
MedRxiv 2023.03.13.23287177v3  26-Feb-2024 

 1 

Tight Fit of the SIR Dynamic Epidemic Model to Daily Cases of COVID-19 Reported 

During the 2021-2022 Omicron Surge in New York City: A Novel Approach 

 

Jeffrey E. Harris MD PhD*†       February 26, 2024 
 
Abstract.   We describe a novel approach to recovering the underlying parameters of the SIR 

dynamic epidemic model from observed data on case incidence. We formulate a discrete-time 

approximation to the original continuous-time model and search for the parameter vector that 

minimizes the standard least squares criterion function. We show that the gradient vector and 

matrix of second-order derivatives of the criterion function with respect to the parameters adhere 

to their own systems of difference equations and thus can be exactly calculated iteratively. 

Applying our new approach, we estimated a four-parameter SIR model from data on daily 

reported cases of COVID-19 during the SARS-CoV-2 Omicron/BA.1 surge of December 2021 - 

March 2022 in New York City. The estimated SIR model showed a tight fit to the observed data, 

but less so when we excluded residual cases attributable to the Delta variant during the initial 

upswing of the wave in December. Our analyses of both the real-world COVID-19 data and 

simulated case incidence data revealed an important problem of weak parameter identification. 

While our methods permitted separate estimation of the infection transmission parameter and the 

infection persistence parameter, only a linear combination of these two key parameters could be 

estimated with precision. The SIR model appears to be an adequate reduced-form description of 

the Omicron surge, but it is not necessarily the correct structural model. Prior information above 

and beyond case incidence data may be required to sharply identify the parameters and thus 

distinguish between alternative epidemic models. 
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Introduction 

Nowadays our sophisticated graphic software can draw attractive plots showing how 

many people have fallen victim to a highly contagious disease over the course of days, weeks, or 

months. But our graphs alone don’t teach us how to reliably determine the underlying risk of 

transmission from an infected to a susceptible person, or the amount of time that an infected 

individual remains contagious to others, or what proportion of the population was already 

infected at the critical point in time when the epidemic wave took off, or how many people 

remain at risk of infection. 

We’ve just described what mathematicians call the inversion problem [1-4]: how to work 

backwards from limited data on incident cases or deaths to recover the key parameters 

underlying our dynamic epidemic models. The problem was born nearly a century ago when 

Kermack and McKendrick (KM) fit a curve derived from their now-classic model to datapoints 

of weekly deaths from a plague outbreak on the Isle of Bombay [5]. Since then, scores of 

investigators have searched for a robust, workable method of estimating the parameters of what 

has famously come to be known as the SIR (Susceptible-Infected-Removed) model, and the race 

to find a solution has accelerated with the arrival of the COVID-19 epidemic. 

What has made the inversion problem so difficult is that, with some possible exceptions 

[6-10], the SIR model of coupled differential equations does not admit a closed-form 

mathematical solution that can be readily used to test the model’s predictions against the 

observed data. That major stumbling block has left us with a motley collection of second-best 

alternatives.  

One idea has been to back out the parameters from the certain salient characteristics of 

the observed epidemic curve, such as the initial exponential rate of increase of cases [11, 12], the 

time to reach the peak incidence [13], the rate of decline after the peak [14], and the proportion 

of the population that is ultimately infected [15-17]. This approach may give us point estimates 

of the key parameters, but it does not provide any uncertainty ranges around the estimates.  

Another idea is to pare down the set of parameters to be identified by making judicious 

use of prior information on some parameters [18-21], in some cases derived from previous waves 

of a multi-wave epidemic [22]. Perhaps the most traveled road to a solution has been the use of 

various parameter search algorithms [18, 23-29] which, when it comes down to it, offer only a 

marginal improvement over brute force search [30]. Bayesian estimation may be better able to 
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integrate prior information into our search procedures [31-36], but its computational burden is 

usually even greater. Last but not least, we can resort to trial and error combined with visual 

inspection [37]. 

The present study, we suggest, offers an easily workable solution to the inversion 

problem. Rather than seeking a closed-form, analytical solution to KM’s system of differential 

equations, we pursue an alternate strategy. First, following the lead of other investigators [35, 38-

40], we develop a discrete-time version of their classic, continuous-time SIR model. This step 

allows us to write their dynamic system in terms of difference equations rather than differential 

equations. Second, similarly following in others’ footsteps [26, 41-44], we define a least squares 

objective function to test our SIR model’s predictions against the observed data.  

Third, in what appears to be an innovation, we show that both the gradient vector and 

Hessian matrix of second-order derivatives of our objective function with respect to the 

parameters follow their own systems of difference equations. As a result, both the gradient and 

Hessian can be rapidly and exactly computed by straightforward iteration, an approach that is 

computationally superior to numerical approximation [45].  

Fourth, once we have calculated the gradient and Hessian, we can use the well-known 

Newton-Raphson algorithm [46] to find the global optimum. Fifth, relying on the minimum least 

squares criterion, we can then calculate the variance-covariance matrix of the parameters and 

thus determine their confidence intervals [47]. Sixth, our approach permits us to readily 

determine what parameters are in fact identified when we have only time-series data on new 

cases. 

We apply our strategy to the estimation of a four-parameter SIR model to study COVID-

19 incidence over a 99-day interval from the December 4, 2021, through March 12, 2022, during 

the Omicron/BA.1 wave in New York City. 
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Statistical Methods 

Discrete-Time SIR Model  

Following the lead of other investigators [4, 35, 38-40], we adopt a discrete-time 

approach. We mark off the time axis in equally spaced intervals 𝑡𝑡 = 0,1, … ,𝑇𝑇, where the 

duration of each interval is sufficiently small as to adequately approximate the classical, 

continuous-time version [5, 48-51]. At any time 𝑡𝑡, individuals within this closed population can 

be in one of three mutually exclusive states: susceptible (S), infected (I), or removed (R). The 

latter state, which includes both recovered living individuals and decedents, is assumed to be 

absorbing. To minimize possible complications arising from the non-identifiability of multiple 

parameters [52-55], we assume a fixed, demographically closed population of size 𝑁𝑁. 

 Let 𝑆𝑆𝑡𝑡, 𝐼𝐼𝑡𝑡, and 𝑅𝑅𝑡𝑡 denote the respective numbers of individuals in each of the three states 

at time 𝑡𝑡. The dynamic path of the epidemic is governed by the following deterministic, coupled 

difference equations: 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 − 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄          (1a) 

𝐼𝐼𝑡𝑡 = 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄ + 𝛼𝛼𝐼𝐼𝑡𝑡−1          (1b) 

𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑡𝑡−1 + (1 − 𝛼𝛼)𝐼𝐼𝑡𝑡−1           (1c) 

𝑆𝑆𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝑅𝑅𝑡𝑡 = 𝑁𝑁          (1d) 

Equations (1a) through (1d) represent the well-known forward Euler approximation to the 

underlying continuous-time SIR model of coupled differential equations [56]. Apart from the 

population size 𝑁𝑁, this dynamic system has two parameters: 𝛽𝛽 and 𝛼𝛼. In equations (1a) and (1b), 

𝛽𝛽 > 0 is an infection transmission parameter. In equations (1b) and (1c), 1 > 𝛼𝛼 > 0 is an 

infection persistence parameter. It gauges the proportion of infected individuals at each time 

𝑡𝑡 who remain in the infected state. The quantity (1 − 𝛼𝛼) in equation (1c), which in some 

treatments is represented by the parameter 𝛾𝛾, corresponds to the proportion who transition to the 

removed state. The multiplicative term 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄  in equations (1a) and (1b) reflects the law 

of mass action [57], whereby susceptible individuals become infected in proportion to their 

frequency of contact with currently infected individuals. All individuals within the population 

are assumed to mix homogeneously, with no subgroup of individuals mixing preferentially with 

any other subgroup.  
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The final equation (1d) reflects the constant size 𝑁𝑁 of the population and is consistent 

with equations (1a) through (1c). Strictly speaking, one should adjust the size 𝑁𝑁 of the mixing 

population in equations (1a) and (1b) to take account of removals by death. Unless the overall 

death rate is substantial, this adjustment is usually ignored in model implementations. 

We complete our discrete-time model with the specification of initial conditions at 𝑡𝑡 = 0: 

𝑆𝑆0 = (1 − 𝑖𝑖0 − 𝑟𝑟0)𝑁𝑁          (2a) 

𝐼𝐼0 = 𝑖𝑖0𝑁𝑁           (2b) 

𝑅𝑅0 = 𝑟𝑟0𝑁𝑁           (2c) 

The additional parameters 𝑖𝑖0 and 𝑟𝑟0 represent the respective proportions of the entire population 

of size 𝑁𝑁 that are initially infected and removed.  

  In the dynamic system (1) and (2), the mean duration of infection is time-invariant and 

equal to 1 (1 − 𝛼𝛼)⁄ . The system results in an epidemic wave when (1 − 𝑖𝑖0 − 𝑟𝑟0)𝛽𝛽 (1 − 𝛼𝛼)⁄ > 1, 

a well-known result known as the epidemic threshold theorem [24, 50, 58, 59]. Assuming that 

1 − 𝑖𝑖0 − 𝑟𝑟0 ≈ 1, most authors write this epidemic threshold condition as ℛ0 > 1, where ℛ0 =

𝛽𝛽 (1 − 𝛼𝛼)⁄  is defined as the basic reproduction number [24, 51, 60, 61]. 

Parameter Estimation: Least Squares Minimization Criterion 

 We do not have direct observations on the underlying state variables 𝑆𝑆𝑡𝑡, 𝐼𝐼𝑡𝑡, and 𝑅𝑅𝑡𝑡. If we 

had such data, our inversion problem would border on trivial [39, 62, 63]. Instead, we observe 

only the reported counts of new infections at various intervals. In this exposition, we assume that 

new infection counts 𝑦𝑦𝑡𝑡 are observed at each discrete time 𝑡𝑡. The more general case where such 

counts are observed less frequently has been addressed elsewhere [64].. The counts 𝑦𝑦𝑡𝑡 represent 

observations on the output variables 𝑋𝑋𝑡𝑡, 𝑡𝑡 = 1, … ,𝑇𝑇, which from (1) correspond to: 

𝑋𝑋𝑡𝑡 = 𝛽𝛽𝛽𝛽𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄           (3) 

Given the definition of the output variable 𝑋𝑋𝑡𝑡 in (3), our dynamic system (1) can be redefined as: 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 − 𝑋𝑋𝑡𝑡          (4a) 

𝐼𝐼𝑡𝑡 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝐼𝐼𝑡𝑡−1            (4b) 

So long as the state variables adhere to the condition that that 𝑆𝑆𝑡𝑡 + 𝐼𝐼𝑡𝑡 + 𝑅𝑅𝑡𝑡 = 𝑁𝑁, an explicit 

difference equation for 𝑅𝑅𝑡𝑡 is unnecessary. 
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 We can now characterize our parameter estimation problem. Given observations 𝑦𝑦𝑡𝑡 on 

the output variables 𝑋𝑋𝑡𝑡, we want to estimate the unknown parameters 𝛽𝛽, 𝛼𝛼, 𝑖𝑖0, 𝑟𝑟0 and 𝑁𝑁. Our 

stumbling block is that we cannot express 𝑋𝑋𝑡𝑡 as a closed-form function of these parameters. We 

know only that the output variables 𝑋𝑋𝑡𝑡 adhere to the dynamic system defined by (2), (3) and (4), 

which in turn depends on these unknown parameters. 

 Let 𝒚𝒚 = (𝑦𝑦1, … , 𝑦𝑦𝑇𝑇)′ and 𝑿𝑿 = (𝑋𝑋1, … ,𝑋𝑋𝑇𝑇)′, respectively, denote column vectors of the 

observed incidence data and the corresponding output variables at each time 𝑡𝑡, where we use 

boldface symbols denote vectors or matrices. Let 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0, 𝑟𝑟0,𝑁𝑁) denote the row vector of 

the unknown parameters. Let 𝑿𝑿(𝚯𝚯) represent the functional dependence of the output variables 

on these parameters. To estimate 𝚯𝚯 from the data 𝒚𝒚, we introduce the least squares minimization 

criterion 𝑉𝑉(𝚯𝚯) = �𝒚𝒚 − 𝑿𝑿(𝚯𝚯)�′�𝒚𝒚 − 𝑿𝑿(𝚯𝚯)�, which can be written in summation notation as: 

𝑉𝑉(𝚯𝚯) = ∑ �𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡(𝚯𝚯)�2𝑇𝑇
𝑡𝑡=1          (5) 

This criterion has been widely used in attempts to fit the SIR model to incidence data [26, 41-

44]. It is well known that minimizing 𝑉𝑉 is equivalent to computing the maximum likelihood 

estimate of 𝚯𝚯 under the assumption that 𝑦𝑦𝑡𝑡 = 𝑋𝑋𝑡𝑡(𝚯𝚯) + 𝜀𝜀𝑡𝑡, where the disturbances 𝜀𝜀𝑡𝑡 are 

independently normally distributed 𝑁𝑁(0,𝜎𝜎2) with homoscedastic variance 𝜎𝜎2. 

Non-Identifiability of the Five-Parameter Vector 𝜣𝜣 

While the model delineated in equations (1) through (4) is standard in the literature [4, 

35, 38-40], it turns out that not all five parameters of the vector 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0, 𝑟𝑟0,𝑁𝑁) can be 

identified from the data 𝒚𝒚 on case incidence alone. This conclusion is supported by the following 

proposition, which, along with all other propositions, is proved in Appendix A. 

Proposition 1. Let Ω ⊆ ℝ5 be the subspace of admissible values of the five-dimensional 

parameter vector 𝚯𝚯. Let 𝑿𝑿(𝚯𝚯) be the resulting 𝑇𝑇 × 1 column vector of output variables defined 

by the model of equations (1) through (4). Then there exists a mapping 𝜙𝜙:Ω → ℝ4 with the 

property that 𝑿𝑿(𝚯𝚯) = 𝑿𝑿(𝚯𝚯′) for all vectors 𝚯𝚯,𝚯𝚯′ ∈ Ω satisfying 𝜙𝜙(𝚯𝚯) = 𝜙𝜙(𝚯𝚯′). 

Even if we had perfectly accurate data 𝒚𝒚 on case incidence, we could no better than to 

measure 𝑿𝑿 without error. Proposition 1, however, establishes that 𝑿𝑿(𝚯𝚯) is not a one-to-one 

mapping from parameters 𝚯𝚯 to output variables 𝑿𝑿. Moreover, for any given set of observations 𝒚𝒚 

on case incidence, equation (5) teaches us that the dependence of 𝑉𝑉 on 𝚯𝚯 runs solely through 
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𝑿𝑿(𝚯𝚯). Accordingly, 𝑉𝑉(𝚯𝚯) is likewise not a one-to-one mapping from parameters 𝚯𝚯 to our 

objective function 𝑉𝑉.  

 Appended to the proof of Proposition 1 are some corollary results indicating how 

additional prior information can be used to identify the model parameters. For example, if we 

had sharp prior information on the initial proportion of recovered individuals 𝑟𝑟0, or the initial 

population size 𝑁𝑁, or the basic reproduction number ℛ0, then we could identify all the 

parameters in 𝚯𝚯. In what follows, we impose the prior constraint that 𝑟𝑟0 = 0. To simplify our 

notation, we drop 𝑟𝑟0 from the parameter vector and instead write 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) as a four-

parameter vector, denoting by Ω ⊆ ℝ4 the four-dimensional space of admissible values of 𝚯𝚯. 

Gradient and Hessian of the Least Squares Criterion V 

 Let the operator 𝑫𝑫 denote the 4 × 1 gradient of partial derivatives with respect to the 

elements of 𝚯𝚯, and let the operator 𝑫𝑫𝟐𝟐 denote the corresponding 4 × 4 Hessian matrix of second 

order partial derivatives. The following two propositions embody the main methodological 

innovation of this paper. 

Proposition 2. The gradient of the least squares criterion 𝑉𝑉 with respect to the parameter 

vector 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) is: 

𝑫𝑫𝑫𝑫 = −2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑇𝑇
𝑡𝑡=1 𝑫𝑫𝑿𝑿𝒕𝒕         (6) 

where each column vector 𝑫𝑫𝑿𝑿𝒕𝒕 = �𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝑖𝑖0

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕
�
′
 represents the corresponding gradient of 

partial derivatives of the output variable 𝑋𝑋𝑡𝑡 at time 𝑡𝑡. The basic equations of our dynamic system 

(1), in combination with the initial conditions (2), can be used to generate complete, computable 

difference equations for 𝑫𝑫𝑿𝑿𝒕𝒕 for all 𝑡𝑡, and thus for 𝑫𝑫𝑫𝑫. 

Proposition 3. Let 𝑫𝑫𝑫𝑫 denote the 𝑇𝑇 × 4 matrix whose 𝑡𝑡-th row is the vector 𝑫𝑫𝑿𝑿𝒕𝒕′ , as 

defined in Proposition 2. The Hessian matrix of the least squares criterion 𝑉𝑉 with respect to the 

parameter vector 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) is: 

𝑫𝑫𝟐𝟐𝑽𝑽 = 2 𝑫𝑫𝑿𝑿′𝑫𝑫𝑫𝑫 − 2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕𝑇𝑇
𝑡𝑡=1        (7) 

The basic equations of our dynamic system (1), in combination with the initial conditions (2), 

can similarly be used to generate complete, computable difference equations for 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕 for all 𝑡𝑡, 

and thus 𝑫𝑫𝟐𝟐𝑽𝑽. 
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 As part of the proofs of these two propositions in Appendix A, we show the details of the 

difference equations involved in the exact computation of 𝑫𝑫𝑿𝑿𝒕𝒕 and 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕 for all 𝑡𝑡. 

Newton-Raphson Algorithm for Parameter Estimation 

 While the objective function 𝑉𝑉(𝚯𝚯) has no closed-form expression in terms of 𝚯𝚯, we can 

still rely on our exact computations of the gradient 𝑫𝑫𝑫𝑫 and Hessian 𝑫𝑫𝟐𝟐𝑽𝑽 to search for a local 

interior minimum within the four-dimensional subspace Ω of admissible values of 𝚯𝚯 via the 

Newton-Raphson algorithm [46].  

The Newton-Raphson algorithm is iterative. Denote our choice of initial parameter vector 

as 𝚯𝚯(0). Let (𝑘𝑘) index successive iterations. The current value of the parameter vector 𝚯𝚯(𝑘𝑘) is 

repeatedly mapped into an updated value 𝚯𝚯(𝑘𝑘+1) according to the well-known rule: 

𝚯𝚯(𝑘𝑘+1) = 𝚯𝚯(𝑘𝑘) − 𝑞𝑞 (𝑫𝑫𝟐𝟐𝑽𝑽)−𝟏𝟏 𝑫𝑫𝑫𝑫        (8) 

Here, the gradient 𝑫𝑫𝑫𝑫, as defined in (6), and the Hessian 𝑫𝑫𝟐𝟐𝑽𝑽, as defined in (7), are both 

computed at the current value of the parameter vector 𝚯𝚯(𝑘𝑘), while the step size 0 < 𝑞𝑞 ≤ 1 is 

under control of the programmer.  

This iterative approach would work flawlessly if the objective function 𝑉𝑉 were globally 

convex with an interior minimum. There is good reason, however, to suspect that 𝑉𝑉 may instead 

have multiple local optima. While the classical SIR model predicts a single-peaked wave of 

incident cases 𝑿𝑿 so long as ℛ0 > 1, the observed data 𝒚𝒚 often display multiple peaks over time. 

(A good example is the two-peak plot of the 2001 Dengue fever outbreak in Havana [59].) In that 

case, the search algorithm embodied in (8) may easily end up at a local rather than a global 

minimum of 𝑉𝑉. To address this possibility, we need to run the Newton-Raphson search routine 

from various initial parameter vectors 𝚯𝚯(0). 

What’s more, there may be regions of the four-parameter space where the Hessian 𝑫𝑫𝟐𝟐𝑽𝑽 is 

not positive definite because the second term in equation (7) (that is, −2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕𝑇𝑇
𝑡𝑡=1 ) is 

not necessarily a positive definite matrix. In that case, the parameter updating rule (8) may not 

result in a decrease in the objective function 𝑉𝑉 as the algorithm veers away from the optimum. 

To address this possibility, we can back up to 𝚯𝚯(𝑘𝑘) and reduce the step size 𝑞𝑞. 
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Alternative EM-Type Procedure for Parameter Estimation 

 It turns out that there is an alternative iterative procedure for parameter estimation 

analogous to the so-called EM algorithm [65]. Rather than searching through the four-

dimensional space of admissible values of 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁), we can separate the estimation of 

the population-size parameter 𝑁𝑁 and from our search over the remaining three-dimensional space 

of the remaining identifiable parameters (𝛽𝛽,𝛼𝛼, 𝑖𝑖0). The procedure is motivated by the following 

two propositions. 

Proposition 4. Each element 𝑋𝑋𝑡𝑡(𝚯𝚯) of the output vector 𝑿𝑿(𝚯𝚯) is a linear function of the 

population size parameter 𝑁𝑁. That is, 𝑋𝑋𝑡𝑡 can be written in the form 𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁, where 𝜑𝜑𝑡𝑡(𝜽𝜽) is a 

function of the remaining identifiable parameters 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0). 

This result does not require that we derive a closed-form expression for the function 

𝜑𝜑𝑡𝑡(𝜽𝜽). The fact that each output variable 𝑋𝑋𝑡𝑡 is proportional to 𝑁𝑁 implies that the optimization 

criterion 𝑉𝑉 defined in (5) is a quadratic polynomial in 𝑁𝑁. That conclusion in turn motivates the 

following additional proposition. 

Proposition 5. Let 𝚯𝚯(𝑛𝑛) = �𝜽𝜽(𝑛𝑛),𝑁𝑁(𝑛𝑛)� denote parameter estimates at iteration 𝑛𝑛 of an 

iterative estimation algorithm. Let 𝑿𝑿(𝒏𝒏) = 𝑿𝑿�𝚯𝚯(𝑛𝑛)� denote the corresponding output variable 

vector derived from the SIR model (2), (3) and (4) based upon these parameter estimates. Define  

𝜅𝜅(𝑛𝑛+1) = 𝒚𝒚′𝑿𝑿(𝒏𝒏) 𝑿𝑿(𝒏𝒏)′𝑿𝑿(𝒏𝒏)⁄ = ∑ 𝑦𝑦𝑡𝑡𝑋𝑋𝑡𝑡
(𝑛𝑛)𝑇𝑇

𝑡𝑡=1 ∑ �𝑋𝑋𝑡𝑡
(𝑛𝑛)�

2
𝑇𝑇
𝑡𝑡=1�      (9) 

as the regression coefficient of 𝒚𝒚 on 𝑿𝑿(𝒏𝒏). Then conditional upon 𝚯𝚯(𝑛𝑛), the updated population-

size parameter that minimizes the least squares criterion 𝑉𝑉 is 𝑁𝑁(𝑛𝑛+1) = 𝜅𝜅(𝑛𝑛+1)𝑁𝑁(𝑛𝑛). 

 Proposition 5 describes the E (or expectation) step for updating the estimate of the 

population-size parameter 𝑁𝑁(𝑛𝑛+1) in the iterative algorithm. The minimization (or M) step 

consists of determining the parameter vector 𝜽𝜽(𝑛𝑛+1) that minimizes the least squares criterion 𝑉𝑉 

conditional upon the updated value of 𝑁𝑁(𝑛𝑛+1). The latter step can be similarly performed via the 

Newton-Raphson algorithm, as described above, but where the parameter search is now confined 

to the three-dimensional space of 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0). 

Confidence Intervals 

 Proposition 6. Let 𝚯𝚯∗ = (𝛽𝛽∗,𝛼𝛼∗, 𝑖𝑖0∗,𝑁𝑁∗) and denote the estimated parameter values that 

minimize the objective function 𝑉𝑉(𝚯𝚯) under the identifying restriction 𝑟𝑟0 = 0, and let 𝑉𝑉∗ =



MedRxiv 2023.03.13.23287177v3  26-Feb-2024 

 10 

𝑉𝑉(𝚯𝚯∗) denote the corresponding minimized value of the least squares criterion 𝑉𝑉. Then the 

variance-covariance matrix of the estimated parameters 𝚯𝚯∗ is 𝑪𝑪∗ = (𝑠𝑠∗)2(𝑫𝑫𝑿𝑿∗′𝑫𝑫𝑿𝑿∗)−1, where 

(𝑠𝑠∗)2 = 𝑉𝑉∗ 𝑇𝑇⁄ , and where 𝑫𝑫𝑿𝑿∗, as defined in Proposition 3, is also evaluated at the optimum 𝚯𝚯∗.  

 This result allows us to estimate confidence intervals for our parameter estimates 𝚯𝚯∗ =

(𝛽𝛽∗,𝛼𝛼∗, 𝑖𝑖0∗,𝑁𝑁∗) under the additional assumption that their distribution is asymptotically normal. 

Thus, the standard errors are the square roots of the diagonal elements of 𝑪𝑪∗, while the 

symmetric 95 percent confidence intervals can be evaluated as ±1.96 standard errors about the 

estimates. We can then use the Delta method [66] to compute the corresponding standard errors 

and confidence intervals around nonlinear functions of the parameters, such as the basic 

reproduction number ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the mean duration of infection 1 (1 − 𝛼𝛼)⁄ . 

Only a Linear Combination of the Parameters 𝛽𝛽 and 𝛼𝛼 is Practically Identifiable. 

 We have imposed the sharp prior restriction that 𝑟𝑟0 = 0 to identify the remaining four 

parameters of our SIR model. If there exists a local interior minimum 𝚯𝚯∗ = (𝛽𝛽∗,𝛼𝛼∗, 𝑖𝑖0∗,𝑁𝑁∗) of our 

least squares objective function 𝑉𝑉(𝚯𝚯), we know that the gradient 𝑫𝑫𝑫𝑫(𝚯𝚯∗) is the zero vector and 

the Hessian 𝑫𝑫𝟐𝟐𝑽𝑽(𝚯𝚯∗) is a non-negative definite matrix. When 𝚯𝚯∗ is a strict local minimum, 

𝑫𝑫𝟐𝟐𝑽𝑽(𝚯𝚯∗) will be strictly positive definite. 

 Even if our objective function 𝑉𝑉 is indeed strictly locally convex at 𝚯𝚯∗ and thus 𝑫𝑫𝟐𝟐𝑽𝑽(𝚯𝚯∗) 

is strictly positive definite, it turns out that the Hessian 𝑫𝑫𝟐𝟐𝑽𝑽(𝚯𝚯∗) is nearly positive semidefinite. 

That is, 𝑉𝑉(𝚯𝚯) is nearly flat along a ray passing through 𝚯𝚯∗ where the parameters 𝛽𝛽 and 𝛼𝛼 are 

allowed to vary and the remaining parameters 𝑖𝑖0∗ and 𝑁𝑁∗ remain fixed. In effect, the three-

dimensional plot of 𝑉𝑉 projected onto the (𝛽𝛽,𝛼𝛼) plane contains a ravine where only a linear 

combination of 𝛽𝛽 and 𝛼𝛼 is practically identified [67].  

The following proposition, which formalizes the idea, will guide our empirical 

implementation below. 

Proposition 7. Let 𝚯𝚯∗ be a local interior minimum of 𝑉𝑉(𝚯𝚯). Define a single-valued 

mapping from the real line into the four-dimensional subspace Ω of admissible values of 𝚯𝚯 as 

follows: 𝝀𝝀(𝑢𝑢) = (𝛽𝛽∗ + 𝑢𝑢,𝛼𝛼∗ − 𝑤𝑤𝑤𝑤, 𝑖𝑖0∗,𝑁𝑁∗), where 𝑢𝑢 is its real-valued argument and 𝑤𝑤 > 0 is a 

positive real parameter. As the parameter 𝑤𝑤 varies, this mapping characterizes a family of rays in 

four-dimensional space passing through the point 𝚯𝚯∗ at 𝑢𝑢 = 0. Then there exists a ray, 

corresponding to a specific value of 𝑤𝑤, along which the second-order directional derivative 
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𝑑𝑑2𝑉𝑉
𝑑𝑑𝑢𝑢2

�
𝑢𝑢=0

 is nearly zero, that is, along which 𝑉𝑉(𝚯𝚯) is nearly equal to its local minimum value 

𝑽𝑽(𝚯𝚯∗). 

Consistency Checks with Data Simulated from Known Parameters 

 Apart from our study of COVID-19 case incidence in New York City, to be described 

below, we applied our estimation procedure to a simulated database generated from known 

parameters. Specifically, we computed the output variables 𝑋𝑋𝑡𝑡 from the model of equations (2), 

(3) and (4) over 𝑇𝑇 = 100 time periods with assumed known parameters 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖𝑜𝑜 ,𝑁𝑁) =

(0.6, 0.7, 0.04, 105). We then repeatedly simulated the observed case incidence as 𝑦𝑦𝑡𝑡
(𝑗𝑗) = 𝑋𝑋𝑡𝑡

(𝑗𝑗) +

𝜀𝜀𝑡𝑡
(𝑗𝑗) for each of 𝑡𝑡 = 1, … ,100 time periods and 𝑗𝑗 = 1, … ,100 epidemics, where the independent 

errors 𝜀𝜀𝑡𝑡
(𝑗𝑗) were randomly drawn from a Gaussian 𝑁𝑁(0,𝜎𝜎2) distribution with zero mean and 

standard deviation 𝜎𝜎 = 100. For each epidemic 𝑗𝑗, we then employed our 4-dimensional Newton-

Raphson algorithm to estimate the parameters 𝚯𝚯(𝒋𝒋) = �𝛽𝛽(𝑗𝑗),𝛼𝛼(𝑗𝑗), 𝑖𝑖0
(𝑗𝑗),𝑁𝑁(𝑗𝑗)�. In addition, for each 

epidemic 𝑗𝑗, we computed the 3-dimensional estimates of 𝜽𝜽(𝒋𝒋) = �𝛽𝛽(𝑗𝑗),𝛼𝛼(𝑗𝑗), 𝑖𝑖0
(𝑗𝑗)� conditional 

upon the population size 𝑁𝑁 known to equal its assumed value of 105. Finally, for each of these 

exercises, we compared the dispersion of the resulting estimates 𝚯𝚯(𝒋𝒋) around their assumed 

values 𝚯𝚯. 

Computational Benchmarks 

We employed two versions of our procedure to estimate the parameters of our SIR 

models: the 4-parameter search Newton-Raphson search method embodied in Propositions 2 and 

3; and the EM-type procedure embodied in Propositions 4 and 5. We compared the 

computational times attained through these two approaches with a brute-force, grid search over 

the 4-dimensional space of allowable values of 𝚯𝚯. All programs were written in Mata [68], a 

matrix programming language embedded within the Stata programming language [69]. 

Calculations were carried out on a MacBook Pro with a 2.3 GHz 8-Core Intel Core i9 processor. 
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Data 

Omicron Wave, December 2021 – March 2022, New York City  

We studied the reported daily incidence of COVID-19 during the SARS-CoV-2 

Omicron/BA.1 wave of December 2021 – March 2022 in New York City, NY, United States, a 

city of population 8.5 million. Our data consisted of daily counts of cases reported by the New 

York City department of health [70], where the date of report was intended to be the date when a 

positive test was performed or when the diagnosis of COVID-19 was otherwise made. 

Our data showed systematic variation in case counts by day of the week, with many 

fewer cases diagnosed over the weekends. To account for these fluctuations, and to 

accommodate delays between symptom onset and testing, we converted the raw case counts 𝑐𝑐𝑡𝑡 

into centered 7-day moving averages, that is, 𝑦𝑦𝑡𝑡 = 1
7
∑ 𝑐𝑐𝑡𝑡+𝑖𝑖
+3
𝑖𝑖=−3  , where 𝑡𝑡 indexes the date of 

report. Figure 1 shows the raw counts of daily reported cases 𝑐𝑐𝑡𝑡 (connected gray datapoints) as 

well as the daily case counts 𝑦𝑦𝑡𝑡 adjusted for the day of the week (red datapoints). We relied upon 

these adjusted daily counts 𝑦𝑦𝑡𝑡 to estimate our SIR model parameters 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁). 
  

 
 

Figure 1. Daily Reported Cases of COVID-19, 12/1/2021 – 3/15/2022, in New York City. The connected gray 
datapoints show the raw case counts (𝑐𝑐𝑡𝑡). The red datapoints, covering 12/4/2021 – 3/12/2022, show the centered 7-
day moving averages (𝑦𝑦𝑡𝑡).  
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The Omicron BA.1 variant of the SARS-CoV-2 virus was far-and-away the most 

important contributor to the massive surge of reported infections observed in Figure 1. Still, the 

initial phase of the surge overlapped the tail end of the prior Delta wave, while the terminal 

phase saw the gradual emergence of the Omicron BA.2 variant. Figure 2 plots the estimated 

daily proportions of the three variants in New York City during our study period. 

As an alternative analysis, we re-estimated our SIR model parameters 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) from the 

data 𝑦𝑦�𝑡𝑡 = ℎ𝑡𝑡𝑦𝑦𝑡𝑡, where ℎ𝑡𝑡 represents the estimated proportion of BA.1 infections on date 𝑡𝑡, as 

derived from the interpolated Omicron BA.1 curve in Figure 2, and where 𝑦𝑦𝑡𝑡 are the moving 

average counts of all cases displayed in Figure 1. 

 

 
 

Figure 2. Estimates of the Proportions of the Delta, Omicron BA.1, and Omicron BA.2 Variants in New York 
City During 11/24/2021 – 3/16/2022. Weekly averages (solid datapoints) were derived from a compilation 
maintained by the New York City health department [71]. The Stata pchipolate interpolation routine [72] was then 
employed to estimate the intervening days (connecting curves). The Omicron BA.2 category included strains 
identified as BA.2, BA.2.12.1, and BA.2.75. Not shown are the proportions of all other strains, which represented no 
more than 0.7 percent of total samples in any one week.  
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Results 

Omicron Wave, December 2021 – March 2022, New York City  

Figure 3 shows the predicted values of the output variable 𝑋𝑋𝑡𝑡 as connected curves 

superimposed on the observed datapoints 𝑦𝑦𝑡𝑡 for all reported cases (shown in blue) and 𝑦𝑦�𝑡𝑡 = ℎ𝑡𝑡𝑦𝑦𝑡𝑡 

for Omicron BA.1 only cases (shown in orange). For all reported cases, the SIR model showed a 

reasonably tight fit to the data. For Omicron BA.1 only cases, however, the fitted SIR model 

overpredicted the initial number of cases during the first 10 days of observation (from 12/4 

through 12/13/2021). Comparing the two fitted curves, we see that our dropping the Delta variant 

cases during December 2021 resulted in an attenuation of the initial upswing of epidemic wave. 

By contrast, elimination of the Omicron BA.2 cases resulted in only a small absolute decrease in 

the tail of the wave during February and early March of 2022.  

 

 
Figure 3. Daily Reported and Predicted Cases of COVID-19, 12/1/2021 – 3/15/2022, in New York City. 
Estimates Based Upon All Variants (Blue) and Omicron BA.1 Variant Only (Orange). Blue datapoints 
represent all reported cases 𝑦𝑦𝑡𝑡, while orange datapoints represent Omicron BA.1 cases 𝑦𝑦�𝑡𝑡 = ℎ𝑡𝑡𝑦𝑦𝑡𝑡. The respective 
blue and orange curves connect the predicted values of the output variable 𝑋𝑋𝑡𝑡. The displayed estimates are based 
upon the 4-dimensional Newton-Raphson algorithm described in Propositions 2 and 3. The estimates based upon the 
alternative EM procedure, described in Propositions 4 and 5, were identical. 
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Table 1 summarizes the resulting parameter estimates. The 95% confidence intervals 

based upon the 4-dimensional Newton-Raphson approach, shown in parentheses below each 

point estimate, accounted for the uncertainty in all components of the parameter vector 𝚯𝚯 = 

(𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁). When we utilized the alternative EM-type algorithm, the final M-step estimated the 

three parameters (𝛽𝛽,𝛼𝛼, 𝑖𝑖0) conditional upon the value of 𝑁𝑁 estimated from the prior E-step. The 

corresponding conditional confidence intervals, shown in square brackets, were somewhat 

tighter. 

 

Table 1. Parameter Estimates of an SIR Model of COVID-19 Incidence New York City, 
December 2021 – March 2022. Data on All Cases Versus Omicron BA.1 Only a,b,c 

Parameter All Reported Cases Omicron BA.1 Only 

𝛽𝛽 0.233 
(0.200, 0.266) 
[0.216, 0.250] 

0.283 
 (0.189, 0.377) 
[0.266, 0.299] 

𝛼𝛼 0.941 
(0.912, 0.969) 
[0.928, 0.953] 

0.903 
(0.815, 0.991) 
[0.890, 0.916] 

𝑖𝑖0 × 10–3 8.23 
(6.17, 10.28) 
[6.95, 9.50] 

4.85 
(2.20, 7.50) 
[4.15, 5.56] 

𝑁𝑁 × 106 1.013 
(0.980, 1.046) 

– 

0.984 
(0.868, 1.100) 

– 

ℛ0 3.92 
(2.58, 5.27) 
[3.35, 4.50] 

2.92 
(1.23, 4.61) 
[2.70, 3.14] 

1 (1 − 𝛼𝛼)⁄  16.8 
(8.7, 25.0) 
[13.2, 20.5] 

10.3 
(0.9, 19.7) 
[8.9, 11.7] 

𝑉𝑉 76.7686 87.3200 

𝐴𝐴𝐴𝐴𝐴𝐴 –15.1780 –2.4284 
 

a. The 4-dimensional Newton-Raphson approach and the alternative EM-algorithm approach gave the same point 
estimates of the parameters 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁). 
b. Symmetric 95% confidence intervals based upon the 4-dimensional Newton-Raphson algorithm are shown in 
parentheses below each estimate. The corresponding confidence intervals conditional upon the population size 
parameter 𝑁𝑁 are shown in square brackets. Confidence intervals for the estimated basic reproduction number 
ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄  and the estimated mean duration of infectivity 1 (1 − 𝛼𝛼)⁄  were based upon the Delta method. 
c. The sum-of-squared-residuals 𝑉𝑉 was computed as in equation (5). The Akaike information criterion (AIC) was 
computed as 2𝑘𝑘 + 𝑇𝑇 ln(𝑉𝑉 𝑇𝑇⁄ ), where 𝑘𝑘 = 5 parameters (including the parameter 𝑠𝑠2) and 𝑇𝑇 = 99 observations. 
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As indicated by the comparative values of the least squares criterion 𝑉𝑉 and the 

corresponding Akaike information criterion (AIC) in Table 1, the model based upon all reported 

cases had a significantly tighter fit than the model based on cases of Omicron BA.1 alone. 

Overall, the Omicron BA.1-based model was only 𝑒𝑒𝑒𝑒𝑒𝑒((𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝐵𝐵.1) 2⁄ ) = 0.0017 

times as likely as the all cases-based model to minimize the information loss. 

Plotting the Criterion 𝑉𝑉 as a Function of the Parameters 𝛽𝛽 and 𝛼𝛼 

Figure 4A plots the least squares criterion 𝑉𝑉 (blue curve, left axis) and the first partial 

derivative 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  (red curve, right axis) as functions of the parameter 𝛽𝛽. The remaining 

parameters have been held constant at their estimated values, as shown in Table 1. The criterion 

𝑉𝑉 reached a minimum at the optimum 𝛽𝛽∗ = 0.233, where 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 0. The function 𝑉𝑉 was 

convex in the interval from 𝛽𝛽 = 0.169, where 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  reached a minimum, to 𝛽𝛽= 0.352, where 

𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  reached a maximum. 

Figure 4B displays the analogous plot of 𝑉𝑉 and 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  as functions of the parameter 𝛼𝛼, 

where the remaining parameters are similarly held constant at their optimum values. The 

criterion 𝑉𝑉 reached a minimum at the optimum 𝛼𝛼∗ = 0.941, at which point 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 0. The 

function 𝑉𝑉 was convex in the interval from 𝛼𝛼 = 0.868, where 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  reached a minimum, to 𝛼𝛼 = 

1, the boundary of admissible values of 𝛼𝛼, where 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  remained positive. 
 

 

Figure 4. Panel A. Least Squares Criterion 𝑽𝑽 (Left Axis) and First Partial Derivative 𝝏𝝏𝝏𝝏 𝝏𝝏𝝏𝝏⁄  (Right Axis) as 
Functions of the Parameter 𝜷𝜷. Panel B. Least Squares Criterion 𝑽𝑽 (Left Axis) and First Partial Derivative 
𝝏𝝏𝝏𝝏 𝝏𝝏𝝏𝝏⁄  (Right Axis) as Functions of the Parameter 𝜶𝜶.  
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Figure 5 plots the projection of 𝑉𝑉 onto the (𝛽𝛽,𝛼𝛼) plane, once again based upon the data 

for all reported cases. As in Figure 4, the remaining parameters (𝑖𝑖0,𝑁𝑁) were held at the estimated 

values given in Table 1 above. The darkest area represents a ravine where 𝑉𝑉 attained its lowest 

values. The yellow point in the center is the global minimum (𝛽𝛽∗,𝛼𝛼∗) = (0.233, 0.941). 

 

 

Figure 5. Least Squares Criterion 𝑽𝑽 Projected onto the (𝜷𝜷,𝜶𝜶) Plane. The yellow point identifies the minimum 
where (𝛽𝛽∗,𝛼𝛼∗) = (0.233, 0.941). The parameters 𝑖𝑖0 and 𝑁𝑁 were held constant at their optimum values given in Table 
1. The plot was produced in part from the Stata program surface [73]. 

 

 Figure 6 further characterizes the ravine identified in Figure 5. To that end, we relied on 

the results of Proposition 7 to identify the ray through the optimum point (𝛽𝛽∗,𝛼𝛼∗) along which 

the second-order directional derivative of 𝑉𝑉 was minimized. Shown in the figure are the contours 

of 𝑉𝑉 as a function of (𝛽𝛽,𝛼𝛼) running parallel to each of the two parameter axes, as well as the 

contour along the ray identified has having the flattest curvature. The ray corresponded to the 

equation 𝑤𝑤∗(𝛽𝛽 − 𝛽𝛽∗) + (𝛼𝛼 − 𝛼𝛼∗) = 0, where 𝑤𝑤∗= 1.073. The curvature along the ray, as 

measured by the second-order directional derivative, was less than one-tenth of the 

corresponding curvatures measured along the contours running parallel to the axes. Conditional 

on 𝑤𝑤∗, the 95% confidence interval surrounding the linear combination 𝑤𝑤∗𝛽𝛽 + 𝛼𝛼 had a very tight 

range of (1.183, 1.198). 
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Figure 6. Contours of 𝑽𝑽 Running through the Optimum Point 𝚯𝚯∗ Projected onto the (𝜷𝜷,𝜶𝜶) Plane. All plotted 
contours run through the optimum (𝛽𝛽∗,𝛼𝛼∗) = (0.233, 0.941), with the parameters 𝑖𝑖0 and 𝑁𝑁 held constant at their 
optimum values. With 𝛽𝛽 also held constant at its optimum value (green contour), the second-order derivative was 
𝜕𝜕2𝑉𝑉(𝜽𝜽∗) 𝜕𝜕𝛼𝛼2⁄  = 4.912×106. With 𝛼𝛼 also held constant at its optimum value (magenta contour), the second-order 
derivative was 𝜕𝜕2𝑉𝑉(𝜽𝜽∗) 𝜕𝜕𝛽𝛽2⁄  = 6.075×106. Along the ray defined by 𝑤𝑤∗ = 1.073 (orange contour), the second-order 
directional derivative was  (𝑑𝑑2𝑉𝑉 𝑑𝑑𝑢𝑢2⁄ )|𝑢𝑢=0 = 0.418×106. 

 
 In Appendix B, we further plot the path of successive iterations of the 4-parameter 

Newton-Raphson algorithm, showing how the estimate 𝚯𝚯(𝑘𝑘) entered the ravine at iteration 𝑘𝑘 = 10 

and then stopped at the optimum on iteration 𝑘𝑘 = 40. 

Consistency Checks with Data Simulated from Known Parameters 

 In Panel A of Figure 7, we plot the estimates 𝛽𝛽(𝑗𝑗) against the estimates 𝛼𝛼(𝑗𝑗) for 𝑗𝑗 =

 1, … 100 simulated epidemics with known parameters (𝛽𝛽,𝛼𝛼, 𝑖𝑖𝑜𝑜,𝑁𝑁) = (0.6, 0.7, 0.04, 105) and 

thus with known basic reproduction number ℛ0 = 𝛽𝛽 (1 − 𝛼𝛼)⁄ = 2. The gold solid points 

represent the estimates based upon the 4-parameter Newton-Raphson algorithm, while the 

superimposed dark blue circles represent the estimates based on a 3-parameter Newton-Raphson 

algorithm conditional upon the population size 𝑁𝑁 equal to its assumed value of 105. In Panel B, 

we show the corresponding box-and-whisker plots of the estimated basic reproduction numbers 

ℛ0
(𝑗𝑗) under the same two estimation conditions. 
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 The plots in Figure 7 show that under both conditions, the estimates �𝛽𝛽(𝑗𝑗),𝛼𝛼(𝑗𝑗)� were 

centered around their assumed values. Their respective sample means were (0.604, 0.696) with 

all four parameters unconstrained and (0.601, 0.699) conditional upon the known value of the 

population parameter 𝑁𝑁. The corresponding sample medians of �𝛽𝛽(𝑗𝑗),𝛼𝛼(𝑗𝑗)� were (0.601, 0.699) 

and (0.600, 0.700) under the two respective estimation conditions. In addition, the sample means 

of the basic reproduction numbers ℛ0
(𝑗𝑗) were 2.029 and 1.998 under the two respective 

estimation conditions, while their respective sample medians were 2.001 and 1.999. 

 

 
Figure 7. Estimated Parameters Based Upon a Simulated SIR Model with Gaussian Error. The SIR model of 
(2), (3) and (4) was simulated with assumed known parameters 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖𝑜𝑜,𝑁𝑁) = (0.6, 0.7, 0.04, 105) over 𝑇𝑇 =
100 time periods. The observed case incidence was then computed as 𝑦𝑦𝑡𝑡 = 𝑋𝑋𝑡𝑡 + 𝜀𝜀𝑡𝑡, where the independent Gaussian 
errors 𝜀𝜀𝑡𝑡 were randomly drawn with zero mean and standard deviation 𝜎𝜎 = 100. Panel A. Plots of parameter 
estimates 𝛽𝛽(𝑗𝑗) versus 𝛼𝛼(𝑗𝑗) with all parameters unconstrained (gold solid points) and conditional upon a known 
population 𝑁𝑁 (dark blue circles). Panel B. Box-and-whisker plots of the corresponding estimates ℛ0

(𝑗𝑗) of the basic 
reproduction number. The boxes show the 25th, 50th, and 75th percentiles while the capped lines show the bounds of 
interquartile range. 
 

Figure 7 confirms the strong negative correlation of the two estimated parameters, which 

were tightly situated along a near-linear paths. When we employed the 4-dimensional Newton-

Raphson algorithm, the estimates were widely dispersed. Our conditioning upon the known value 

of the population parameter 𝑁𝑁 substantially narrowed the dispersion, but it did not affect the 

observed strong negative correlation between the estimates of 𝛽𝛽 and 𝛼𝛼. Thus, for the gold points 

in Figure 7A, representing the simulation results with unconstrained parameters, the ordinary 

least squares regression of 𝛽𝛽(𝑗𝑗) against 𝛼𝛼(𝑗𝑗) yielded a slope of −0.911 with 95% confidence 

interval [−0.924,−0.899]. For the dark blue points, representing the simulation results 
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conditional on a known parameter 𝑁𝑁, the corresponding slope was −1.184 with 95% confidence 

interval [−1.225,−1.142]. 

Benchmarking 

 Estimation of the parameters 𝚯𝚯 from the New York City Omicron data utilizing the 4-

parameter Newton-Raphson method of Propositions 2 and 3 required 0.434 seconds of 

computational time, whereas estimation of 𝚯𝚯 utilizing the EM-type method of Propositions 4 and 

5 required 0.925 seconds. By contrast, estimation of the parameters utilizing an exhaustive grid 

search routine required 463.682 seconds, about three orders of magnitude longer than the 4-

parameter Newton-Raphson routine. 
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Discussion 

We have described a new strategy for estimating the underlying parameters of the 

Susceptible-Infected-Removed (SIR) model from observations on case incidence alone. Our 

approach finds the parameter vector that minimizes the sum of squared deviations between 

observed and predicted case incidence data. It does not require that we derive a closed-form 

mathematical expression for the predicted case incidence as a function of the parameters. 

Instead, we show how the gradient vector and the Hessian matrix of the least squares objective 

function can be exactly calculated. These quantities alone are sufficient to implement the 

Newton-Raphson algorithm to locate the parameter vector that minimizes the objective function. 

Not All Five SIR Parameters Can be Identified from Case Incidence Data Alone. 

Our results shed light on the identifiability of the SIR model parameters from 

observations on case incidence alone. Our full SIR model had five parameters: 𝛽𝛽, the infection 

transmission parameter; 𝛼𝛼, the infection persistence parameter, gauging the proportion of 

infected individuals who remain in the infected state at each discrete time 𝑡𝑡; 𝑖𝑖0, the initial 

proportion of the population infected; 𝑟𝑟0, the initial proportion of the population in the removed 

state; and 𝑁𝑁, the total population. 

In Proposition 1 of our theoretical analysis, we found that all five parameters were not 

jointly identifiable from the incidence data alone. (A related result appears to have been derived 

from a continuous-time SIR model with seasonal forcing [53].) Accordingly, we estimated the 

first four parameters under the identifying restriction that 𝑟𝑟0 = 0. In effect, we assumed that 

because of immune escape [74, 75], no one at the onset of the Omicron wave was already 

resistant to infection by the newly emergent SARS-CoV-2 variant. 

Only a Linear Combination of 𝛽𝛽 and 𝛼𝛼 is Practically Identifiable. 

Our findings based upon the New York City Omicron data confirmed that the remaining 

four parameters 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) could be indeed identified at a global interior minimum of the 

least squares objective function 𝑉𝑉. But we also uncovered a deeper problem of parameter 

identification. While the bivariate plots of Figure 4 demonstrated that the objective function was 

locally strictly convex at the optimum point, the three-dimensional plot of Figure 5 revealed that 

this point was situated along the floor of a ravine where the parameters 𝛽𝛽 and 𝛼𝛼 were highly 

correlated. In Figure 6, we were able to identify the floor of the ravine as the line in the (𝛽𝛽,𝛼𝛼) 
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plane where the second-order derivative of 𝑉𝑉 was minimized. While the individual parameters 𝛽𝛽 

and 𝛼𝛼 had wide estimated confidence intervals, the linear combination of 𝛽𝛽 and 𝛼𝛼 along the 

ravine could be tightly estimated. Appendix Figure B1 further showed how successive estimates 

𝚯𝚯(𝑘𝑘) of the four-dimensional Newton-Raphson algorithm followed along the ravine floor until 

the point of convergence.  

What’s more, our consistency checks on a simulated database confirmed that the 

extremely high correlation between the parameters 𝛽𝛽 and 𝛼𝛼 was not an idiosyncrasy of the New 

York City Omicron data. The results shown in Figure 7, based on simulated data, demonstrated 

that while the dispersion of the estimates �𝛽𝛽(𝑗𝑗),𝛼𝛼(𝑗𝑗)� were centered around their true values, they 

similarly tended to demonstrate a near-linear relation between the two parameters. Conditioning 

on the population size parameter 𝑁𝑁 reduced the dispersion of the estimates in the (𝛽𝛽,𝛼𝛼) plane as 

well as the estimated basic reproduction number ℛ0 – a finding consistent with the narrower 

confidence intervals shown in Table 1 for the New York City Omicron data – but it did not 

attenuate the strong negative correlation between the parameters. 

Even with the identifying restriction that the initial proportion of recovered individuals 𝑟𝑟0 

is zero, the remaining four-parameter version of SIR is what some physicists have described as a 

“sloppy” model [52, 54]. While 𝛽𝛽 and 𝛼𝛼 are, strictly speaking, separately identifiable from case 

incidence data, we conclude that only a linear combination of the two parameters is practically 

identifiable [67]. (A related result appears to have been derived in [76].) 

We Cannot Rely on Census Data Alone to Identify the Parameter 𝑁𝑁. 

 Imposing the strong identifying assumption that the initial proportion 𝑟𝑟0 of recovered 

individuals was zero, we estimated the population size parameter 𝑁𝑁 to be 1.013 million, which 

amounted to only 11.9 percent of New York City’s total census population of 8.5 million. This 

discordant result suggests that it might have been more appropriate to set 𝑁𝑁 = 8.5 million as the 

identifying assumption. In that case, however, relying upon Proposition 1, we would then end up 

with a rather large estimate of 𝑟𝑟0 = 0.881, which would in turn imply 1 − 𝑟𝑟0 = 0.119 and thus 

𝑁𝑁(1 − 𝑟𝑟0) = 1.013 million. Despite the evidence of immune escape on the part of the Omicron 

variant [75], we would conclude that a very substantial fraction of the population still retained 

long-term cellular immunity, possibly through the administration of multiple vaccine doses [77].  
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Unfortunately, such an alternative strategy of relying on census-based population data to 

identify the parameter 𝑁𝑁 runs into two important complications: underreporting and incomplete 

mixing. In many contexts, particularly in recent applications of the SIR and related 

compartmental models to COVID-19 incidence, it has been widely recognized that a significant 

number of incident cases may have gone unreported [78]. There is concrete evidence of 

significant underreporting of Omicron infections, due principally to the widespread availability 

of home rapid antigen testing [78], particularly in New York City [79, 80]. In the absence of 

reliable information on the temporal pattern of such underreporting, the most parsimonious 

approach to this phenomenon has been to assume a case identification ratio equal to a constant 

𝑝𝑝 < 1 [76, 81, 82]. In that case, our model would need to be modified to accommodate the 

reality that our reported incidence data 𝑦𝑦𝑡𝑡 are in fact estimates of 𝑝𝑝𝑋𝑋𝑡𝑡 rather than 𝑋𝑋𝑡𝑡. We’ve 

learned from Proposition 4, however, that each output variable 𝑋𝑋𝑡𝑡 can be written in the form 

𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁, where 𝜑𝜑𝑡𝑡(𝜽𝜽) is a function of the remaining identifiable parameters 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0). 

Accordingly, our reported incidence data 𝑦𝑦𝑡𝑡 are really estimates of 𝑝𝑝𝑝𝑝𝑡𝑡 = 𝜑𝜑𝑡𝑡(𝜽𝜽)(𝑝𝑝𝑝𝑝). To 

identify our model, we thus need a prior estimate of 𝑝𝑝𝑝𝑝. Unless we’re prepared to impose 

additional restrictions on 𝑝𝑝, census data on 𝑁𝑁 alone will not be enough. 

 We would ordinarily interpret the parameter 𝑁𝑁 to gauge the size of the population at risk 

for contagion. This population would consist of all individuals who homogeneously mix with 

each other in accordance with the law of mass action embodied in equations (1) and (3). Many 

investigators, however, have properly recognized that the underlying assumption of 

homogeneous mixing may not apply to the entire population [19, 83-88]. This caution applies 

just as well to the Omicron wave, when a substantial proportion of the population avoided retail 

establishments, drinking and eating places, transportation venues, worksites and other high-risk 

locations [89]. 

Take the case of the COVID-19 outbreak at the campus of the University of Wisconsin-

Madison in September 2020, where total student enrollment was 44,640, but where the large 

fraction of cases was concentrated in two on-campus student residence halls with a combined 

population of about 2,932 [90]. If we relied on the campus-wide census to identify the parameter 

𝑁𝑁 on the campus-wide population, we would have ended up concluding erroneously that about 

94 percent of the student population was already immune to SARS-CoV-2. 
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Should We Exclude the Non-Omicron Case Counts from our Database?  

In Figure 3, we saw that exclusion of non-Omicron-variant cases from our database 

resulted in a fitted model that overshot the initial upswing of cases during December 2021. That 

is, the predicted output variable 𝑋𝑋𝑡𝑡 exceeded the observed counts 𝑦𝑦�𝑡𝑡 during 𝑡𝑡 = 1, … ,10. Our 

AIC computations in Table 1 confirmed that dropping the residual Delta-variant infections from 

the previous wave significantly reduced the overall goodness of fit of our SIR model to the new 

Omicron wave data. 

Despite the evidence favoring immune escape by Omicron [75], these residual Delta-

variant infections may have conferred partial cross-immunity against the newly emerging 

Omicron variant and thus reduced the initial proportion of individuals susceptible to Omicron 

BA.1 [91]. If so, excluding these Delta cases would upwardly bias the model estimates of the 

numbers of susceptible individuals 𝑆𝑆𝑡𝑡 and, consequently, the predicted output variable 𝑋𝑋𝑡𝑡.  

Still, the apparent preference for inclusion of the non-Omicron cases is hardly clear cut. 

The unconditional confidence intervals are simply too wide to distinguish sharply between the 

corresponding parameter estimates in the two columns of Table 1. 

Our Estimates of the Parameter 𝛼𝛼 Appear to be Inconsistent with Clinical Observation. 

Our estimates of the parameter 𝛼𝛼 appear to be out of line with what is known from direct 

clinical measurement about the duration of infectivity from the Omicron variant. In one cohort of 

55 symptomatic Omicron-infected patients, only 13.5 percent continued to shed virus ten days 

after infection [92]. Yet our point estimates of the proportion remaining infectious after ten days 

(computed as 𝛼𝛼10) would be 54.4 percent from the combined-variant data and 36.0 percent from 

the Omicron-only data. A meta-analysis of 29 clinical studies suggested that while the mean 

duration of polymerase chain reaction (PCR) positivity was 10.82 days, the mean duration of 

viral shedding was only 5.16 days [93]. Yet our point estimates of the mean duration of 

infectivity (computed as 1 (1 − 𝛼𝛼)⁄ ) were 16.8 days from the combined-variant data and 10.3 

days from the Omicron-only data. 

We need to interpret this apparent discrepancy with caution. The unconditional 

confidence intervals around our estimates of 𝛼𝛼 were quite wide. A reported short mean duration 

of infectivity does not rule out a long-tailed distribution. In one study, 25 percent of patients 

were still shedding virus after 8 days [94]. What’s more, an individual’s infectivity is not an all-

or-nothing characteristic. It is likely to depend on the extent to which an infected individual 
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isolates himself from others. That behavioral component of the parameter 𝛼𝛼 may have changed 

during the Omicron wave. 

Is SIR the Correct Structural Model for Omicron? 

 Despite its close fit to the data in Figure 3, the Susceptible-Infected-Recovered 

framework may thus fail as a structural model of the Omicron wave, even if it apparently 

succeeds as a reduced form model [95]. When we imposed an identifying restriction on the 

parameter 𝑟𝑟0 representing the initial proportion of recovered individuals, we could indeed back 

out the remaining parameters (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) from the observed case incidence data and thus solve 

the inversion problem. But the resulting parameter estimates do not necessarily warrant the 

structural interpretation that we assumed in our exposition of the SIR model in equations (1) 

through (5) above. 

That is not to say, however, that an adequate reduced form model is incapable of making 

accurate projections [96]. But when it comes to sharply identifying individual parameters and 

thus distinguishing between alternative epidemic models, some prior information above and 

beyond case incidence data may be required. 

Other Limitations and Extensions 

Parameter search algorithms such as Newton-Raphson [46] have superior computational 

performance when they rely on exact expressions for the gradient vector and Hessian matrix of 

second derivatives, rather than on numerical approximation or brute-force search [45]. Still, as 

Figure 4 shows, there may be regions of the parameter space where the least squares criterion 

function is non-convex and the algorithm does not converge. While Appendix B displays 

convergence from a suitably chosen starting point, the tasks of finding the right initial values and 

keeping the parameter search within bounds remain unavoidable challenges. 

To approximate a continuous-time dynamic model as closely as possible, we relied on 

daily counts of reported COVID-19 cases. As Figure 1 shows, however, such a fine level of 

detail resulted in striking day-of-the-week effects, which required us to pretreat the raw case 

counts. Our centered, 7-day moving average appeared to be the most flexible nonparametric 

approach to this task. Alternative approaches that incorporate parametric models of day-of-the-

week effects directly in our model of the output variable 𝑋𝑋𝑡𝑡 have yet to be tried. 
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Applying our approach to the New York City Omicron wave, we have estimated SIR 

model parameters from counts of reported incident cases. Our approach can be generalized to 

estimate SIR model parameters from counts of removed cases, either through recovery or death 

[64]. Our approach can be further generalized to cases where we have only partial rather than 

complete temporal observations on the output variable [64]. 

We have focused sharply on the original SIR model, rather than its numerous variations. 

Still, our basic approach can be extended to these more complex models. Our findings offer a 

caution, however, that such models as SEIR, which require an additional parameter governing 

the transition from an intermediate exposed state to the infected state, may very well turn out to 

be sloppy [76]. 

One exemption may be the well-studied SIRS model [58, 97], where individuals in the 𝑅𝑅 

(recovered) state can transition back to the 𝑆𝑆 (susceptible) state due to waning immunity. The 

SIRS model still has three states, but the parameter vector has an additional component 

governing the rate of transition from 𝑅𝑅 back to 𝑆𝑆. Since the SIRS model is known to admit 

oscillations with a stable endemic equilibrium [58, 98], we would be in a position to run our 

parameter recovery algorithm on multiple waves of data 𝑦𝑦𝑡𝑡. That is a task for future research. 
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Appendix A. Proofs of Propositions 

Proposition 1. Let Ω ⊆ ℝ5 be the subspace of admissible values of the five-dimensional 

parameter vector 𝚯𝚯. Let 𝑿𝑿(𝚯𝚯) be the resulting 𝑇𝑇 × 1 column vector of output variables defined 

by the model of equations (1) through (4). Then there exists a mapping 𝜙𝜙:Ω → ℝ4 with the 

property that 𝑿𝑿(𝚯𝚯) = 𝑿𝑿(𝚯𝚯′) for all vectors 𝚯𝚯,𝚯𝚯′ ∈ Ω satisfying 𝜙𝜙(𝚯𝚯) = 𝜙𝜙(𝚯𝚯′). 

Proof. We characterize the mapping 𝜙𝜙 from the five-parameter vector 𝚯𝚯 into a four-parameter 

vector 𝜙𝜙(𝚯𝚯) = (𝜅𝜅, 𝜆𝜆, 𝜇𝜇, 𝜈𝜈) as follows: 

𝜅𝜅 = 𝛽𝛽(1 − 𝑟𝑟0)           (A1a) 

𝜆𝜆 = 𝛼𝛼            (A1b) 

𝜇𝜇 = 𝑖𝑖0 (1 − 𝑟𝑟0)⁄           (A1c) 

𝜈𝜈 = 𝑁𝑁(1 − 𝑟𝑟0)           (A1d) 

Now consider two distinct parameter vectors 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0, 𝑟𝑟0,𝑁𝑁) and 𝚯𝚯′ =

(𝛽𝛽′,𝛼𝛼′, 𝑖𝑖0′ , 𝑟𝑟0′,𝑁𝑁′), where 𝚯𝚯 ≠ 𝚯𝚯′. The condition 𝜙𝜙(𝚯𝚯) = 𝜙𝜙(𝚯𝚯′) requires that: 

𝛽𝛽′(1 − 𝑟𝑟0′) = 𝛽𝛽(1 − 𝑟𝑟0)         (A2a) 

𝛼𝛼′ = 𝛼𝛼            (A2b) 

𝑖𝑖0′ (1 − 𝑟𝑟0′)⁄ = 𝑖𝑖0 (1 − 𝑟𝑟0)⁄          (A2c) 

𝑁𝑁′(1 − 𝑟𝑟0′) = 𝑁𝑁(1 − 𝑟𝑟0)         (A2d) 

We need to show that 𝑿𝑿(𝚯𝚯) = 𝑿𝑿(𝚯𝚯′). From (3) in the main text, each component 𝑋𝑋𝑡𝑡 of 

the vector 𝑿𝑿(𝚯𝚯) in turn depends on the ratio (𝛽𝛽 𝑁𝑁⁄ ) as well as the corresponding time-specific 

state variables 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡. Dividing (A2a) by (A2d), we see that (𝛽𝛽 𝑁𝑁⁄ ) = (𝛽𝛽′ 𝑁𝑁′⁄ ). Hence, it 

remains only to show that 𝑆𝑆𝑡𝑡(𝚯𝚯) = 𝑆𝑆𝑡𝑡(𝚯𝚯′) and 𝐼𝐼𝑡𝑡(𝚯𝚯) = 𝐼𝐼𝑡𝑡(𝚯𝚯′) for all times 𝑡𝑡 = 0, … ,𝑇𝑇. 

 We proceed by mathematical induction. First consider time 𝑡𝑡 = 0. For the respective 

parameter vectors 𝚯𝚯 and 𝚯𝚯′, we have 𝑆𝑆0(𝚯𝚯) = (1 − 𝑖𝑖0 − 𝑟𝑟0)𝑁𝑁 and 𝑆𝑆0(𝚯𝚯′) = (1 − 𝑖𝑖0′ − 𝑟𝑟0′)𝑁𝑁′. 

From (A2c), we can write 𝑖𝑖0′ = 𝑖𝑖0
�1−𝑟𝑟0′�
(1−𝑟𝑟0)

 , and from (A2d), we can write 𝑁𝑁′ = 𝑁𝑁 (1−𝑟𝑟0)
�1−𝑟𝑟0′�

 . So, 

𝑆𝑆0(𝚯𝚯′) = �1 − 𝑖𝑖0
�1−𝑟𝑟0′�
(1−𝑟𝑟0)

− 𝑟𝑟0′�𝑁𝑁
(1−𝑟𝑟0)
�1−𝑟𝑟0′�

= (1 − 𝑖𝑖0 − 𝑟𝑟0)𝑁𝑁 = 𝑆𝑆0(𝚯𝚯). Similarly, we have 𝐼𝐼0(𝚯𝚯) =

𝑖𝑖0𝑁𝑁 and 𝐼𝐼0(𝚯𝚯′) = 𝑖𝑖0′𝑁𝑁′. Again, it follows from (A2c) and (A2d) that 𝑖𝑖0𝑁𝑁 = 𝑖𝑖0′𝑁𝑁′ and thus 

𝐼𝐼0(𝚯𝚯) = 𝐼𝐼0(𝚯𝚯′). So, the proposition holds for 𝑡𝑡 = 0. 
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 Now assume that 𝑆𝑆𝑡𝑡(𝚯𝚯) = 𝑆𝑆𝑡𝑡(𝚯𝚯′) and 𝑆𝑆𝑡𝑡(𝚯𝚯) = 𝐼𝐼𝑡𝑡(𝚯𝚯′) for any 𝑡𝑡 ≥ 0. We show that 

𝑆𝑆𝑡𝑡+1(𝚯𝚯) = 𝑆𝑆𝑡𝑡+1(𝚯𝚯′) and 𝐼𝐼𝑡𝑡+1(𝚯𝚯) = 𝐼𝐼𝑡𝑡+1(𝚯𝚯′). From (1a) in the main text, we have 𝑆𝑆𝑡𝑡+1(𝚯𝚯) =

𝑆𝑆𝑡𝑡(𝚯𝚯) − 𝛽𝛽𝑆𝑆𝑡𝑡(𝚯𝚯)𝐼𝐼𝑡𝑡(𝚯𝚯) 𝑁𝑁⁄ . We’ve already learned from (A2a) and (A2d) that (𝛽𝛽 𝑁𝑁⁄ ) = (𝛽𝛽′ 𝑁𝑁′⁄ ), 

so we can instead write 𝑆𝑆𝑡𝑡+1(𝚯𝚯) = 𝑆𝑆𝑡𝑡(𝚯𝚯) − 𝛽𝛽′𝑆𝑆𝑡𝑡(𝚯𝚯)𝐼𝐼𝑡𝑡(𝚯𝚯) 𝑁𝑁′⁄ .  Since we’ve assumed that 

𝑆𝑆𝑡𝑡(𝚯𝚯) = 𝑆𝑆𝑡𝑡(𝚯𝚯′) and 𝑆𝑆𝑡𝑡(𝚯𝚯) = 𝐼𝐼𝑡𝑡(𝚯𝚯′), we can therefore write 𝑆𝑆𝑡𝑡+1(𝚯𝚯) = 𝑆𝑆𝑡𝑡(𝚯𝚯′) −

𝛽𝛽′𝑆𝑆𝑡𝑡(𝚯𝚯′)𝐼𝐼𝑡𝑡(𝚯𝚯′) 𝑁𝑁′⁄ = 𝑆𝑆𝑡𝑡(𝚯𝚯′). Similarly, from (1b), we have 𝐼𝐼𝑡𝑡+1(𝚯𝚯) = 𝛽𝛽𝑆𝑆𝑡𝑡(𝚯𝚯)𝐼𝐼𝑡𝑡(𝚯𝚯) 𝑁𝑁⁄ +

𝛼𝛼𝐼𝐼𝑡𝑡(𝚯𝚯). Substituting (𝛽𝛽 𝑁𝑁⁄ ) = (𝛽𝛽′ 𝑁𝑁′⁄ ) and 𝛼𝛼′ = 𝛼𝛼 from equation (A2b) gives 𝐼𝐼𝑡𝑡+1(𝚯𝚯) =

𝐼𝐼𝑡𝑡+1(𝚯𝚯′). ∎ 

 

Corollary 1. The four components of the parameter vector 𝚽𝚽 = (𝜅𝜅, 𝜆𝜆, 𝜇𝜇, 𝜈𝜈) in the 

following SIR model can be identified from the data 𝒚𝒚 on case incidence: 

𝑆𝑆0 = (1 − 𝜇𝜇)𝜈𝜈           (A3a) 

𝐼𝐼0 = 𝜇𝜇𝜇𝜇           (A3b) 

𝑋𝑋𝑡𝑡 = 𝜅𝜅𝜅𝜅𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝜈𝜈⁄           (A3c) 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 − 𝑋𝑋𝑡𝑡          (A3d) 

𝐼𝐼𝑡𝑡 = 𝑋𝑋𝑡𝑡 + 𝜆𝜆𝐼𝐼𝑡𝑡−1            (A3e) 

Proof. We repeat the basic equations of our dynamic model, as articulated in equations (1), (2), 

and (3) of the main text: 

𝑆𝑆0 = (1 − 𝑖𝑖0 − 𝑟𝑟0)𝑁𝑁          (A4a) 

𝐼𝐼0 = 𝑖𝑖0𝑁𝑁           (A4b) 

𝑋𝑋𝑡𝑡 = 𝛽𝛽𝛽𝛽𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄           (A4c) 

𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡−1 − 𝑋𝑋𝑡𝑡          (A4d) 

𝐼𝐼𝑡𝑡 = 𝑋𝑋𝑡𝑡 + 𝛼𝛼𝐼𝐼𝑡𝑡−1            (A4e) 

Now substitute definitions of (𝜅𝜅, 𝜆𝜆, 𝜇𝜇, 𝜈𝜈) given in equations (A1) in the proof of Proposition 1. 

 To define the new four-dimensional parameter vector 𝚽𝚽, we have essentially dropped the 

parameter 𝑟𝑟0 from the original five-dimensional vector 𝚯𝚯 and then normalized the remaining four 
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parameters (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) by the factor (1 − 𝑟𝑟0). The resulting mapping 𝑿𝑿(𝚽𝚽), as defined in (A4) 

is one-to-one. ∎  

 

Corollary 2. The sharp prior restriction that 𝑟𝑟0 = 0 is sufficient to identify the remaining 

four parameters (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) of the five-parameter vector 𝚯𝚯.  

Proof. Consider a specific parameter vector 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0, 0,𝑁𝑁) with 𝑟𝑟0 = 0. From equations 

(A2) in Proposition 1, any other parameter vector  𝚯𝚯′ = (𝛽𝛽′,𝛼𝛼′, 𝑖𝑖0′ , 𝑟𝑟0′,𝑁𝑁′) satisfying 𝜙𝜙(𝚯𝚯′) =

𝜙𝜙(𝚯𝚯) and therefore 𝑿𝑿(𝚯𝚯′) = 𝑿𝑿(𝚯𝚯) must satisfy these conditions: 

𝛽𝛽 = 𝛽𝛽′(1 − 𝑟𝑟0′)          (A5a) 

𝛼𝛼 = 𝛼𝛼′            (A5b) 

𝑖𝑖0 = 𝑖𝑖0′ (1 − 𝑟𝑟0′)⁄           (A5c) 

𝑁𝑁 = 𝑁𝑁′(1 − 𝑟𝑟0′)          (A5d) 

However, the only vector 𝚯𝚯′ = (𝛽𝛽′,𝛼𝛼′, 𝑖𝑖0′ , 𝑟𝑟0′,𝑁𝑁′) satisfying these conditions and adhering to the 

restriction that 𝑟𝑟0′ = 0 is the vector 𝚯𝚯 itself. Hence, 𝚯𝚯 is uniquely identified. We further note that 

under the restriction that 𝑟𝑟0 = 0, the vector of the remaining four parameters (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁)  is 

exactly equal to the four-parameter vector 𝚽𝚽 = (𝜅𝜅, 𝜆𝜆, 𝜇𝜇, 𝜈𝜈) defined in Corollary 1. ∎ 

 

 Corollary 3. A sharp prior restriction on any one of the four parameters (𝛽𝛽, 𝑖𝑖0, 𝑟𝑟0,𝑁𝑁) is 

sufficient to identify the full five-parameter vector 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0, 𝑟𝑟0,𝑁𝑁). A sharp prior restriction 

on the parameter 𝛼𝛼 alone, however, will not identify the remaining parameters. 

Proof. We’re essentially implementing the proof strategy for Corollary 2. For example, let’s 

impose the sharp prior restriction that the population size 𝑁𝑁 is known and equal to 𝑁𝑁�, and 

consider a specific parameter vector 𝚯𝚯 = �𝛽𝛽,𝛼𝛼, 𝑖𝑖0, 𝑟𝑟0,𝑁𝑁�� with 𝑁𝑁 = 𝑁𝑁�. Any other parameter 

vector 𝚯𝚯′ = (𝛽𝛽′,𝛼𝛼′, 𝑖𝑖0′ , 𝑟𝑟0′,𝑁𝑁′) satisfying 𝜙𝜙(𝚯𝚯′) = 𝜙𝜙(𝚯𝚯) and therefore 𝑿𝑿(𝚯𝚯′) = 𝑿𝑿(𝚯𝚯) must 

satisfy the conditions in equations (A2) in Proposition 1 as well as the additional restriction that 

𝑁𝑁′ = 𝑁𝑁�. Since equation (A2d) alone requires that 𝑁𝑁′(1 − 𝑟𝑟0′) = 𝑁𝑁�(1 − 𝑟𝑟0), the additional 

restriction would imply that 𝑟𝑟0′ = 𝑟𝑟0. From the remaining equations in (A2), we therefore 

conclude that 𝛽𝛽′ = 𝛽𝛽, 𝛼𝛼′ = 𝛼𝛼, and 𝑖𝑖0′ = 𝑖𝑖0 as well. Hence, 𝚯𝚯 is uniquely identified. We note that 

imposing a prior restriction that the parameter 𝛼𝛼 alone does no more than repeat the requirement 
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of equation (A2b) and hence does not identify the remaining parameters. However, a sharp prior 

restriction on the basic reproductive number ℛ0 would also be sufficient to identify all five 

parameters of the vector 𝚯𝚯. ∎ 

 

Proposition 2. The gradient of the least squares criterion 𝑉𝑉 with respect to the parameter 

vector 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) is: 

𝑫𝑫𝑫𝑫 = −2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑇𝑇
𝑡𝑡=1 𝑫𝑫𝑿𝑿𝒕𝒕         (A2) 

where each column vector 𝑫𝑫𝑿𝑿𝒕𝒕 = �𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝑖𝑖0

, 𝜕𝜕𝑋𝑋𝑡𝑡
𝜕𝜕𝜕𝜕
�
′
 represents the corresponding gradient of 

partial derivatives of the output variable 𝑋𝑋𝑡𝑡 at time 𝑡𝑡. The basic equations of our dynamic system 

(1), in combination with the initial conditions (2), can be used to generate complete, computable 

difference equations for 𝑫𝑫𝑿𝑿𝒕𝒕 for all 𝑡𝑡, and thus for 𝑫𝑫𝑫𝑫. 

Proof. Equation (A2), which repeats equation (6), is derived by taking the derivative of 𝑉𝑉 

as defined in equation (5). Taking the derivative of 𝑫𝑫𝑿𝑿𝒕𝒕, we get: 

𝑫𝑫𝑿𝑿𝒕𝒕  = �𝑆𝑆𝑡𝑡−1
𝐼𝐼𝑡𝑡−1
𝑁𝑁
�𝑫𝑫𝑫𝑫 + �𝛽𝛽

𝑁𝑁
� 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏 + �𝛽𝛽

𝑁𝑁
� 𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 − � 𝛽𝛽

𝑁𝑁2
𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1�𝑫𝑫𝑫𝑫  (A3). 

where 𝑫𝑫𝑫𝑫 = (1,0,0,0)′ and 𝑫𝑫𝑫𝑫 = (0,0,0,1)′. Taking the derivative of 𝑆𝑆𝑡𝑡 as defined in equation 

(1a), we get: 

𝑫𝑫𝑺𝑺𝒕𝒕 = 𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏 �1 − �𝛽𝛽
𝑁𝑁
� 𝐼𝐼𝑡𝑡−1� − �𝑆𝑆𝑡𝑡−1

𝐼𝐼𝑡𝑡−1
𝑁𝑁
�𝑫𝑫𝑫𝑫 − �𝛽𝛽

𝑁𝑁
� 𝑆𝑆𝑡𝑡−1𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 + � 𝛽𝛽

𝑁𝑁2
𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1�𝑫𝑫𝑫𝑫  (A4) 

From equations (1b) and (3), we can write 𝐼𝐼𝑡𝑡 = 𝛼𝛼𝐼𝐼𝑡𝑡−1 + 𝑋𝑋𝑡𝑡 =  𝛼𝛼𝐼𝐼𝑡𝑡−1 + 𝛽𝛽𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄ =

�𝛼𝛼 + 𝛽𝛽
𝑁𝑁
𝑆𝑆𝑡𝑡−1� 𝐼𝐼𝑡𝑡−1. Taking the derivative of this expression gives: 

𝑫𝑫𝑰𝑰𝒕𝒕 = �𝛼𝛼 + 𝛽𝛽
𝑁𝑁
𝑆𝑆𝑡𝑡−1�𝑫𝑫𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1 �𝑫𝑫𝑫𝑫 + 𝑆𝑆𝑡𝑡−1

𝑁𝑁
𝑫𝑫𝑫𝑫� + �𝛽𝛽

𝑁𝑁
� 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏 − � 𝛽𝛽

𝑁𝑁2
𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1�𝑫𝑫𝑫𝑫  

(A5), 

where 𝑫𝑫𝑫𝑫 similarly represents the unit vector (0,1,0,0)′.  

To complete the calculation, we need to compute the initial values of the gradients 𝑫𝑫𝑺𝑺𝟎𝟎 

and 𝑫𝑫𝑰𝑰𝟎𝟎. Since 𝐼𝐼0 = 𝑖𝑖0𝑁𝑁 and 𝑆𝑆0 = (1 − 𝑖𝑖0)𝑁𝑁, we can write the gradients 𝑫𝑫𝑰𝑰𝟎𝟎 = 𝑁𝑁𝑫𝑫𝒊𝒊𝟎𝟎 + 𝑖𝑖0𝑫𝑫𝑫𝑫 

and 𝑫𝑫𝑺𝑺𝟎𝟎 = −𝑁𝑁𝑫𝑫𝒊𝒊𝟎𝟎 + (1 − 𝑖𝑖0)𝑫𝑫𝑫𝑫, where 𝑫𝑫𝒊𝒊𝟎𝟎 = (0,0,1,0)′. Given these initial gradient values, 

we can use (A4) and (A5) to iteratively compute the vectors 𝑫𝑫𝑫𝑫𝒕𝒕 and 𝑫𝑫𝑰𝑰𝒕𝒕 for all 𝑡𝑡 = 1, … ,𝑇𝑇. 
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Once vectors 𝑫𝑫𝑫𝑫𝒕𝒕 and 𝑫𝑫𝑰𝑰𝒕𝒕 have been computed, we can then apply (A3) to iteratively compute 

the corresponding gradients 𝑫𝑫𝑿𝑿𝒕𝒕. Those quantities in turn yield the gradient 𝑫𝑫𝑫𝑫 of our objective 

function through equation (A2). ∎ 

 

Proposition 3. Let 𝑫𝑫𝑫𝑫 denote the 𝑇𝑇 × 4 matrix whose 𝑡𝑡-th row is the vector 𝑫𝑫𝑿𝑿𝒕𝒕′ , as 

defined in Proposition 2. The Hessian matrix of the least squares criterion 𝑉𝑉 with respect to the 

parameter vector 𝚯𝚯 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0,𝑁𝑁) is: 

𝑫𝑫𝟐𝟐𝑽𝑽 = 2 𝑫𝑫𝑿𝑿′𝑫𝑫𝑫𝑫 − 2∑ (𝑦𝑦𝑡𝑡 − 𝑋𝑋𝑡𝑡)𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕𝑇𝑇
𝑡𝑡=1        (A6) 

The basic equations of our dynamic system (1), in combination with the initial conditions (2), 

can similarly be used to generate complete, computable difference equations for 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕 for all 𝑡𝑡, 

and thus 𝑫𝑫𝟐𝟐𝑽𝑽. 

Proof. To compute the Hessian matrix 𝑫𝑫𝟐𝟐𝑽𝑽, we need to determine the corresponding 

Hessian matrices 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕 for all 𝑡𝑡. To that end, we adopt the following notation. For two column 

vectors 𝑨𝑨 and 𝑩𝑩 of dimension 𝐿𝐿 × 1, we define the 𝐿𝐿 × 𝐿𝐿 symmetric matrix 𝑨𝑨⨀𝑩𝑩 = 𝑨𝑨𝑩𝑩′ + 𝑩𝑩𝑨𝑨′. 

Now taking the derivative of 𝑫𝑫𝑿𝑿𝒕𝒕 in (A3), we get: 

𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕  = �1
𝑁𝑁
� (𝑆𝑆𝑡𝑡−1𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑫𝑫) +  

 �𝛽𝛽
𝑁𝑁
� �(𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑺𝑺𝒕𝒕−𝟏𝟏) + 𝑆𝑆𝑡𝑡−1𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕−𝟏𝟏� − 

� 𝛽𝛽
𝑁𝑁2
� (𝑆𝑆𝑡𝑡−1𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏 + 𝐼𝐼𝑡𝑡−1𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏)⨀(𝑫𝑫𝑫𝑫)      (A7) 

Thus, the Hessian matrices 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕 depend in turn on the lagged gradient terms 𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏 and 𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏 

as well as the lagged Hessian matrices 𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕−𝟏𝟏 and 𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕−𝟏𝟏. The corresponding expressions for 

the latter Hessian matrices are: 

𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕 = 𝑫𝑫𝟐𝟐𝑺𝑺𝒕𝒕−𝟏𝟏 − 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕         (A8) 

𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕 = 𝛼𝛼𝑫𝑫𝟐𝟐𝑰𝑰𝒕𝒕−𝟏𝟏 + 𝑫𝑫𝑫𝑫𝒕𝒕−𝟏𝟏⨀𝑫𝑫𝑫𝑫 + 𝑫𝑫𝟐𝟐𝑿𝑿𝒕𝒕       (A9) 

To complete our calculations, we note that the initial values 𝑫𝑫𝟐𝟐𝑺𝑺𝟎𝟎 and 𝑫𝑫𝟐𝟐𝑰𝑰𝟎𝟎 are simply null 

matrices.   



MedRxiv 2023.03.13.23287177v3  26-Feb-2024 

 32 

 Taken together, equations (A6), (A7), (A8) and (A9), along with the initial null values of 

𝑫𝑫𝟐𝟐𝑺𝑺𝟎𝟎 and 𝑫𝑫𝟐𝟐𝑰𝑰𝟎𝟎, permit us to iteratively compute the Hessian 𝑫𝑫𝟐𝟐𝑽𝑽, just as we outlined for the 

gradient 𝑫𝑫𝑫𝑫 in the proof of Proposition 2 above. ∎ 

Proposition 4. Each element 𝑋𝑋𝑡𝑡(𝚯𝚯) of the output vector 𝑿𝑿(𝚯𝚯) is a linear function of the 

population size parameter 𝑁𝑁. That is, 𝑋𝑋𝑡𝑡 can be written in the form 𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁, where 𝜑𝜑𝑡𝑡(𝜽𝜽) is a 

function of the remaining identifiable parameters 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0). 

Proof.  To prove this result, we only need to show that the state variables 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 are 

themselves proportional to 𝑁𝑁. Thus, if for all times 𝑡𝑡 = 1, … ,𝑇𝑇, we can show that 𝑆𝑆𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝜽𝜽)𝑁𝑁 

and 𝐼𝐼𝑡𝑡 = 𝑔𝑔𝑡𝑡(𝜽𝜽)𝑁𝑁 for some functions 𝑓𝑓𝑡𝑡(𝜽𝜽) and 𝑔𝑔𝑡𝑡(𝜽𝜽), then from equation (3), we would have 

𝑋𝑋𝑡𝑡 = 𝛽𝛽𝛽𝛽𝑡𝑡−1𝐼𝐼𝑡𝑡−1 𝑁𝑁⁄ = 𝛽𝛽𝛽𝛽𝑡𝑡−1(𝜽𝜽)𝑔𝑔𝑡𝑡−1(𝜽𝜽)𝑁𝑁. Thus, 𝜑𝜑𝑡𝑡(𝜽𝜽) = 𝛽𝛽𝛽𝛽𝑡𝑡−1(𝜽𝜽)𝑔𝑔𝑡𝑡−1(𝜽𝜽). 

We can prove that 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 are proportional to 𝑁𝑁 by mathematical induction. From 

equations (2a) and (2b), respectively, we known that 𝑆𝑆0 = (1 − 𝑖𝑖0)𝑁𝑁 and 𝐼𝐼0 = 𝑖𝑖0𝑁𝑁. So, the 

proposition is true for 𝑡𝑡 = 0. Now suppose that 𝑆𝑆𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝜽𝜽)𝑁𝑁 and 𝐼𝐼𝑡𝑡 = 𝑔𝑔𝑡𝑡(𝜽𝜽)𝑁𝑁,  at time 𝑡𝑡. We 

claim that 𝑆𝑆𝑡𝑡+1 = 𝑓𝑓𝑡𝑡+1(𝜽𝜽)𝑁𝑁 and 𝐼𝐼𝑡𝑡+1 = 𝑔𝑔𝑡𝑡+1(𝜽𝜽)𝑁𝑁 necessarily hold for some functions 𝑓𝑓𝑡𝑡+1(𝜽𝜽) 

and 𝑔𝑔𝑡𝑡+1(𝜽𝜽). From (1a), we can write 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 �1 − 𝛽𝛽
𝑁𝑁
𝐼𝐼𝑡𝑡�. We have 𝑆𝑆𝑡𝑡+1 = 𝑆𝑆𝑡𝑡 �1 − 𝛽𝛽

𝑁𝑁
𝐼𝐼𝑡𝑡� =

𝑓𝑓𝑡𝑡(𝜃𝜃)𝑁𝑁�1 − 𝛽𝛽
𝑁𝑁
𝑔𝑔𝑡𝑡(𝜃𝜃)𝑁𝑁� = �𝑓𝑓𝑡𝑡(𝜃𝜃) − 𝛽𝛽𝑔𝑔𝑡𝑡(𝜃𝜃)�𝑁𝑁, and so 𝑓𝑓𝑡𝑡+1(𝜃𝜃) = 𝑓𝑓𝑡𝑡(𝜃𝜃) − 𝛽𝛽𝑔𝑔𝑡𝑡(𝜃𝜃). Similarly, 

𝐼𝐼𝑡𝑡+1 = 𝐼𝐼𝑡𝑡 �𝛼𝛼 + 𝛽𝛽
𝑁𝑁
𝑆𝑆𝑡𝑡� = 𝑔𝑔𝑡𝑡(𝜃𝜃)𝑁𝑁 �𝛼𝛼 + 𝛽𝛽

𝑁𝑁
𝑓𝑓𝑡𝑡(𝜃𝜃)𝑁𝑁� = 𝑔𝑔𝑡𝑡(𝜃𝜃)�𝛼𝛼 + 𝛽𝛽𝑓𝑓𝑡𝑡(𝜃𝜃)�𝑁𝑁, and so 𝑔𝑔𝑡𝑡+1(𝜃𝜃) =

𝑔𝑔𝑡𝑡(𝜃𝜃)�𝛼𝛼 + 𝛽𝛽𝑓𝑓𝑡𝑡(𝜃𝜃)�. ∎ 

 
Proposition 5. Let 𝚯𝚯(𝑛𝑛) = �𝜽𝜽(𝑛𝑛),𝑁𝑁(𝑛𝑛)� denote parameter estimates at iteration 𝑛𝑛 of an 

iterative estimation algorithm. Let 𝑿𝑿(𝒏𝒏) denote the corresponding output variable vector derived 

from the SIR model (2)-(4) based upon these parameter estimates. Define  

𝜅𝜅(𝑛𝑛+1) = 𝒚𝒚′𝑿𝑿(𝒏𝒏) 𝑿𝑿(𝒏𝒏)′𝑿𝑿(𝒏𝒏)⁄ = ∑ 𝑦𝑦𝑡𝑡𝑋𝑋𝑡𝑡
(𝑛𝑛)𝑇𝑇

𝑡𝑡=1 ∑ �𝑋𝑋𝑡𝑡
(𝑛𝑛)�

2
𝑇𝑇
𝑡𝑡=1�      (A10) 

as the regression coefficient of 𝒚𝒚 on 𝑿𝑿(𝒏𝒏). Then conditional upon 𝚯𝚯(𝑛𝑛), the updated population-

size parameter that minimizes the least squares criterion 𝑉𝑉 is 𝑁𝑁(𝑛𝑛+1) = 𝜅𝜅(𝑛𝑛+1)𝑁𝑁(𝑛𝑛). 

Proof. From Proposition 4, we know that each output variable 𝑋𝑋𝑡𝑡 can be written in the form 

𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁, where 𝜑𝜑𝑡𝑡(𝜽𝜽) is a function of the remaining parameters 𝜽𝜽 = (𝛽𝛽,𝛼𝛼, 𝑖𝑖0). Substituting into 

equation (5) in the main text gives: 
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𝑉𝑉(𝚯𝚯) = 𝑉𝑉( 𝜽𝜽,𝑁𝑁) = ∑ (𝑦𝑦𝑡𝑡 − 𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁)2 = ∑ (𝑦𝑦𝑡𝑡2 − 2𝑦𝑦𝑡𝑡𝜑𝜑𝑡𝑡(𝜽𝜽)𝑁𝑁 − 𝜑𝜑𝑡𝑡2(𝜽𝜽)𝑁𝑁2)𝑇𝑇
𝑡𝑡=1

𝑇𝑇
𝑡𝑡=1   (A11) 

Equation (A11), which holds for all 𝚯𝚯 = ( 𝜽𝜽,𝑁𝑁), teaches us that the least squares criterion 𝑉𝑉 is a 

quadratic function of the population-size parameter 𝑁𝑁. 

 Adhering to the assumptions of the proposition, let’s assume that we have parameter 

estimates 𝚯𝚯(𝑛𝑛) = �𝜽𝜽(𝑛𝑛),𝑁𝑁(𝑛𝑛)� at iteration 𝑛𝑛 of an iterative procedure. Conditional on 𝜽𝜽(𝑛𝑛), the 

first-order condition for minimizing 𝑉𝑉�𝜽𝜽(𝑛𝑛),𝑁𝑁� as a function of 𝑁𝑁 is: 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑉𝑉�𝜽𝜽(𝑛𝑛),𝑁𝑁� = ∑ �−2𝑦𝑦𝑡𝑡𝜑𝜑𝑡𝑡�𝜽𝜽(𝑛𝑛)� + 2𝜑𝜑𝑡𝑡2�𝜽𝜽(𝑛𝑛)�𝑁𝑁�𝑇𝑇

𝑡𝑡=1 = 0     (A12) 

The unique root is: 

 𝑁𝑁(𝑛𝑛+1) = ∑ 𝑦𝑦𝑡𝑡𝜑𝜑𝑡𝑡�𝜽𝜽(𝑛𝑛)�𝑇𝑇
𝑡𝑡=1 ∑ �𝜑𝜑𝑡𝑡�𝜽𝜽(𝑛𝑛)��

2
𝑇𝑇
𝑡𝑡=1�       (A13) 

From Proposition 4, we have 𝑋𝑋𝑡𝑡
(𝑛𝑛) = 𝜑𝜑𝑡𝑡�𝜽𝜽(𝑛𝑛)�𝑁𝑁(𝑛𝑛). Substituting into (A13) and rearranging 

gives: 

𝑁𝑁(𝑛𝑛+1) = 𝑁𝑁(𝑛𝑛) ∑ 𝑦𝑦𝑡𝑡𝑋𝑋𝑡𝑡
(𝑛𝑛)(𝜽𝜽)𝑇𝑇

𝑡𝑡=1 �𝑋𝑋𝑡𝑡
(𝑛𝑛)(𝜽𝜽)�

2
�        (A14) 

We have 𝑁𝑁(𝑛𝑛+1) = 𝜅𝜅(𝑛𝑛+1)𝑁𝑁(𝑛𝑛), where 𝜅𝜅(𝑛𝑛+1) is defined in (A10). ∎ 

 

Proposition 6. Let 𝚯𝚯∗ = (𝛽𝛽∗,𝛼𝛼∗, 𝑖𝑖0∗,𝑁𝑁∗) and denote the estimated parameter values that 

minimize the objective function 𝑉𝑉(𝚯𝚯) under the identifying restriction 𝑟𝑟0 = 0, and let 𝑉𝑉∗ =

𝑉𝑉(𝚯𝚯∗) denote the corresponding minimized value of the least squares criterion 𝑉𝑉. Then the 

variance-covariance matrix of the estimated parameters 𝚯𝚯∗ is 𝑪𝑪∗ = (𝑠𝑠∗)2(𝑫𝑫𝑿𝑿∗′𝑫𝑫𝑿𝑿∗)−1, where 

(𝑠𝑠∗)2 = 𝑉𝑉∗ 𝑇𝑇⁄ , and where 𝑫𝑫𝑿𝑿∗, as defined in Proposition 3, is also evaluated at the optimum 𝚯𝚯∗.  

 Proof. This result, which follows directly from the general statistical treatment of 

nonlinear least squares in [47], gives us the unconditional 4 × 4 variance-covariance matrix of 

the parameter vector 𝚯𝚯∗ = (𝛽𝛽∗,𝛼𝛼∗, 𝑖𝑖0∗,𝑁𝑁∗) estimated from our 4-dimensional Newton-Raphson 

algorithm described in Propositions 2 and 3. If we instead employ the EM-type algorithm 

characterized in Propositions 4 and 5, then at the M-step of the final stage, we can obtain the 

3 × 3 variance-covariance matrix of the parameter vector 𝜽𝜽� = �𝛽̂𝛽,𝛼𝛼�, 𝚤𝚤̂0� conditional upon 𝑁𝑁�, 

which has already been estimated at the E-step. In that case, we obtain 𝑪𝑪� = 𝑠̂𝑠2�𝑫𝑫𝑿𝑿�′𝑫𝑫𝑿𝑿��−1, 
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where 𝑠̂𝑠2 = 𝑉𝑉� 𝑇𝑇⁄ , where 𝑉𝑉� = 𝑉𝑉�𝜽𝜽�,𝑁𝑁��, where and 𝑫𝑫𝑿𝑿� is the 𝑇𝑇 × 3 matrix whose 𝑡𝑡-th row is the 

gradient of 𝑋𝑋𝑡𝑡 with respect to 𝜽𝜽 evaluated at the optimum 𝚯𝚯� = �𝜽𝜽�,𝑁𝑁��. Since both the 4-

dimensional Newton-Raphson algorithm and EM-type algorithm result in parameter estimates 

that minimize the objective function 𝑉𝑉(𝚯𝚯), that is, since 𝚯𝚯� = 𝚯𝚯∗, we can readily compute 

𝑫𝑫𝑿𝑿�′𝑫𝑫𝑿𝑿� as the 3 × 3 submatrix of 𝑫𝑫𝑿𝑿∗′𝑫𝑫𝑿𝑿∗. ∎ 

 

Proposition 7. Let 𝚯𝚯∗ be a local interior minimum of 𝑉𝑉(𝚯𝚯). Define a single-valued 

mapping from the real line into the four-dimensional subspace Ω of admissible values of 𝚯𝚯 as 

follows: 𝝀𝝀(𝑢𝑢) = (𝛽𝛽∗ + 𝑢𝑢,𝛼𝛼∗ − 𝑤𝑤𝑤𝑤, 𝑖𝑖0∗,𝑁𝑁∗), where 𝑢𝑢 is its real-valued argument and 𝑤𝑤 > 0 is a 

positive real parameter. As the parameter 𝑤𝑤 varies, this mapping characterizes a family of rays in 

four-dimensional space passing through the point 𝚯𝚯∗ at 𝑢𝑢 = 0. Then there exists a ray, 

corresponding to a specific value of 𝑤𝑤, along which the second-order directional derivative 
𝑑𝑑𝑉𝑉2

𝑑𝑑𝑢𝑢2
�
𝑢𝑢=0

 is nearly zero, that is, along which 𝑉𝑉(𝚯𝚯) is nearly equal to its local minimum value 

𝑽𝑽(𝚯𝚯∗). 

Proof. Along any such ray, defined by a specific value of the parameter 𝑤𝑤, the linear 

combination 𝑤𝑤𝑤𝑤 + 𝛼𝛼 is constant and equal to 𝑤𝑤𝛽𝛽∗ + 𝛼𝛼∗, independent of the value of 𝑢𝑢. 

Moreover, for all 𝑤𝑤, we have 𝝀𝝀(0) = 𝚯𝚯∗ and the composition 𝑉𝑉 ∘ 𝝀𝝀(0) = 𝑉𝑉�𝝀𝝀(0)� = 𝚯𝚯∗. For 

any specific value of 𝑤𝑤, the derivative of  𝝀𝝀(𝑢𝑢) with respect to 𝑢𝑢 is 𝑫𝑫𝑫𝑫 = (1,−𝑤𝑤, 0,0), which is 

the directional vector of the ray. Accordingly, the directional derivative of 𝑉𝑉 along the ray 𝝀𝝀(𝑢𝑢) 

at the minimum 𝚯𝚯∗ is the inner product 𝑫𝑫𝑫𝑫 𝑫𝑫𝑫𝑫(𝚯𝚯∗), which simplifies to the expression  
𝑑𝑑V
𝑑𝑑u
�
𝑢𝑢=0

= 𝜕𝜕𝜕𝜕(𝜽𝜽∗)
𝜕𝜕𝜕𝜕

− 𝑤𝑤 𝜕𝜕𝜕𝜕(𝜽𝜽∗)
𝜕𝜕𝛼𝛼

. Moreover, the second-order directional derivative is the quadratic 

form 𝑫𝑫𝑫𝑫 𝑫𝑫𝟐𝟐𝑽𝑽(𝚯𝚯∗) 𝑫𝑫𝑫𝑫′, which similarly simplifies to: 

𝑑𝑑𝑉𝑉2

𝑑𝑑𝑢𝑢2
�
𝑢𝑢=0

= 𝜕𝜕2𝑉𝑉(𝜽𝜽∗)
𝜕𝜕𝛽𝛽2

− 2𝑤𝑤 𝜕𝜕2𝑉𝑉(𝜽𝜽∗)
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑤𝑤2 𝜕𝜕
2𝑉𝑉(𝜽𝜽∗)
𝜕𝜕𝛼𝛼2

       (A15) 

Our objective function 𝑉𝑉 is the flattest along the ray for which this second-order 

directional derivative is minimized. From (A15), we see that the second-order directional 

derivative is itself a quadratic function of the parameter 𝑤𝑤. This quadratic function in turn 

reaches a minimum at 𝑤𝑤∗ = 𝜕𝜕2𝑉𝑉(𝜽𝜽∗)
𝜕𝜕𝛽𝛽𝜕𝜕𝛼𝛼

𝜕𝜕2𝑉𝑉(𝜽𝜽∗)
𝜕𝜕𝛼𝛼2

� .  Plugging this value into (A15) gives the second-
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order directional derivative 𝑑𝑑
2𝑉𝑉

𝑑𝑑𝑢𝑢2
�
𝑢𝑢=0

= �𝜕𝜕
2𝑉𝑉(𝜽𝜽∗)
𝜕𝜕𝛼𝛼2

�
−1
∇, where ∇ is the determinant of the 2 × 2 

submatrix of 𝑫𝑫𝟐𝟐𝑽𝑽(𝚯𝚯∗) corresponding to the parameters (𝛽𝛽,𝛼𝛼). As we have seen in the empirical 

implementation, this determinant is positive but quite small. ∎ 
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Appendix B. Path of the 4-Parameter Newton-Raphson Algorithm: New York City Data 

Figure B1 displays the path of each successive iteration 𝜽𝜽(𝒌𝒌) generated by the 4-

dimensional Newton-Raphson algorithm, along with the corresponding values 𝑽𝑽(𝒌𝒌) of the 

criterion function. As in Figures 5 and 6, we plot only the two parameter coordinates 

�𝛽𝛽(𝑘𝑘),𝛼𝛼(𝑘𝑘)�, but we reverse the axes to improve the perspective. The algorithm began at point A, 

where the �𝛽𝛽(0),𝛼𝛼(0),𝑉𝑉(0)� = ( 0.4, 0.8, 3907). On iteration 𝑘𝑘 = 10 at point B, where 

�𝛽𝛽(10),𝛼𝛼(10),𝑉𝑉(10)� = (0.446, 0.730, 101), the path of the algorithm had entered the ravine 

described in Figure 5 above. The path continued along the ravine until the stopping point at 

�𝛽𝛽(40),𝛼𝛼(40),𝑉𝑉(40)� = (0.233, 0.941, 76.7). 

 

 
 
Figure B1. Path of �𝜷𝜷(𝒌𝒌),𝜶𝜶(𝒌𝒌),𝑽𝑽(𝒌𝒌)� Through Successive Iterations of the 4-Dimensional Newton-Raphson 
Algorithm: New York City Omicron Wave. The algorithm began at point A, where the �𝛽𝛽(0),𝛼𝛼(0),𝑉𝑉(0)� =
( 0.4, 0.8, 3907). The step size for successive iterations, defined in equation (16), was 𝑞𝑞 = 0.5. At point B, where 
�𝛽𝛽(10),𝛼𝛼(10),𝑉𝑉(10)� = (0.446, 0.730, 101), the path of the algorithm had entered the ravine described in Figure 6. 
The path continued along the ravine until the stopping point at �𝛽𝛽(40),𝛼𝛼(40),𝑉𝑉(40)� = (0.233, 0.941, 76.7). The 
stopping criterion was �𝑉𝑉(𝑘𝑘) − 𝑉𝑉(𝑘𝑘−1)� < 10−4. The execution time was 0.436 seconds. 
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