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Abstract

In the early stages of the COVID-19 pandemic, it became clear that pandemic waves and population responses were
locked in a mutual feedback loop. The initial lull following strict interventions in the first wave often led to a second wave,
as restrictions were relaxed. We test the ability of new hybrid machine learning techniques, namely universal differential
equations (UDEs) with learning biases, to make predictions in a such a dynamic behavior-disease setting. We develop a
UDE model for COVID-19 and test it both with and without learning biases describing simple assumptions about disease
transmission and population response. Our results show that UDEs, particularly when supplied with learning biases, are
capable of learning coupled behavior-disease dynamics and predicting second waves in a variety of populations. The model
predicts a second wave of infections 55% of the time across all populations, having been trained only on the first wave.
The predicted second wave is larger than the first. Without learning biases, model predictions are hampered: the unbiased
model predicts a second wave only 25% of the time, typically smaller than the first. The biased model consistently predicts
the expected increase in the transmission rate with rising mobility, whereas the unbiased model predicts a decrease in
mobility as often as a continued increase. The biased model also achieves better accuracy on its training data thanks
to fewer and less severely divergent trajectories. These results indicate that biologically informed machine learning can
generate qualitatively correct mid to long-term predictions of COVID-19 pandemic waves.
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Significance statement

Universal differential equations are a relatively new modelling technique where neural networks use data to learn unknown

components of a dynamical system. We demonstrate for the first time that this technique is able to extract valuable information

from data on a coupled behaviour-disease system. Our model was able to learn the interplay between COVID-19 infections and

time spent travelling to retail and recreation locations in order to predict a second wave of cases, having been trained only

on the first wave. We also demonstrate that adding additional terms to the universal differential equation’s loss function that

penalize implausible solutions improves training time and leads to improved predictions.

Introduction

The COVID-19 pandemic generated an enormous demand for

mathematical models to predict cases and guide policy [1, 2, 3].

These models were often mechanistic in nature, seeking to

represent known or hypothesized transmission mechanisms in

a mathematical, stochastic, or agent-based framework [4, 5, 6].

The advance warning provided by these models allowed public

health institutions to prepare by implementing policies to

mitigate the second wave when it arrived [7, 8]. Modelling

efforts were widely applied to investigate the impact of public
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health measures such as testing [9], school and workplace

closures [10, 11], vaccination strategies [12, 13, 14] or to

stimulate action by projecting the impacts of a worst case ‘do

nothing’ scenario where governments and populations did not

attempt to mitigate the pandemic [8, 10].

Fortunately, most governments and members of the

public did respond to the pandemic, by taking measures

to reduce case incidence. Numerous studies have shown

that non-pharmaceutical interventions such as lockdowns,

school closures, and social distancing protocols reduce case

notifications and health impacts of COVID-19 [15, 16, 17,

18]. The anticipation of infection risk in the face of rising

case incidence supports adherence to these measures [19].

However, as risk of infection wanes, so too does willingness

to abide by these mentally fatiguing [20, 21] and economically

costly measures [21]. The relaxation of mitigation efforts may

then potentially result in another pandemic wave. This two-

way interaction–where infection spread influences behaviour,

which influence infection spread, in turn–suggests the concept

of coupled behavior-disease systems [22] may be useful for

studying COVID-19 pandemic waves.

As such, many mechanistic models informed by economic,

social or psychological assumptions have incorporated behaviour-

disease dynamics to study the impact of interventions in the

context of population behavioural feedbacks [23, 24, 25, 26, 27,

28, 29], including for COVID-19 [30, 12, 31, 32, 33]. Among

the most valuable insights provided by these models is the

occurrence of multiple pandemic waves, which are predicted

under a wide range of conditions by these models due to waning

stringency causing a resurgence of the infection [34, 12, 35, 36].

With hindsight, we can confirm that these models were correct –

second waves occurred virtually everywhere during the COVID-

19 pandemic (and before the arrival of new variants).

Alongside these mechanistic models, the plethora of

epidemiological, sociological, mobility, and economic data

generated by the pandemic allowed machine learning models

to flourish [37, 38, 39, 40, 41]. These models have proven adept

at integrating vast quantities of data on a multitude of factors

(including behaviour) affecting disease spread. Consequently,

they often adapt better to regional variability compared to

mechanstic models [41, 40]. However, machine learning models

have significant drawbacks. They are able to fit existing data

well and accurately predict days to a couple of weeks into

the future, but pay for this predictive accuracy with reduced

interpretability compared to traditional models [37]. Compared

to mechanistic models with relatively few easily-understood

parameters, it is far more difficult to extract qualitative

understandings of disease dynamics (such as second waves)

from the hundreds or thousands parameters in purely machine-

learning models. They are also easy to over-fit (although

mechanistic models also suffer form this risk), meaning their

predictive value may be limited.

Recently, advances in high-performance automatic different-

iation have enabled new techniques that combine the

interpretability and qualitative understanding from mechanistic

models with the potentially higher predictive power and

scalability of machine learning. Physics-informed machine

learning (PIML) is one such methodology. The key idea is to

create ML models that encode physical laws by inferring them

from large amounts of data (observational bias), building them

into the model’s architecture (structural bias), or training the

model to uphold them (learning bias) [42]. Of particular interest

for qualitative epidemic modelling are the latter two biases, as

they reduce the model’s reliance on large amounts of data. By

incorporating these biases, the model is prevented (in the case

of structural biases) or at least discouraged (for learning biases)

from making biologically impossible predictions. Learning

biases can also discourage overfitting the data by introducing

other objectives for the model.

The majority of learning bias applications thus far have been

solving various forms of partial differential equations (PDEs)

[43, 44, 45]. In these models, a neural network is trained to

simultaneously fit data and to satisfy a PDE. In addition to

physics, learning biases have been used in biologically-informed

machine learning (BIML) applications. These include blood

flow dynamics [46], drug responses [47], and cancer detection

and classification [48, 49, 50]. This approach has yet to be

applied to COVID-19 modeling, but has seen great success for

solving large and complex partial differential equations.

A novel technique for structural bias is universal differential

equations (UDEs). This method involves training neural

networks embedded in differential equation models. Known

dynamics can be included explicitly, while leaving unknown

processes to be learned by the neural network [51]. The explicit

parts of the UDE can be made to retain valuable laws such

as invariant quantities. UDEs have been applied successfully

on predator-prey models, metabolic networks, batteries, and

photonics [51, 52]. For instance, recent research uses a neural

network to learn the change in COVID-19 quarantine measures

in a population over time, within the framework of a modified

QSEIR (quarantine, susceptible, infectious, recovered) model.

The trained network was then used to quantify the effectiveness

of those measures for different regions [39, 53].

The ability of hybrid machine learning approaches – such as

UDEs and PIML – to make qualitative long-term predictions

about epidemic dynamics of the sort provided by mechanistic

models has not yet been widely tested. This motivated our

research: our objective was to combine observational biases

(UDEs) with satisfiable learning biases in a coupled behaviour-

disease model for COVID-19. We trained a compartmental UDE

model to fit behavioural and epidemic data while penalizing

deviations from several simple socio-biological assumptions.

We hypothesized that a UDE model can learn the pattern of

behaviour-disease interactions and hence predict a second wave

(either qualitatively or quantitatively), having only seen the

first wave (and its learning biases). We also hypothesized that

without those learning biases, the model will learn much less

effectively.

Results

A complicated mathematical model can easily be made to

fit an epidemic curve, but runs the risk of over-fitting

the data and thus not being useful for prediction [54, 55].

Simpler mathematical models allow us to test our hypotheses

by incorporating aspects we understand without becoming

overburdened by details that we cannot reliably describe

mathematically [55].

Hence, we used a UDE framework that allows us to leave

the behaviour-disease dynamics of a simple compartmental

behaviour-disease model unspecified, save for a few plausible

assumptions (“learning biases”). In doing so, we can

test the validity of those assumptions. Compartmental

models divide the human population into mutually exclusive

compartments based on infectious status, and which are

generally implemented as differential equations. These models
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have been a mainstay of mathematical epidemiology for decades

[5].

The algorithm learned the manner in which force of infection

responds to mobility and manner in which mobility responds

to its current value, the number of active cases, recent new

cases, and recovered cases. The learning biases inform the

model with several plausible assumptions: namely that force of

infection increases with mobility, that mobility decreases with

more active and recent cases, that mobility tends toward 0 (the

pre-COVID average) in the absence of cases, that this tendency

is stronger the more people have recovered, and that mobility

cannot fall below a 100% reduction or exceed a 200% increase

from the pre-COVID average (see Methods). The learning

biases strongly discourage infeasible values of mobility and

make data-fitting relatively less important for the optimizer.

As a result, the model makes out-of-sample predictions (i.e.

second waves) frequently.

In order to ensure consistent and repeatable results, we

ran the model on each region 100 times both with and

without learning biases. We trained the algorithm on the first

wave and tested whether it could predict the second wave.

Overall, the model with learning biases was successful in every

region in which we tested it, though some more so than

others. It consistently learned to fit the data and constraint

losses, predicted second waves, and seldom made biologically

implausible predictions.

We compared UDE models with and without learning bias.

The model without learning biases, while not entirely a failure,

was much less successful. Though it was generally able to fit

the data, it predicted second waves much less frequently and

made many more unrealistic predictions. Details are provided

in the following subsections.

Model Predictions

To get a sense of the model’s average behaviour, we plotted

the median prediction of the 100 simulations for each region.

An example for New York can be found in Section 2, Figure 2

(analogs for other regions can be found in the Supplementary

Appendix, figures 3-13). The model with learning biases has

consistent behaviour within the training region. The median

prediction shows a small second wave and the inter-quartile

range shows one of similar size to the first. The model without

learning biases fits the data comparably well, but has greatly

reduced variability outside of the training region. Second wave

predictions are smaller or non-existent, typically only suggested

by the upper quartile rather than the median. Section 2.1 Table

1 gives a numerical summary of the model’s performance across

all regions. Section 2.1 Figure 1 shows a graphical summary of

model performance across all regions.

Biological Feasibility

Both models, with and without learning biases, tended to make

feasible predictions, in the sense that all model states remained

within their respective bounds. The biased model was stable

88% of the time, while the unbiased model was stable 85% of

the time, across all regions.

However, when evaluating the learning bias loss functions

on the trained models, it becomes clear that the model with

learning biases is more reliable in this regard. The biased

model achieves better losses across all loss objectives, including

accuracy, compared to the unbiased model. Comparison of all

loss functions can be found in the supplementary material.

The unbiased model does particularly poorly on the mobility

upper and lower bounds (on the order of 104 times worse than

biased), and tendency for mobility to return to baseline in the

absence of infection (roughly 103 times worse).

Second wave prediction

As a more robust metric for second wave prediction, we counted

the number of local maxima exceeding at least 10−3 in the

infected time series for each model simulation. With learning

biases, the model predicted second waves regularly for most

regions.

The unbiased model, meanwhile, rarely predicted second

waves (Section 2.1, Table 1). Its best performance was on

Quebec, where it predicted second waves 51% of the time,

This was also the only region in which it outperformed the

biased model, which predicted second waves 48% for of the

time. Otherwise, it predicted second waves less than 66% as

often as the biased model, sometimes as little as 1.6% as often.

It predicted no second waves at all for British Columbia.

Most of the time, both models predict the second wave too

early (exceptions being Texas and Quebec), but the biased

model’s estimate is usually closer (only excepting Texas and

Quebec). In terms of wave size, the biased model typically

overestimates while the unbiased model shows no clear pattern.

Transmissibility

One of the main uses of this model is that the trained neural

network representing the force of infection can, once trained, be

analyzed to examine the learned relationship between mobility

and the transmission rate.

Section 2.4 Figure 3 shows the distribution in the response of

β to mobility predicted by the model with learning biases for

New York. The models all converge on the same relationship

within the training region and on low out-of-sample values,

but they diverge for large ones. It is also worth noting

that the prediction is, as expected, monotonically increasing.

Once again, all regions demonstrate similar behaviour (see

Supplementary Appendix figures 14-24).

As with the time series predictions, the model without

learning biases fits the data about equally well within the region

on which it has been trained. However, outside that region, it

extrapolates a flatter curve that is about equally likely to to be

higher or lower than the median.

For a quantitative sense of how β responds to mobility, we

evaluated each trained network at the baseline value of mobility

to determine the value of β, and hence R0 (= β/γ), the

basic reproduction number of the virus at the baseline value

of mobility. We also applied Newton’s method to the trained

neural network to find the value of mobility (Mcrit) at which R0

drops below 1, the value below which the infection will die out

[56]. Results for the biased model can be found in table Section

2.4 Table 2. The unbiased model results are negligibly different

for the R0, The results for Mcrit are more variable. These

unbiased model results can be found in the Supplementary

Appendix Table 1.

The R0 predictions, averaged over all simulations for a given

region, range from 1.60 (British Columbia) to 2.60 (Germany).

While estimates of R0 for COVID-19 vary significantly between

countries and times, this is in line with estimates of between

2.4 and 2.4 for the original COVID-19 strain [57, 58, 59, 60].

It is also consistent with other models, which found Germany

and the Netherlands to have higher values [61].
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Fig. 1. Infection prevalence time series predictions for all regions produced by the model with learning biases. Infection prevalence is the proportion of

the total population that is infected at any given time. Green dots represent training data (first 22 weeks) and black dots show unseen data (a further

23 weeks). Predictions are generated using the median (solid line) and interquartile range (ribbon) of 100 independently-trained instances of the model

per region.

Table 1. Summary of second wave predictions: Listed as biased model / unbiased model

Region True wave time1,2 True wave size1 2nd wave rate Mean wave timing1,3 Mean wave size

Austria 294 1.15 × 10−2 0.86 / 0.50 222 / 197 5.88 × 10−2 / 2.67 × 10−2

Belgium 273 1.67 × 10−2 0.68 / 0.23 217 / 185 5.18 × 10−2 / 5.71 × 10−3

Germany 315 4.90 × 10−3 0.78 / 0.45 259 / 244 4.53 × 10−2 / 2.87 × 10−2

Netherlands 273 8.50 × 10−3 0.68 / 0.23 226 / 119 4.09 × 10−2 / 2.43 × 10−3

Italy 287 9.18 × 10−3 0.83 / 0.27 214 / 151 4.46 × 10−2 / 6.47 × 10−3

United Kingdom 280 6.44 × 10−3 0.63 / 0.40 266 / 140 2.95 × 10−2 / 1.16 × 10−3

California, USA 336 1.85 × 10−2 0.17 / 0.010 454 / 228 2.74 × 10−3 / 2.91 × 10−4

New York, USA 350 1.26 × 10−2 0.79 / 0.39 276 / 190 1.94 × 10−2 / 6.42 × 10−3

Pennsylvania, USA 329 1.29 × 10−2 0.80 / 0.19 212 / 93 2.05 × 10−2 / 1.38 × 10−3

Texas, USA 217 3.27 × 10−3 0.25 / 0.021 342 / 183 9.89 × 10−3 / 2.45 × 10−4

British Columbia, Canada 308 2.56 × 10−3 0.047 / 0 357 / NA 2.52 × 10−3 / 0

Ontario, Canada 343 3.54 × 10−3 0.098 / 0.29 158 / 300 4.19 × 10−3 / 5.34 × 10−4

Quebec, Canada 336 4.84 × 10−3 0.48 / 0.51 534 / 73 1.79 × 10−2 / 2.97 × 10−3

1Calculated using the same mechanism as in section 4.3

2Measured in days since February 18, 2020

3Excluding simulations which do not predict second waves

The model typically estimates that a 40-50% reduction in

mobility is necessary to reduce R0 below 1. This is consistently

more extreme than other studies have found (20-40%) [62],

but not entirely implausible considering the interquartile

range. That said, we cannot interpret any result for Belgium,

California, or the UK where the interquartile range exceeds

physically realistic bounds.

Discussion

Our results show that socially and biologically informed

machine learning models can perform qualitative prediction

tasks. When supplied with learning biases, the model routinely

predicted second pandemic waves similar to those that occurred

in most populations during the COVID-19 pandemic. The

model seldom produced implausible predictions for mobility,

and where it did, this tended to result from a failure to converge

during training.

The most significant result is that the biased model predicts

a second wave in every region except the Canadian province of

British Columbia. The biased model predicted the second wave

peak more consistently and closer to the actual time than the

unbiased model without behavioural (mobility) feedback. The

biased model also tended to predict a second wave that was

much larger than the first wave, as occurred in most populations
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Fig. 2. Predicted time series of all model states for New York state

with learning biases (a-c) and without (d-f). Panels (a) and (b) show

susceptible fraction, (b) and (d) show infected, and (c) and (f) show

mobility. Green dots represent training data, while black dots represent

unseen data. All predictions are generated using the median (solid line)

and interquartile range (ribbon) of 100 independently-trained instances

of the model.

Fig. 3. Predicted force of infection based on mobility level for New York

state with learning biases (a) and without (b). Dotted lines indicate values

of mobility seen by the model during training. Solid line shows the median

prediction of 100 model instances and ribbon shows interquartile range.

during the COVID-19 pandemic, although the predicted second

wave was often larger in magnitude than what occurred in

reality.

This ability to predict second waves is valuable from a public

health perspective, for mitigation of population health impacts.

Though our model does not explicitly include government

policy, it can influence behaviour, and knowing the likely

trajectory of future cases under current policy can help

decision-makers assess whether mandates should be tightened

or loosened [36, 34]. In practice, our model could be used to

simulate possible outcomes by using the trained β network,

but changing M to a time signal representing total lifting of

restrictions, gradual reopening, or continuing heavy restriction.

Such a model may need to account in some way for the costs of

each policy.

Mixed machine learning models need not supplant

traditional models entirely, but they can be a valuable auxiliary.

As our model shows, they need not be overly complex or

Table 2. Predicted R0 and required mobility reduction

Region Predicted R0 Mcrit Convergence1

Austria 2.2 (±0.2) −0.44 (±0.20) 0.96

Belgium 2.6 (±1.2) −0.56 (±0.54)∗ 0.76

Germany 2.6 (±0.3) −0.51 (±0.21) 0.98

Italy 2.1 (±0.5) −0.49 (±0.19) 0.99

Netherlands 2.1 (±0.2) −0.49 (±0.17) 0.99

United Kingdom 1.9 (±0.6) −0.17 (±7.99)∗ 0.79

California, USA 1.6 (±0.9) −0.44 (±3.96)∗ 0.6

New York, USA 2.4 (±0.2) −0.52 (±0.19) 0.92

Pennsylvania, USA 2.3 (±0.7) −0.56 (±0.14) 0.94

Texas, USA 1.7 (±0.8) −0.57 (±0.52) 0.82

British Columbia 1.6 (±0.1) −0.44 (±0.22) 0.99

Ontario 2.4 (±0.7) −0.65 (±0.21) 0.80

Quebec 2.3 (±1.2) −0.53 (±0.30) 0.92

Parentheses show 95% credible intervals

1Not all neural networks showed a root. Interval calculated using only

those that did.

∗Interval exceeds physically realistic values

computationally expensive. They can interpret large amounts

of data, generalize well to a variety of different regions and,

given appropriate learning biases, can be relied upon to make

feasible predictions.

Epidemic models are often under-determined by data [63].

UDEs allow a new approach to this problem. Since neural

networks are universal approximators [64], they can represent

the full range of possible functions that could fit the available

data. By training multiple iterations of a UDE model and

analyzing their trajectories, we can see a range of feasible

outcomes for the system with just one single model. For

example, two UDE predictions can fit the data and biological

constraints equally well, yet one may predict a massive second

wave, while the other predicts a rapid return to normalcy. A

third may produce several smaller waves with corresponding

mobility changes. That said, it is important to assign sufficient

weight to the learning biases to avoid discouraging such a range

of behaviours in favour of a single, overfitted solution.

The ability of UDEs to examine a range of data-fitting

functions could be further enhanced with sparse regression

methods [51, 65, 66]. By applying sparse regression to our

trained β model’s output, one could derive a multitude of

symbolic equations that could be used to mathematically model

the system.

The results also support our hypothesis that learning biases

are effective at accelerating training and assuring socially and

biologically plausible solutions while achieving superior training

performance. While some attributes can be learned passably

well by the unbiased model given sufficient training time, the

biased model still achieves better losses on these attributes by

at least two orders of magnitude. Good performance on training

data should not be taken too seriously since it may be a sign

of overtraining. However, this does not appear to be the case

in our model. The vast majority of the average training loss

comes from a few highly divergent solutions. The improved

performance by the biased model indicates reduced proclivity

for such solutions.

The fact that a monotonic β is learned comparably well by

both models indicates that both of them are instrumentally

useful for the model to learn when satisfying the loss objective.

This gives a good sanity check that these features are present in
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the real system and assuming them in the model is reasonable.

The upper and lower bounds on mobility, however, are not

typically inferred by the model without explicit instruction.

This is not unexpected since the observed data never nears

the bounds. By fitting the data well, the model never needs

to learn what happens at those bounds. However, including

these boundaries as learning biases gives greater assurance that

the model will not produce divergent or unstable solutions if,

for example, it were used to predict what would happen in

a scenario where those bounds were neared. Of course, it is

preferable to ensure stability mathematically using structural

biases, but this may not always be feasible. The other objective

which the unbiased model tends not to learn is in the tendency

for M to return to the baseline value of 0. This may be

because, as people become accustomed to life with the virus, the

”baseline,” i.e. the average societal preference in the absence of

disease, shifts downward.

It is interesting that the learning biases help generate greater

variability in the out-of-sample time series predictions. This

is likely because in the absence of any other objective, the

model consistently converges to a single global optimum for

data fitting. Since the model’s extended prediction tends to

remain within a small region of state space (M remaining

negative, I relatively small), the greater potential variance is

never realized. The model with learning biases, meanwhile, is

relatively less concerned with fitting the data and hence has

more freedom to explore the parameter space. The fact that the

constraint losses are evaluated according to randomly generated

sample points also confers greater variability to the results of

the biased model.

The biased model also has greater variability in the upper

quartile of its β response, but reduced variability in the lower

quartile. This makes sense – the biased model has learned that

for any M greater than those it has seen, the value of β must

also be greater (and vice-versa for M less than what it has

seen). The unbiased model, having no such information, cannot

make an informed prediction, and so is equally likely to predict

continued increase or an unrealistic decrease.

These variability trade-offs favour the biased model. Greater

variability in time series prediction is valuable because

(assuming the predictions are biologically feasible) it shows

a greater variety of possible outcomes and assigns a degree

of confidence associated to those outcomes. The reduced

variability in predicting the transmissibility is also desirable

because it derives from better understanding of the system.

We used a heavily simplified model of COVID-19. It is not

intended to capture all details of the pandemic, nor is it meant

to recommend specific health policies. We assumed the acquired

immunity is permanent, which it may well not be [67]. We do

not account for vaccines, which came into play around the end

of 2020 [68]. Thus, the long-term predictions (i.e. beyond 300

days or so) should be taken only as evidence that the model

does not produce wildly implausible behaviour, rather than a

serious attempt to forecast cases too far in the future. The

emergence of new variants, first reported in September 2020

[69] at the end of the second wave in many populations, mean

that predictions for the tail end of 2020 are beyond the model’s

intended scope.

Even in the short term, the model is not intended

to predict cases or to precisely estimate the virus’s basic

reproduction number. It is limited by our ability to consistently

measure recovery rates and estimate under-reporting ratios,

which almost certainly vary between regions and over time

within regions. For simplicity, we also left out asymptomatic

transmission and seasonal changes in infectiousness, both

of which hamper the model’s short-term predictive ability

compared to a more complex model [63]. None of these

limitations changed our conclusions, since our goal was to

show that UDEs and PIML can fit available data while making

qualitatively correct our-of-sample predictions.

Future work could improve our the model by incorporating

some of the aforementioned details of the pandemic. This

could give insight into other behaviour-disease interactions

like vaccine usage [70] or allow an examination of how these

dynamics changed over the course of the pandemic. In section

4.1-4.2.1 we also provide some methodological changes that

could further develop the UDE/PIML themes, particularly

regarding how to use learning biases effectively.

Probably the biggest opportunity for future work is to

apply this type of data-driven differential equation model to

other systems. Other infectious diseases, particularly those for

which vaccines are available, are also coupled behavior-disease

systems [70, 66] and so could be amenable to this type of

model. Beyond epidemic modelling, climate systems are also

known to have important behavioural components [71, 72].

Ultimately, one of the greatest advantages of UDEs is that,

as per their name, they can theoretically be applied to any

dynamical system [51]. It is only a matter of testing them to

see if they provide valuable insight which.

Availability of social and epidemiological data for endemics

and future pandemics will likely continue to increase. At the

same time, socio-economic factors will continue being complex,

and regional and temporal variability will persist. Universal

differential equations, when supplied with appropriate learning

biases, could be a valuable tool for modelling such systems.

Alongside traditional models, they could be used to quickly gain

perspective on the state of outbreaks across the world without

having to develop specialized models for each region.

Materials and Methods

Our model is a universal delay differential equation (UDDE)

based on the standard SIR model:

d

dt
S(t) = −β(M(t − τ1))S(t)I(t)

d

dt
I(t) = β(M(t − τ1))S(t)I(t) − γI(t)

d

dt
M(t) = e

−δt
f(I(t − τ1),∆I(t − τ2),M(t), R(t)) (1)

where S, I and R represent the susceptible, infected

and recovered proportions of the population respectively (R

can be recovered as 1 − S − I), and M represents the

percent difference in mobility compared to the baseline.

β(M) represents the transmission rate as it depends on

mobility, and f(I,∆I,M,R) represents the dynamics governing

social/behavioural (mobility) response to the infectious disease

[35]. Both β and f were learned by the algorithm. ∆I(t)

represents the change in I between the current time t and

a previous time t − τ2. The e−δt factor accounts for several

factors that reduce the population response to the virus

over time, including: pandemic fatigue, the development of

medical interventions that make the infection less fatal (such

as ‘proning’), substituting less disruptive interventions (such

as masking) for mobility reductions, and (for longer-term

predictions than we study in this model) the evolution to milder

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 16, 2023. ; https://doi.org/10.1101/2023.03.11.23287141doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.11.23287141
http://creativecommons.org/licenses/by/4.0/


Short article title in sentence case 7

Fig. 4. Schematic of our model showing the relevant differential

equations, neural networks, and training procedure. The learning biases

are present only in the biased model. Otherwise, the biased and unbiased

models have the same structure.

virulence over time. Section 4 Figure 4 shows a schematic of the

model.

The model parameters are γ, the per-capita recovery rate,

τM , the delay between a change in M and the corresponding

change in prevalence, and τR, the reverse delay: the time

between a change in prevalence and corresponding behavioural

response [35]. The values we used are γ = 0.25day−1 [73],

τM = 10days, and τI = 14days [74, 62].

This model inherits several structural biases from the

standard SIR model template. First, S = 0 and I = 0 are

both invariant, preventing any unbiological negative values for

these variables. Second, it retains the conservation relation

S + I + R = 1. Thus, regardless of the functions fit by the

neural network, S(t) and I(t) are guaranteed to be plausible.

Neural Networks

The influence of mobility (i.e. contact rate) on the transmission

rate is represented by neural networks that are used to represent

β(M) and f(I,∆I,M,R). These networks each have linear

output layers with one neuron and 2 hidden layers with 3

neurons per hidden layer and Gaussian Error Linear Unit

(GELU) activation functions. This gives the β network 22

parameters and the f network 31, for a total of 54 once δ is

included. Different network structure (size, activation function)

could have improved performance. The hyperparameter space

is probably too large to globally optimize the model, but there

may be improvements we missed in our hyperparameter tuning.

Training Methodology

The baseline (unbiased) model, which received no social or

biological feedback, was trained only to fit the data (details

in section 4.3). The model’s prediction is generated by solving

the delay differential equation system to get its prediction for

each state at each time step. This prediction is then fed into a

scaled mean-squared error loss function:

L(Θ) =
n∑

i=1

m∑
j=1

(
yij − ȳij

m(ȳimax − ȳimin)
)
2

(2)

Here, n is the dimension of the system, m is the number of data

points, yij is the true value of the ith variable’s jth data point,

and ȳij is the prediction for ith variable’s jth data point. k is

the size of the parameter vector Θ, and Θl is the lth entry in Θ.

Scaling the loss function in this way helps ensure all variables

are given equal importance despite having different ranges [75].

Both biased and unbiased models for all regions were trained

on the first 160 days, giving m = 22 data points after weekly

averaging (see 4.3). This time period fully encompasses the

first wave for all populations studied, but does not include the

beginning of the second wave.

Learning Biases

The socially and biologically informed model was trained to

minimize the same accuracy loss objective as well as 8 other

objectives, each encoding a social or biological assumption.

These BIML loss functions are deliberately constructed so as

to give 0 loss to any functions which satisfy the relevant

assumptions. This allows the model complete freedom to

explore the range of biologically feasible functions.

At each training iteration, the model generates 100 random

points in the region 0 ≤ I ≤ 1, I − 1 ≤ ∆I ≤ I,−100 ≤ M ≤
100. The BIML loss functions are evaluated at each of these

points. The total loss at each iteration is then a weighted sum of

the BIML losses, plus the accuracy loss. We tried dynamically

updating the weights for each loss function as in [25], but this

did not significantly improve results. The BIML assumptions

and corresponding loss functions are displayed in Section 4.2.1

Table 3.

We only tested a few values for the learning bias weight. The

optimal value for achieving tolerable performance on training

data while assuring qualitatively realistic long-term predictions

may be higher or lower. It may instead involve weights that

differ between loss functions or which evolve over the training

process.

Model parameters were randomly initialized. Parameter sets

that gave initial errors of more than 104 were re-initialized. We

used the Adam optimizer to optimize the model parameters. For

the basic model, we simply use the gradient of the accuracy loss

with respect to the parameters. For the biologically-informed

model, we use the same weighted sum for the total gradient as

for the total loss. More details on the software implementation

of this algorithm can be found in the appendix.

We found that training the model on the entire training set

at once caused it to become stuck in a local optimum where

I never increased. Thus, we trained the models in stages to

achieve a better fit more quickly. The model trained on the

first quarter of the data in the first stage, the first half in the

second, and the entire training set in the third.

Repeating our model with more computing time and power

could be informative. Although we were able run the model

with enough iterations to ensure all models converged to a

good degree, some certainly converged better than others. The

mobility data was a particular challenge, with fairly sharp

downturns and upturns occasionally not always fully captured.

This could be assisted by using collocation-based training to

speed up the process [76].

Data

Case Data

Daily case notification data was taken from the Johns Hopkins

CSSE dataset [77]. We derived daily susceptible and infected

proportions using the following system:

IT (tn) = IT (tn−1) − γIT (tn−1) + 5C(tn)

ST (tn) = ST (tn−1) − 5C(tn) (3)

where ST (tn) and IT (tn) are the total number of susceptible

and infected individuals (not proportions) on day tn and C(tn)
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Table 3. BINN loss functions

Biological assumption Loss function

1. β(M) ≥ 0 for all M relu(−β(Mi))

2. Higher values of M correspond to higher values of β(M) relu(β(Mi)) − (β(Mi + ϵ))

3. M cannot go below a minimum value, i.e. a reduction of 100% from baseline relu(−f(Mmin, Ii,∆Ii, R))

4. M cannot exceed a maximum value, set1 at Mmax = 2(Mbaseline − Mmin) relu(f(Mmax, Ii,∆Ii, R))

5. f is monotonically decreasing in I relu(f(Mi, Ii + ϵ,∆Ii, R)) − f(Mi, Ii,∆Ii, R)))

6. f is monotonically decreasing in ∆I relu(f(Mi, Ii,∆Ii + ϵ, R)) − f(Mi, Ii,∆Ii, R)))

7. In the absence of infection, M tends towards baseline relu[f(M, I,∆I, R)(Mi − Mbaseline)]

8. M tends toward baseline more strongly when R is higher relu[|f(M, I,∆I, R)| − |f(M, I,∆I, R + ϵ)|]

1This upper bound is deliberately (if arbitrarily) set much higher than the maximum of the data to stop solutions diverging to infinity without excessively

constraining the model

are the number of new cases on day tn. The parameter γ is the

same used in the model as discussed above. Finally, we divided

I and S by the total population to get a proportion at each

time step to ensure different regions are comparable.

Mobility Data

Daily mobility data (M) comes from the Google Community

Mobility Report [78]. We mean-normalized this data to give

it a comparable range to S and I. We chose the Retail and

Recreation category of mobility data as it corresponded most

to what we were trying to measure: voluntary activities in

indoor settings that place people at risk of becoming infected.

It is also strongly correlated with infection, so it is reasonable

to expect it can be a good predictor of cases. Repeating the

simulations with workplace mobility would be a good test of

the model’s validity. Other mobility measures, such as parks,

would be difficult to use due to their weaker correlation with

infections [17].

Once we had data for each day, we sub-sampled it by taking

a weekly moving average to reduce irregularities from weekends,

holidays, and days where data was not available. We set the

initial condition as the first data point for which I ̸= 0.

The regions analyzed were chosen to represent a variety of

relatively populous locations across Western Europe, the US,

and Canada. We chose to focus particularly on regions where

populations are decently concentrated and which had notable

second waves.
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