of geographic bias; average annual incidence of 

malaria  in a fokontany was negatively correlated with the distance from that fokontany to the 

nearest PHC (Spearman’s ρ = -0.617, p-value < 0.001, Fig. 3A), showing an exponential 

distance decay. The adjusted dataset, by comparison, demonstrated no relationship between 

average annual incidence and distance to the nearest PHC (Spearman’s ρ = -0.060, p-value = 

0.409, Fig. 3A).  Fokontany whose populations attended PHCs where fees were removed for 

the user (PHCs were reimbursed by Pivot)  reported 2.48 times higher incidence than those that

did not benefit from the reimbursement policy in the unadjusted dataset (Fig. 3B). Applying the 

ZERO-G method drastically reduced this bias; the average annual incidence in these fokontany 

was 0.95 times the incidence in fokontany with cost-of-care-reimbursement (Fig. 3B). However, 
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this reduction in bias differed across years. Specifically, zones with reimbursement policies 

retained a much higher incidence rate in 2018. This difference was driven primarily by high 

monthly incidence (>500) in the unadjusted data due to a malaria outbreak in the north of the 

district in a commune benefiting from fee-reimbursement. Because it does not aggregate or 

smooth incidence data, ZERO-G retained this anomaly in incidence rates even after adjustment.

This is an advantage of ZERO-G, as it allows for the identification of epidemics or unexpected 

trends in the data.

Figure 3.  The ZERO-G adjustment method greatly reduces geographical  and financial
bias  in  malaria  incidence  rates.  Left:  Each  point  represents  the  average  annual  malaria
incidence rates for  a  fokontany over  the period of  2016-2020,  with  the x-axis  showing the
distance  to  the  nearest  PHC.  The  smoothed  line  is  the  exponential  (unadjusted)  or  linear
(adjusted)  fit  between average annual  incidence and distance to  PHC.  One outlier  point  is
removed to aid with visualization. Right: The median monthly malaria incidence rates across
fokontany whose closest PHC does or does not offer fee reimbursement. Fee reimbursement
began in January 2017. The error ribbon represents a 90% CI. The y-axis is limited between
values of 0-200 to aid with visualization.

Comparing Unadjusted and Adjusted Datasets

Comparing the unadjusted and adjusted datasets, we estimated that unadjusted case 

notifications are capturing on average 26.5% of symptomatic malaria cases in the district. This 
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differed by year, with the lowest percentage of 24.2% in 2016 and the highest of 31.6% in 2017. 

The level of under-ascertainment also varied across fokontany. On average, the adjusted 

annual incidence in a fokontany was 9.15 (range: 1- 451)  times the unadjusted annual 

incidence rate. However, when this was calculated omitting fokontany and year combinations 

that reported zero malaria cases in a year (26 out of 944), this ratio was reduced to  8.42 

(range: 1 – 76.5). 

Validation with Prevalence Data

We validated ZERO-G by comparing ZERO-G estimated incidence rates with incidence rates 

derived from the IHOPE prevalence survey in children under 15 years old (Fig. 4). Unadjusted 

incidence rates were negatively correlated with IHOPE incidence rates based on prevalence, 

but this correlation was not significant (Spearman’s ρ = -0.141, p-value = 0.2).  The unadjusted 

incidence rates had no correlation with the calculated incidence of symptomatic individuals in 

the IHOPE survey (Spearman’s ρ = -0.050, p-value = 0.6). After adjusting the data, we found a 

positive correlation between ZERO-G and IHOPE incidence rates (Spearman’s ρ = 0.316, p-

value = 0.001).  While the estimated correlation coefficient between incidence rates and the 

proportion of symptomatic and RDT positive children was positive in the adjusted dataset, it 

remained insignificant (Spearman’s ρ = 0.188, p-value = 0.06). The adjusted dataset also 

doubled the number of correctly-ranked fokontany into quantiles that matched those from the 

prevalence data (Fig. 4). The adjusted dataset correctly ranked 43 of 104 fokontany, compared 

to 18 in the unadjusted dataset.
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Figure 4. The adjustment method results in monthly malaria incidence rates in 2021 that
more closely correspond to measures of malaria prevalence in children under 15 years
old.  Left:  Malaria  incidence  derived  from prevalence  as  measured  by  rapid-detection  tests
(RDT) in children under 15 years old from the IHOPE cohort survey. Colors represent quartiles
from Q1 (lowest incidence) to Q4 (highest incidence). The scatter plot illustrates the non-linear
relationship  between  prevalence  and  incidence.  Middle:  Monthly  malaria  incidence  in  the
unadjusted dataset. Quartiles that match those in the prevalence data are highlighted in black.
The scatter plot illustrates the relationship between unadjusted incidence and IHOPE incidence.
Right: Monthly malaria incidence in the ZERO-G adjusted dataset. Quartiles that match those in
the prevalence data are highlighted in black. The scatter plot illustrates the relationship between
ZERO-G incidence and IHOPE incidence. Monthly incidence has been chosen to correspond to
the month in which the IHOPE survey was conducted for that fokontany.

Simulated Endemic Disease Data
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The ZERO-G estimator reproduced simulated true incidence data when applied to simulated 

reported incidence data that contained reporting biases due to healthcare access. The ZERO-G 

adjusted dataset predicted the true monthly incidence rates with a RMSE of 54.5, compared to a

RMSE of 94.67 when using the unadjusted dataset (Fig. S1.4). It was also more strongly 

correlated with the true incidence rates (Spearman’s =0.82, p-value<0.001), compared to the 

unadjusted dataset (Spearman’s =0.43, p-value<0.001) (Fig. S1.5). In addition, the ZERO-G 

adjusted dataset reduced biases due to geographic distance and fee reimbursement policies 

seen in the unadjusted dataset (Fig S1.6, Fig S1.7). The unadjusted incidence dataset exhibited

a strongly negative correlation with increasing distance to the nearest health clinic (Spearman’s

= -0.666, p-value <0.001), which was reduced by over 30% in the ZERO-G adjusted dataset 

(Spearman’s = -0.465, p-value<0.001). The ratio of incidence in zones served by health clinics 

offering fee reimbursement to incidence in zones without this policy was only 1.11 in the ZERO-

G adjusted dataset, compared to 1.93 in the reported dataset and 1.00 in the true dataset.

DISCUSSION

There is a critical need for routine surveillance systems to produce estimates at the spatial scale

of individual communities so that control interventions can be targeted in collaboration with 

community health programs. However, HMIS data are rarely kept disaggregated at this scale 

and, when they are, they suffer from under-estimation of incidence that varies across space and

time, preventing their usefulness for decision making . We developed an adjustment method 

that combines a gravity-model of healthcare access with an indirect estimator  to create long-

term routine surveillance data at the community-scale, adjusted for under-ascertainment due to 

uneven health care access. We demonstrated this method by applying it to field-collected 

malaria case notification data from 192 communities over 5 years of surveillance in a rural 

District of Madagascar. This method reduced geographical and financial bias in field-collected 

malaria incidence rates by 91% and 96%, respectively. In addition, we validated this method 

with two external, population-representative datasets and found strong agreement with self-

reported healthcare access and malaria prevalence rates. We further assessed the 

generalizability of the ZERO-G estimator on a simulated dataset and found it nearly doubled the

ability to reproduce true incidence rates. The ZERO-G estimator can obtain estimates that 

approximate long-term active surveillance data of common, endemic diseases at fine-spatial 

scales using only passive surveillance data.

ZERO-G greatly reduced bias in malaria incidence rates from a passive surveillance 

dataset in our case study. In Ifanadiana district, per capita health system utilization rates are 
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twice as high for fokontany within 5km of a health center than those further away 11, and we 

found similar trends in the unadjusted malaria data (Fig. 3). Geographic bias in the malaria data 

was therefore primarily reduced by accounting for low sampling intensity at those fokontany 

further than 5 km from a PHC (Fig. 2). Financial costs represent a significant barrier to 

healthcare seeking, particularly for low-income communities, and differential user fee  policies 

over time (e.g. implementation of universal health coverage) can result in healthcare access 

patterns changing as a function of this 35,36. In Ifanadiana, the removal of user fees to patients 

(via reimbursement policies to PHCs) in part of the district led to a sudden and sustained 65% 

increase in utilization rates 27. ZERO-G removed this bias, resulting in similar incidence rates 

regardless of when and where reimbursement policies were in place. ZERO-G also resulted in 

data that more accurately identified malaria prevalence hotspots and coldspots than the 

unadjusted data, performing twice as well. However, the adjusted dataset only correctly 

categorized 38% of fokontany into ranked quantiles, illustrating the difficulty in matching 

incidence data to prevalence data.  While we accounted for the non-linear relationship between 

malaria incidence and prevalence in our evaluation of ZERO-G, we did not account for age-

specific differences in symptomatic rates between children and juveniles 37, which may have 

further skewed this comparison. Further, we only had access to one study of malaria prevalence

at a spatial-scale finer than 5 x 5 km. Therefore, we were only able to assess our method’s 

ability to reproduce spatial patterns in malaria burden, and not temporal patterns. However, our 

model results agree with national-level trends in malaria, which witnessed over a 40% increase 

in confirmed malaria cases in 2020 38, suggesting we are capturing temporal trends as well.

Unlike other methods, which rely on external datasets describing sampling intensity that 

are collected at coarse spatial resolutions and infrequently (e.g. DHS, MICS, or other survey 

data), ZERO-G uses data that match the spatial and temporal resolution of the case notification 

data. This allows it to retain the original spatial and temporal scales at which the data was 

collected while relying solely on public health and demographic data that is easily accessible to 

public health actors. Population data can be sourced at fine-scale administrative levels via 

national census data or via open-source datasets such as PopGrid 39. As with all estimates of 

population-level indicators, the lack of high-quality population estimates (the “denominator 

problem”40) is an obstacle to estimating incidence rates and may lead to biased estimates. 

Information on PHC locations and services are collected by Ministries of Health or available via 

regional, open-source datasets (e.g. 41). These data may not always be available on a monthly 

basis, particularly staffing data. In these cases, annual or static data may be substituted for 

monthly data, as demonstrated in the Madagascar case study. In the context of health 
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interventions, however, the ability to track monthly changes to policies or health infrastructure 

due to an external intervention is a benefit of the ZERO-G estimator over existing methods. We 

used a field-verified transport network created via OpenStreetMap to estimate the distance 

between a population and a PHC, which accurately represents patients’ distance to PHCs 25; 

however, these transportation networks are not globally available. When transportation 

networks are not available, open-source databases of populations’ distances to PHCs and other

services could serve as suitable substitutes (e.g. 42,43). Finally, consultation rates are commonly 

tracked by health systems and are increasingly recorded via electronic health management 

information systems 44,45, facilitating their use in these estimates. 

ZERO-G differs from existing adjustment methods in several ways. First, it uses monthly 

estimates of sampling intensity in the indirect estimate step rather than data from annual or 

inter-annual population surveys. Most adjustment methods do not account for changes in 

healthcare seeking behavior due to seasonality or temporal shifts to the health system (e.g. 

climate-driven changes in access, changes in PHC staffing rates, clinic-level interventions), and 

are therefore limited to inference at an annual frequency 46. This functionality of the ZERO-G 

method is particularly beneficial in the context of partial health system interventions, such as the

adoption of new policies or technologies. Second, the resulting dataset is available at the same 

spatial scale at which it is collected, rather than spatially interpolated between points or 

aggregated to coarser resolutions. We build on work by Hyde et al. 16, which proposed a similar 

indirect estimation adjustment method for malaria data that featured a monthly frequency at the 

scale of the community, but dealt with extreme low incidence values by spatially smoothing 

estimates between neighboring communities, introducing spatial structure into the adjusted 

dataset and removing existing natural variation. Because ZERO-G estimates are available at 

the community level at a monthly frequency, they can be used to inform community health 

programs and spatially targeted interventions at the village level in real-time, capabilities that 

are lacking in other adjustment methods. In addition, ZERO-G explicitly models the sampling 

intensity as a function of geographic and health-system characteristics in all the facilities 

surrounding a community via a gravity model instead of using information from the closest 

facility in a linear model, as in Hyde et al. 16. Because of this, changes in the health system, 

such as the closing of a facility due to a natural disaster or a policy change, can be directly 

incorporated into calculations of sampling intensity in near real-time. It also allows for estimation

of sampling intensity in unsampled communities or months through these modeled processes, 

rather than relying on interpolation. 
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There are several limitations that should be taken into consideration when implementing 

ZERO-G. First, the adjustment of zero-incidence samples due to extremely low ascertainment 

introduces a further source of uncertainty. However, the identification of which samples to 

impute is data-driven, and, as demonstrated when applied to both the simulated and field-

derived datasets, replaces only a small fraction of the overall data. Secondly, the ZERO-G 

estimator does not include a step to disaggregate consultation rates to a finer spatial scale than 

that reported by the PHC, often a major limiting step to accessing disease incidence data at a 

fine spatial scale. In Ifanadiana, the standard reporting system aggregates consultations at the 

level of the health facility catchment. We manually digitized health registers to obtain 

community-level data, a time- and resource-intensive process. However, the increased 

availability of electronic systems at the level of primary and community health care represents 

an opportunity to apply this method directly and in real time to data at fine spatial scales. Finally,

the ZERO-G method is not appropriate for all passive case notification datasets. It is best suited

for routine passive surveillance of common, endemic diseases, which possess the historical 

datasets needed to impute low-incidence values. The ZERO-G method is also inappropriate for 

adjusting case notifications of novel diseases because behavioral and health-system responses 

to a rapidly-evolving epidemic will violate the assumption that the relationship between 

healthcare access and sampling intensity of the disease is constant. 

In conclusion, ZERO-G represents a promising new method for adjusting passive 

surveillance data of endemic diseases for under-ascertainment bias in regions with low and 

heterogeneous healthcare seeking rates, developed specifically for use at the community level. 

Unlike other methods, it is applicable in regions with ongoing heterogeneous public health 

interventions, allowing it to be used to adjust case notifications used in monitoring and 

evaluation efforts in addition to routine monitoring of diseases.  This method can serve as part 

of a wider toolkit of statistical techniques used to improve targeted health system responses. In 

a case study in a rural health district in Madagascar, it was able to reduce geographic and 

financial bias in malaria incidence and the resulting dataset more closely approximated spatial 

trends in malaria prevalence.  It is particularly suited to rural areas, where geographic isolation 

strongly influences healthcare access 42. As spatially-explicit health metrics become an 

increasingly important tool for precision public health interventions, there is an urgent need to 

obtain and use quality data sources at the community scale. Statistical methods such as ZERO-

G can be an important tool to support the role of community health programs in the local 

targeting of interventions for disease control.
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